1
|
Li X, Huang Q, Meng F, Hong C, Li B, Yang Y, Qu Z, Wu J, Li F, Xin H, Hu B, Wu J, Hu C, Zhu X, Tang D, Du Z, Wang S. Analysis of Transcriptome Differences Between Subcutaneous and Intramuscular Adipose Tissue of Tibetan Pigs. Genes (Basel) 2025; 16:246. [PMID: 40149398 PMCID: PMC11942267 DOI: 10.3390/genes16030246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Fat deposition traits in pigs directly influence pork flavor, tenderness, and juiciness and are closely linked to overall pork quality. The Tibetan pig, an indigenous breed in China, not only possesses a high intramuscular fat content but also exhibits a unique fat metabolism pattern due to long-term adaptation to harsh environments. This makes it an excellent genetic and physiological model for investigating fat deposition characteristics. Adipose tissue from different body regions displays varying morphologies, cytokines, and adipokines. This study aimed to examine adipose tissue deposition characteristics in different parts of Tibetan pigs and provide additional data to explore the underlying mechanisms of differential fat deposition. Methods: Our research identified significant differences in the morphology and gene expression patterns between subcutaneous fat (abdominal fat [AF] and back fat [BF]) and intramuscular fat (IMF) in Tibetan pigs. Results: Histological observations revealed that subcutaneous fat cells were significantly larger in area and diameter compared to IMF cells. The transcriptomic analysis further identified differentially expressed genes (DEGs) between subcutaneous fat and IMF, with a total of 65 DEGs in BF vs. IMF and 347 DEGs in AF vs. IMF, including 25 DEGs common to both comparisons. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that these genes were significantly associated with lipid metabolism-related signaling pathways, such as the Wnt, mTOR, and PI3K-Akt signaling pathways. Several DEGs, including DDAH1, ADRA1B, SLCO3A1, and THBS3, may be linked to the differences in fat deposition in different parts of Tibetan pigs, thereby affecting meat quality and nutritional value. Conclusions: These findings provide new insights into the unique fat distribution and deposition characteristics of Tibetan pigs and establish a foundation for breeding strategies aimed at improving pork quality.
Collapse
Affiliation(s)
- Xinming Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (J.W.); (Z.D.)
| | - Qiuyan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (J.W.); (Z.D.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Fanming Meng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (J.W.); (Z.D.)
| | - Chun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (J.W.); (Z.D.)
| | - Baohong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (J.W.); (Z.D.)
| | - Yecheng Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (J.W.); (Z.D.)
| | - Zixiao Qu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (J.W.); (Z.D.)
| | - Junda Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (J.W.); (Z.D.)
| | - Fei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (J.W.); (Z.D.)
| | - Haiyun Xin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (J.W.); (Z.D.)
| | - Bin Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (J.W.); (Z.D.)
| | - Jie Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (J.W.); (Z.D.)
| | - Chuanhuo Hu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiangxing Zhu
- School of Medicine, Foshan University, Foshan 528000, China
| | - Dongsheng Tang
- School of Medicine, Foshan University, Foshan 528000, China
| | - Zongliang Du
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (J.W.); (Z.D.)
| | - Sutian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (J.W.); (Z.D.)
| |
Collapse
|
2
|
Liu G, Li M, Saeed M, Xu Y, Ren Q, Sun C. αMSH inhibits adipose inflammation via reducing FoxOs transcription and blocking Akt/JNK pathway in mice. Oncotarget 2018; 8:47642-47654. [PMID: 28514752 PMCID: PMC5564594 DOI: 10.18632/oncotarget.17465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022] Open
Abstract
Alpha melanocyte stimulating hormone (αMSH) abates inflammation in multiple tissues, while Forkhead box proteins O (FoxOs) stimulate inflammatory cascade. However, the relationship between αMSH and FoxOs in adipose inflammation remains unclear. In this study, we used LPS-induced inflammation model, attempted to interpret the function of αMSH in inflammation and the interactions with FoxOs. Results indicated that upon inflammatory situation, the secretion of αMSH and the expression of its receptor MC5R were greatly decreased, but FoxOs expressions were elevated. After the treatment with αMSH, LPS-induced adipose inflammation together with FoxOs expressions was significantly reduced. Conversely, when Foxo1, Foxo3a or Foxo4 overexpressed in αMSH treated inflammatory mouse model, all the anti-inflammatory impacts of αMSH were found disappeared. We further studied the mechanisms by which αMSH exerts its anti-inflammatory impacts and how FoxOs reverse αMSH's function. Foxo4 was found as a negative regulator for MC5R transcription in αMSH inhibited inflammation. Moreover, a negative role was found of αMSH in regulating both Akt and JNK signal pathways by observing the enhanced the anti-inflammatory impacts of pathway-specific inhibitors with αMSH treatment. Our findings demonstrate αMSH plays a key role in the prevention of adipose inflammation and inflammatory diseases by down-regulating Akt/JNK signal pathway and negatively interacting with FoxOs, which brings up αMSH as a novel candidate factor in the adipose anti-inflammation process in obesity.
Collapse
Affiliation(s)
- Guannv Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Meihang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Muhammad Saeed
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yatao Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
3
|
Relationships between Brain Structure and Metabolic Changes in Schizophrenia Patients Treated with Olanzapine: A Voxel-Based Morphometric Study. SCHIZOPHRENIA RESEARCH AND TREATMENT 2011; 2011:862350. [PMID: 22937275 PMCID: PMC3420802 DOI: 10.1155/2011/862350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/03/2011] [Indexed: 11/17/2022]
Abstract
Introduction. Second-generation antipsychotics treatment is associated with weight gain and metabolic disturbances. Although much research has been done on the topic, the precise mechanisms underlying such side effects are still not well understood. Method. We followed over 16 weeks a group of 17 schizophrenia patients who were treated with olanzapine and monitored biometric, clinical, and metabolic data, including ghrelin and leptin levels. All patients had a structural cerebral magnetic resonance imaging examination during the first week of their followup and at the end of the study. Results. We found positive and negative significant correlations between grey matter volumes of several brain regions and variations of body weight as well as of ghrelin and leptin levels. The right frontal operculum, bilateral precuneus, and bilateral hippocampal regions were found to be significantly associated with those changes. Conclusion. Our results suggest associations between brain structure and metabolic variations in schizophrenia patients taking olanzapine.
Collapse
|
5
|
Bays HE, González-Campoy JM, Bray GA, Kitabchi AE, Bergman DA, Schorr AB, Rodbard HW, Henry RR. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther 2008; 6:343-68. [PMID: 18327995 DOI: 10.1586/14779072.6.3.343] [Citation(s) in RCA: 353] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When caloric intake exceeds caloric expenditure, the positive caloric balance and storage of energy in adipose tissue often causes adipocyte hypertrophy and visceral adipose tissue accumulation. These pathogenic anatomic abnormalities may incite metabolic and immune responses that promote Type 2 diabetes mellitus, hypertension and dyslipidemia. These are the most common metabolic diseases managed by clinicians and are all major cardiovascular disease risk factors. 'Disease' is traditionally characterized as anatomic and physiologic abnormalities of an organ or organ system that contributes to adverse health consequences. Using this definition, pathogenic adipose tissue is no less a disease than diseases of other body organs. This review describes the consequences of pathogenic fat cell hypertrophy and visceral adiposity, emphasizing the mechanistic contributions of genetic and environmental predispositions, adipogenesis, fat storage, free fatty acid metabolism, adipocyte factors and inflammation. Appreciating the full pathogenic potential of adipose tissue requires an integrated perspective, recognizing the importance of 'cross-talk' and interactions between adipose tissue and other body systems. Thus, the adverse metabolic consequences that accompany fat cell hypertrophy and visceral adiposity are best viewed as a pathologic partnership between the pathogenic potential adipose tissue and the inherited or acquired limitations and/or impairments of other body organs. A better understanding of the physiological and pathological interplay of pathogenic adipose tissue with other organs and organ systems may assist in developing better strategies in treating metabolic disease and reducing cardiovascular disease risk.
Collapse
Affiliation(s)
- Harold E Bays
- L-MARC Research Center, 3288 Illinois Avenue, Louisville, KY 40213, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
AbstractAngiotensin-converting enzyme (ACE, kininase II) is a plasma membrane zinc metallopeptidase that acts as a key enzyme for the extracellular conversion of vasoactive peptides. Recently, ACE outside-in signalling in endothelial cells has been described. The present study tested the hypothesis that ACE signalling is not restricted to endothelial cells and may act as an additional peptide receptor on human preadipocytes and adipocytes. ACE protein levels were not changed during adipose conversion of human primary preadipocytes. The enzyme was primarily localized to the non-detergent-resistant fraction of the membrane and phosphorylated in non-dividing cells. Antibody arrays of whole cell lysate detected putative ACE-interacting proteins, which all share important roles in cell cycle control and/or apoptosis. These findings suggest that ACE is a versatile molecule, involved both in the regulation of extracellular peptide concentrations and direct intracellular signalling. In human adipose cells ACE may potentially influence exit from the cell cycle, differentiation, and programmed cell death signalling.
Collapse
|