1
|
Witkowski M, Trzybiński D, Pawlędzio S, Woźniak K, Dzwolak W, Królikowska A. The Structural Characterisation and DFT-Aided Interpretation of Vibrational Spectra for Cyclo(l-Cys-d-Cys) Cyclic Dipeptide in a Solid State. Molecules 2023; 28:5902. [PMID: 37570871 PMCID: PMC10421304 DOI: 10.3390/molecules28155902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Cyclic dipeptides with two intramolecular peptide bonds forming a six-membered 2,5-diketopiperazine ring are gaining significant attention due to their biological and chemical properties. Small changes in the local geometry of such molecules (from cis to trans) can lead to significant structural differences. This work presents the results of a study of cyclo(l-Cys-d-Cys), a dipeptide comprising two cysteine molecules in opposite chiral configurations, with the functional groups situated at both sides of the diketopiperazine ring. X-ray diffraction (XRD) experiment revealed that the molecule crystallises in the P-1 space group, which includes the centre of inversion. The IR and Raman vibrational spectra of the molecule were acquired and interpreted in terms of the potential energy distribution (PED) according to the results of density functional theory (DFT) calculations. The DFT-assisted analysis of energy frameworks for the hydrogen bond network within molecular crystals was performed to support the interpretation of X-ray structural data. The optimisation of the computational model based on three-molecule geometry sections from the crystallographic structure, selected to appropriately reflect the intermolecular interactions responsible for the formation of 1D molecular tapes in cyclo(l-Cys-d-Cys) crystal, allowed for better correspondence between theoretical and experimental vibrational spectra. This work can be considered the first complete structural characterisation of cyclo(l-Cys-d-Cys), complemented via vibrational spectroscopy results with full band assignment aided with the use of the DFT method.
Collapse
Affiliation(s)
- Marcin Witkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland
| | - Damian Trzybiński
- Biological and Chemical Research Centre, Chemistry Department, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Sylwia Pawlędzio
- Biological and Chemical Research Centre, Chemistry Department, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Chemistry Department, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Wojciech Dzwolak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland
- Biological and Chemical Research Centre, Chemistry Department, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Agata Królikowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland
| |
Collapse
|
2
|
Malit JJL, Wu C, Tian X, Liu W, Huang D, Sung HHY, Liu LL, Williams ID, Qian PY. Griseocazines: Neuroprotective Multiprenylated Cyclodipeptides Identified through Targeted Genome Mining. Org Lett 2022; 24:2967-2972. [PMID: 35436125 DOI: 10.1021/acs.orglett.2c00745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Prenylation can impart pharmacological advantages to bioactive compounds. Global genome mining for prenylated cyclodipeptides identified a gczABC BGC from Streptomyces griseocarneus 132 containing a cyclodipeptide synthase and two prenyltransferase genes. Subsequent heterologous expression allowed isolation and characterization of griseocazines, which displayed potent neuroprotective activity. Further biotransformation analyses revealed that prenyltransferases GczB and GczC catalyzed the stereospecific prenylation of cWW and attached geranyl and farnesyl groups to a cyclodipeptide scaffold, respectively.
Collapse
Affiliation(s)
- Jessie James Limlingan Malit
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong HKG, China
| | - Chuanhai Wu
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong HKG, China
| | - Xueying Tian
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong HKG, China
| | - Wenchao Liu
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong HKG, China
| | - Duli Huang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong HKG, China
| | - Herman H-Y Sung
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong HKG, China
| | - Ling-Li Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University 22 Xinong Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Ian D Williams
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong HKG, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong HKG, China
| |
Collapse
|
3
|
Abstract
Communication between and within communities of cells or independent organisms is a crucial prerequisite for species survival. In response to variations in the extracellular environment, the collective behavior of cell populations can be coordinated by regulating community-level gene expression. This mechanism is strongly conserved during evolution, being shared both by bacterial communities and central nervous system cells. Notably, cyclic dipeptides (CDPs) are molecules that are implicated in these quorum sensing behaviors in both settings. Bacteria coordinate their collective behavior by producing CDPs (quorum sensing inducers) that enhance the capacity of individual members of the community to detect these signals and thus amplify the community-level response. In this review, we highlight recent data indicating that strikingly similar molecular mechanisms control communications between glial and neuronal cells to maintain homeostasis in the central nervous system, with a specific focus on the role of the thyrotropin-releasing hormone—derived CDP cyclo(His-Pro) in the protection against neurotoxic insults.
Collapse
|
4
|
Grottelli S, Mezzasoma L, Scarpelli P, Cacciatore I, Cellini B, Bellezza I. Cyclo(His-Pro) inhibits NLRP3 inflammasome cascade in ALS microglial cells. Mol Cell Neurosci 2018; 94:23-31. [PMID: 30439413 DOI: 10.1016/j.mcn.2018.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/31/2018] [Accepted: 11/11/2018] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation, i.e. self-propelling progressive cycle of microglial activation and neuron damage, as well as improper protein folding, are recognized as major culprits of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). Mutations in several proteins have been linked to ALS pathogenesis, including the G93A mutation in the superoxide dismutase 1 (SOD1) enzyme. SOD1(G93A) mutant is prone to aggregate thus inducing both oxidative stress and neuroinflammation. In this study we used hSOD1(G93A) microglial cells to investigate the effects of the antioxidant and anti-inflammatory cyclic dipeptide (His-Pro) on LPS-induced inflammasome activation. We found that cyclo(His-Pro) inhibits NLRP3 inflammasome activation by reducing protein nitration via reduction in NO and ROS levels, indicative of lower peroxynitrite generation by LPS. Low levels in peroxynitrite are related to NF-κB inhibition responsible for iNOS down-regulation and NO dampening. On the other hand, cyclo(His-Pro)-mediated ROS attenuation, not linked to Nrf2 activation in this cellular model, is ascribed to increased soluble SOD1 activity due to the up-regulation of Hsp70 and Hsp27 expression. Conclusively, our results, besides corroborating the anti-inflammatory properties of cyclo(His-Pro), highlight a novel role of the cyclic dipeptide as a proteostasis regulator, and therefore a good candidate for the treatment of ALS and other misfolding diseases.
Collapse
Affiliation(s)
- Silvia Grottelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Letizia Mezzasoma
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Scarpelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Ivana Cacciatore
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Ilaria Bellezza
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.
| |
Collapse
|
5
|
Grottelli S, Ferrari I, Pietrini G, Peirce MJ, Minelli A, Bellezza I. The Role of Cyclo(His-Pro) in Neurodegeneration. Int J Mol Sci 2016; 17:E1332. [PMID: 27529240 PMCID: PMC5000729 DOI: 10.3390/ijms17081332] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases may have distinct genetic etiologies and pathological manifestations, yet share common cellular mechanisms underpinning neuronal damage and dysfunction. These cellular mechanisms include excitotoxicity, calcium dysregulation, oxidative damage, ER stress and neuroinflammation. Recent data have identified a dual role in these events for glial cells, such as microglia and astrocytes, which are able both to induce and to protect against damage induced by diverse stresses. Cyclo(His-Pro), a cyclic dipeptide derived from the hydrolytic removal of the amino-terminal pyroglutamic acid residue of the hypothalamic thyrotropin-releasing hormone, may be important in regulating the nature of the glial cell contribution. Cyclo(His-Pro) is ubiquitous in the central nervous system and is a key substrate of organic cation transporters, which are strongly linked to neuroprotection. The cyclic dipeptide can also cross the brain-blood-barrier and, once in the brain, can affect diverse inflammatory and stress responses by modifying the Nrf2-NF-κB signaling axis. For these reasons, cyclo(His-Pro) has striking potential for therapeutic application by both parenteral and oral administration routes and may represent an important new tool in counteracting neuroinflammation-based degenerative pathologies. In this review, we discuss the chemistry and biology of cyclo(His-Pro), how it may interact with the biological mechanisms driving neurodegenerative disease, such as amyotrophic lateral sclerosis, and thereby act to preserve or restore neuronal function.
Collapse
Affiliation(s)
- Silvia Grottelli
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy.
| | - Ilaria Ferrari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano ed Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Via Vanvitelli 32, 20129 Milano, Italy.
| | - Grazia Pietrini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano ed Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Via Vanvitelli 32, 20129 Milano, Italy.
| | - Matthew J Peirce
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy.
| | - Alba Minelli
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy.
| | - Ilaria Bellezza
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy.
| |
Collapse
|
6
|
Bellezza I, Peirce MJ, Minelli A. Cyclic dipeptides: from bugs to brain. Trends Mol Med 2014; 20:551-8. [PMID: 25217340 DOI: 10.1016/j.molmed.2014.08.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
Cyclic dipeptides (CDPs) are a group of hormone-like molecules that are evolutionarily conserved from bacteria to humans. In bacteria, CDPs are used in quorum sensing (QS) to communicate information about population size and to regulate a behavioural switch from symbiosis with their host to virulence. In mammals, CDPs have been shown to act on glial cells (macrophage-like cells) to control a conceptually homologous behavioural switch between homeostatic and inflammatory modes, with implications for the control of neurodegenerative disease. Here we argue that, because of their capacity to regulate inflammation via glial cells and induce a protective response in neuronal cells, CDPs have potential therapeutic utility in an array of inflammatory diseases.
Collapse
Affiliation(s)
- Ilaria Bellezza
- Experimental Medicine Department, Polo Unico S. Andrea delle Fratte, University of Perugia, 06124 Perugia, Italy
| | - Matthew J Peirce
- Experimental Medicine Department, Polo Unico S. Andrea delle Fratte, University of Perugia, 06124 Perugia, Italy
| | - Alba Minelli
- Experimental Medicine Department, Polo Unico S. Andrea delle Fratte, University of Perugia, 06124 Perugia, Italy.
| |
Collapse
|
7
|
Borthwick AD. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 2012; 112:3641-716. [PMID: 22575049 DOI: 10.1021/cr200398y] [Citation(s) in RCA: 643] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Cyclo(His-Pro) promotes cytoprotection by activating Nrf2-mediated up-regulation of antioxidant defence. J Cell Mol Med 2008; 13:1149-61. [PMID: 18373731 PMCID: PMC4496110 DOI: 10.1111/j.1582-4934.2008.00326.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Hystidyl-proline [cyclo(His-Pro)] is an endogenous cyclic dipeptide produced by the cleavage of thyrotropin releasing hormone. Previous studies have shown that cyclo(His-Pro) protects against oxidative stress, although the underlying mechanism has remained elusive. Here, we addressed this issue and found that cyclo(His-Pro) triggered nuclear accumulation of NF-E2-related factor-2 (Nrf2), a transcription factor that up-regulates antioxidant-/electrophile-responsive element (ARE-EpRE)-related genes, in PC12 cells. Cyclo(His-Pro) attenuated reactive oxygen species production, and prevented glutathione depletion caused by glutamate, rotenone, paraquat and β-amyloid treatment. Moreover, real-time PCR analyses revealed that cyclo(His-Pro) induced the expression of a number of ARE-related genes and protected cells against hydrogen peroxide-mediated apoptotic death. Furthermore, these effects were abolished by RNA interference-mediated Nrf2 knockdown. Finally, pharmacological inhibition of p-38 MAPK partially prevented both cyclo(His-Pro)-mediated Nrf2 activation and cellular protection. These results suggest that the signalling mechanism responsible for the cytoprotective actions of cyclo(His-Pro) would involve p-38 MAPK activation leading to Nrf2-mediated up-regulation of antioxidant cellular defence.
Collapse
|
9
|
Focus on cyclo(His-Pro): history and perspectives as antioxidant peptide. Amino Acids 2007; 35:283-9. [DOI: 10.1007/s00726-007-0629-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
|