1
|
Wang J, Zhao W, Zhang Z, Liu X, Xie T, Wang L, Xue Y, Zhang Y. A Journey of Challenges and Victories: A Bibliometric Worldview of Nanomedicine since the 21st Century. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308915. [PMID: 38229552 DOI: 10.1002/adma.202308915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Nanotechnology profoundly affects the advancement of medicine. Limitations in diagnosing and treating cancer and chronic diseases promote the growth of nanomedicine. However, there are very few analytical and descriptive studies regarding the trajectory of nanomedicine, key research powers, present research landscape, focal investigative points, and future outlooks. Herein, articles and reviews published in the Science Citation Index Expanded of Web of Science Core Collection from first January 2000 to 18th July 2023 are analyzed. Herein, a bibliometric visualization of publication trends, countries/regions, institutions, journals, research categories, themes, references, and keywords is produced and elaborated. Nanomedicine-related academic output is increasing since the COVID-19 pandemic, solidifying the uneven global distribution of research performance. While China leads in terms of publication quantity and has numerous highly productive institutions, the USA has advantages in academic impact, commercialization, and industrial value. Nanomedicine integrates with other disciplines, establishing interdisciplinary platforms, in which drug delivery and nanoparticles remain focal points. Current research focuses on integrating nanomedicine and cell ferroptosis induction in cancer immunotherapy. The keyword "burst testing" identifies promising research directions, including immunogenic cell death, chemodynamic therapy, tumor microenvironment, immunotherapy, and extracellular vesicles. The prospects, major challenges, and barriers to addressing these directions are discussed.
Collapse
Affiliation(s)
- Jingyu Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Wenling Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Xingzi Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Tong Xie
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Lan Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Yuzhou Xue
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, State Key Laboratory of Vascular Homeostasis and Remodeling Peking University, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| |
Collapse
|
2
|
Manners N, Priya V, Mehata AK, Rawat M, Mohan S, Makeen HA, Albratty M, Albarrati A, Meraya AM, Muthu MS. Theranostic Nanomedicines for the Treatment of Cardiovascular and Related Diseases: Current Strategies and Future Perspectives. Pharmaceuticals (Basel) 2022; 15:ph15040441. [PMID: 35455438 PMCID: PMC9029632 DOI: 10.3390/ph15040441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular and related diseases (CVRDs) are among the most prevalent chronic diseases in the 21st century, with a high mortality rate. This review summarizes the various nanomedicines for diagnostic and therapeutic applications in CVRDs, including nanomedicine for angina pectoris, myocarditis, myocardial infarction, pericardial disorder, thrombosis, atherosclerosis, hyperlipidemia, hypertension, pulmonary arterial hypertension and stroke. Theranostic nanomedicines can prolong systemic circulation, escape from the host defense system, and deliver theranostic agents to the targeted site for imaging and therapy at a cellular and molecular level. Presently, discrete non-invasive and non-surgical theranostic methodologies are such an advancement modality capable of targeted diagnosis and therapy and have better efficacy with fewer side effects than conventional medicine. Additionally, we have presented the recent updates on nanomedicine in clinical trials, targeted nanomedicine and its translational challenges for CVRDs. Theranostic nanomedicine acts as a bridge towards CVRDs amelioration and its management.
Collapse
Affiliation(s)
- Natasha Manners
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
| | - Manoj Rawat
- Novartis Healthcare Private Limited, Hyderabad 500078, India;
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia;
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Ali Albarrati
- Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Madaswamy S. Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
- Correspondence: ; Tel.: +91-923-519-5928; Fax: +91-542-236-8428
| |
Collapse
|
3
|
Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA, Soond SM. BH3-mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res 2021; 40:355. [PMID: 34753495 PMCID: PMC8576916 DOI: 10.1186/s13046-021-02157-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The hopeful outcomes from 30 years of research in BH3-mimetics have indeed served a number of solid paradigms for targeting intermediates from the apoptosis pathway in a variety of diseased states. Not only have such rational approaches in drug design yielded several key therapeutics, such outputs have also offered insights into the integrated mechanistic aspects of basic and clinical research at the genetics level for the future. In no other area of medical research have the effects of such work been felt, than in cancer research, through targeting the BAX-Bcl-2 protein-protein interactions. With these promising outputs in mind, several mimetics, and their potential therapeutic applications, have also been developed for several other pathological conditions, such as cardiovascular disease and tissue fibrosis, thus highlighting the universal importance of the intrinsic arm of the apoptosis pathway and its input to general tissue homeostasis. Considering such recent developments, and in a field that has generated so much scientific interest, we take stock of how the broadening area of BH3-mimetics has developed and diversified, with a focus on their uses in single and combined cancer treatment regimens and recently explored therapeutic delivery methods that may aid the development of future therapeutics of this nature.
Collapse
Affiliation(s)
- Paul A Townsend
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
- University of Manchester, Manchester, UK.
| | - Maria V Kozhevnikova
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
- Sirius University of Science and Technology, Sochi, Russian Federation
| | - Surinder M Soond
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|
4
|
Fancher IS, Rubinstein I, Levitan I. Potential Strategies to Reduce Blood Pressure in Treatment-Resistant Hypertension Using Food and Drug Administration-Approved Nanodrug Delivery Platforms. Hypertension 2019; 73:250-257. [PMID: 30624988 DOI: 10.1161/hypertensionaha.118.12005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ibra S Fancher
- From the Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago (I.S.F., I.R., I.L.)
| | - Israel Rubinstein
- From the Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago (I.S.F., I.R., I.L.).,Jesse Brown VA Medical Center, Chicago, Illinois (I.R.)
| | - Irena Levitan
- From the Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago (I.S.F., I.R., I.L.)
| |
Collapse
|
5
|
Pandita D, Munjal A, Godara S, Lather V. Nanocarriers in Drug and Gene Delivery. ADVANCES IN ANIMAL BIOTECHNOLOGY AND ITS APPLICATIONS 2018:71-102. [DOI: 10.1007/978-981-10-4702-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
İzgü F, Bayram G, Tosun K, İzgü D. Stratum corneum lipid liposome-encapsulated panomycocin: preparation, characterization, and the determination of antimycotic efficacy against Candida spp. isolated from patients with vulvovaginitis in an in vitro human vaginal epithelium tissue model. Int J Nanomedicine 2017; 12:5601-5611. [PMID: 28831255 PMCID: PMC5548276 DOI: 10.2147/ijn.s141949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this study, a liposomal lyophilized powder formulation of panomycocin was developed for therapeutic purposes against vulvovaginal candidiasis which affects 80% of women worldwide. Panomycocin is a potent antimycotic protein secreted by the yeast Wickerhamomyces anomalus NCYC 434. This study involved the preparation of panomycocin-loaded stratum corneum lipid liposomes (SCLLs), characterization of the SCLLs, and determination of antimycotic efficacy of the formulation against Candida albicans and Candida glabrata clinical vaginal isolates in a human vaginal epithelium tissue model. The encapsulation and loading efficiencies of SCLLs were 73% and 76.8%, respectively. In transmission electron microscopy images, the SCLLs appeared in the submicron size range. Dynamic light scattering analyses showed that the SCLLs had uniform size distribution. Zeta potential measurements revealed stable and positively charged SCLLs. In Fourier transform infrared spectroscopy analyses, no irreversible interactions between the encapsulated panomycocin and the SCLLs were detected. The SCLLs retained >98% of encapsulated panomycocin in aqueous solution up to 12 hours. The formulation was fungicidal at the same minimum fungicidal concentration values for non-formulated pure panomycocin when tested on an in vitro model of vaginal candidiasis. This is the first study in which SCLLs and a protein as an active ingredient have been utilized together in a formulation. The results obtained in this study led us to conduct further preclinical trials of this formulation for the development of an effective topical anti-candidal drug with improved safety.
Collapse
Affiliation(s)
- Fatih İzgü
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Günce Bayram
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey
| | - Kübra Tosun
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey
| | - Demet İzgü
- Biology Department, TED Ankara College, Ankara, Turkey
| |
Collapse
|
7
|
Matougui N, Boge L, Groo AC, Umerska A, Ringstad L, Bysell H, Saulnier P. Lipid-based nanoformulations for peptide delivery. Int J Pharm 2016; 502:80-97. [DOI: 10.1016/j.ijpharm.2016.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/28/2016] [Accepted: 02/13/2016] [Indexed: 01/24/2023]
|
8
|
Abstract
During the last decades increasing attention has been paid to peptides as potential therapeutics. However, clinical applications of peptide drugs suffer from susceptibility to degradation, rather short circulation half-life, limited ability to cross physiological barriers and potential immunogenicity. These challenges can be addressed by using polymeric materials as peptide delivery systems, owing to their versatile structures and properties. A number of polymer-based vehicles have been developed to stabilize the peptides and to control their release rates. Unfortunately, no single polymer or formulation strategy has been considered ideal for all types of peptide drugs. In this review, currently used and potential polymer-based systems for the peptide delivery will be discussed.
Collapse
|
9
|
Beloqui A, Solinís MA, Delgado A, Evora C, del Pozo-Rodríguez A, Rodríguez-Gascón A. Biodistribution of Nanostructured Lipid Carriers (NLCs) after intravenous administration to rats: influence of technological factors. Eur J Pharm Biopharm 2013; 84:309-14. [PMID: 23461861 DOI: 10.1016/j.ejpb.2013.01.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 01/08/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
Abstract
Nanoparticles for medical applications are frequently administered via parenteral administration. In this study, the tissue distribution of three lipid formulations based on Nanostructured Lipid Carriers (NLCs) after intravenous administration to rats was evaluated. NLCs were prepared by a high pressure homogenization method and varied in terms of particle size, surface charge, and surfactant content. The (99m)Tc radiolabeled NLCs were intravenously administered to rats, and radioactivity levels in blood and tissues were measured. Cmax, AUC0-24, and MRT0-24 were obtained from the radioactivity level versus time profiles. The radiolabeled nanocarriers exhibited a long circulation time since radioactivity was detected in blood even 24 h post-injection. No differences on the MRT values in blood among the NLCs were observed, in spite of the different particle size and surface charge. The highest radioactivity levels were measured in the kidney, followed by the bone marrow, the liver, and the spleen. In the kidney, there was a higher accumulation of the positive nanoparticles, and in the liver, uptake of negative nanoparticles was higher than positive ones. NLCs with the largest particle size showed a higher uptake in the lung and lower accumulation in liver and bone marrow, in comparison with the smaller ones.
Collapse
Affiliation(s)
- A Beloqui
- Laboratory of Pharmacy and Pharmaceutical Technology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Sethi V, Rubinstein I, Kuzmis A, Kastrissios H, Artwohl J, Onyuksel H. Novel, biocompatible, and disease modifying VIP nanomedicine for rheumatoid arthritis. Mol Pharm 2013; 10:728-38. [PMID: 23211088 DOI: 10.1021/mp300539f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite advances in rheumatoid arthritis (RA) treatment, efficacious and safe disease-modifying therapy still represents an unmet medical need. Here, we describe an innovative strategy to treat RA by targeting low doses of vasoactive intestinal peptide (VIP) self-associated with sterically stabilized micelles (SSMs). This spontaneous interaction of VIP with SSM protects the peptide from degradation or inactivation in biological fluids and prolongs circulation half-life. Treatment with targeted low doses of nanosized SSM-VIP but not free VIP in buffer significantly reduced the incidence and severity of arthritis in an experimental model, completely abrogating joint swelling and destruction of cartilage and bone. In addition, SSM associated VIP, unlike free VIP, had no side-effects on the systemic functions due to selective targeting to inflamed joints. Finally, low doses of VIP in SSM successfully downregulated both inflammatory and autoimmune components of RA. Collectively, our data clearly indicate that VIP-SSM should be developed to be used as a novel nanomedicine for the treatment of RA.
Collapse
Affiliation(s)
- Varun Sethi
- Department of Biopharmaceutical Sciences, Jesse Brown VA Medical Center, Chicago, Illinois 60612, United States
| | | | | | | | | | | |
Collapse
|
11
|
Banerjee A, Onyuksel H. Peptide delivery using phospholipid micelles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:562-74. [PMID: 22847908 DOI: 10.1002/wnan.1185] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peptide based drugs are an important class of therapeutic agents but their development into commercial products is often hampered due to their inherent physico-chemical and biological instabilities. Phospholipid micelles can be used to address these delivery concerns. Peptides self-associate with micelles that serve to thwart the aggregation of these biomolecules. Self-association with micelles does not modify the peptide chemically; therefore the process does not denature or compromise the bioactivity of peptides. Additionally, many amphiphilic peptides adopt α-helical conformation in phospholipid micelles which is not only the most favorable conformation for receptor interaction but also improves their stability against proteolytic degradation, thus making them long-circulating. Furthermore, the nanosize of micelles enables passive targeting of peptides to the desired site of action through leaky vasculature present at tumor and inflamed tissues. All these factors alter the pharmacokinetic and biodistribution profiles of peptides therefore enhance their efficacy, reduce the dose required to obtain a therapeutic response and prevent adverse effects due to interaction of the peptide with receptors present in other physiological sites of the body. These phospholipid micelle based peptide nanomedicines can be easily scaled-up and lyophilized, thus setting the stage for further development of the formulation for clinical use. All things considered, it can be concluded that phospholipid micelles are a safe, stable and effective delivery option for peptide drugs and they form a great promise for future peptide nanomedicines.
Collapse
Affiliation(s)
- Amrita Banerjee
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
12
|
Lim SB, Banerjee A, Önyüksel H. Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release 2012; 163:34-45. [PMID: 22698939 DOI: 10.1016/j.jconrel.2012.06.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/21/2012] [Accepted: 06/01/2012] [Indexed: 01/01/2023]
Abstract
Drug toxicity is an important factor that contributes significantly to adverse drug events in current healthcare practice. Application of lipid-based nanocarriers in drug formulation is one approach to improve drug safety. Lipid-based delivery systems include micelles, liposomes, solid lipid nanoparticles, nanoemulsions and nanosuspensions. These carriers are generally composed of physiological lipids well tolerated by human body. Delivery of water-insoluble drugs in these formulations increases their solubility and stability in aqueous media and eliminates the need for toxic co-solvents or pH adjustment to solubilize hydrophobic drugs. Association or encapsulation of peptides/proteins within lipid-based carriers protects the labile biologics against enzymatic degradation, hence reducing the therapeutic dose required and risk of dose-dependent toxicity. Most importantly, lipid-based nanocarriers alter the pharmacokinetics and biodistribution of drugs through passive and active targeting, leading to increased drug accumulation at target sites while significantly decreasing non-specific distribution to other tissues. Furthermore, surface modification of these nanocarriers reduces immunogenicity of drug-carrier complexes, imparts stealth by preventing opsonization and removal by phagocytes and minimizes interaction with circulating blood components. In view of heightening attention on drug safety in patient treatment, lipid-based nanocarrier is therefore an important and promising option for formulation of pharmaceutical products to improve treatment safety and efficacy.
Collapse
Affiliation(s)
- Sok Bee Lim
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612-7231, USA
| | | | | |
Collapse
|
13
|
Williams RL, Lim SB, Onyuksel H, Marucha PT. Sterically Stabilized Phospholipid Micelles Reduce Activity of a Candidate Antimicrobial Wound Healing Adjunct. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9292-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Banerjee A, Onyuksel H. Human pancreatic polypeptide in a phospholipid-based micellar formulation. Pharm Res 2012; 29:1698-711. [PMID: 22399387 DOI: 10.1007/s11095-012-0718-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/20/2012] [Indexed: 01/24/2023]
Abstract
PURPOSE Pancreatic polypeptide (PP) has important glucoregulatory functions and thereby holds significance in the treatment of diabetes and obesity. However, short plasma half-life and aggregation propensity of PP in aqueous solution, limits its therapeutic application. To address these issues, we prepared and characterized a formulation of PP in sterically stabilized micelles (SSM) that protects and stabilizes PP in its active conformation. METHODS PP-SSM was prepared by incubating PP with SSM dispersion in buffer. Peptide-micelle association and freeze-drying efficacy of the formulation was characterized in phosphate buffers with or without sodium chloride using dynamic light scattering, fluorescence spectroscopy and circular dichroism. The degradation kinetics of PP-SSM in presence of proteolytic enzyme was determined using HPLC and bioactivity of the formulation was evaluated by in vitro cAMP inhibition study. RESULTS PP self-associated with SSM and this interaction was influenced by presence/absence of sodium chloride in the buffer. The formulation was effectively lyophilized, demonstrating feasibility for its long-term storage. The stability of peptide against proteolytic degradation was significantly improved and PP in SSM retained its bioactivity in vitro. CONCLUSIONS Self-association of PP with phospholipid micelles addressed the delivery issues of the peptide. This nanomedicine should be further developed for the treatment of diabetes.
Collapse
Affiliation(s)
- Amrita Banerjee
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | |
Collapse
|
15
|
Mosgoeller W, Prassl R, Zimmer A. Nanoparticle-Mediated Treatment of Pulmonary Arterial Hypertension. Methods Enzymol 2012; 508:325-54. [DOI: 10.1016/b978-0-12-391860-4.00017-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Wernig K, Griesbacher M, Andreae F, Hajos F, Wagner J, Mosgoeller W, Zimmer A. Depot formulation of vasoactive intestinal peptide by protamine-based biodegradable nanoparticles. J Control Release 2008; 130:192-8. [DOI: 10.1016/j.jconrel.2008.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 05/09/2008] [Accepted: 06/04/2008] [Indexed: 11/24/2022]
|
17
|
Dejda A, Jolivel V, Bourgault S, Seaborn T, Fournier A, Vaudry H, Vaudry D. Inhibitory effect of PACAP on caspase activity in neuronal apoptosis: a better understanding towards therapeutic applications in neurodegenerative diseases. J Mol Neurosci 2008; 36:26-37. [PMID: 18506634 DOI: 10.1007/s12031-008-9087-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 04/14/2008] [Indexed: 02/06/2023]
Abstract
Programmed cell death, which is part of the normal development of the central nervous system, is also implicated in various neurodegenerative disorders. Cysteine-dependent aspartate-specific proteases (caspases) play a pivotal role in the cascade of events leading to apoptosis. Many factors that inhibit cell death have now been identified, but the underlying mechanisms are not fully understood. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to exert neurotrophic activities during development and to prevent neuronal apoptosis induced by various insults such as ischemia. Most of the neuroprotective effects of PACAP are mediated through the PAC1 receptor. This receptor activates a transduction cascade of second messengers to stimulate Bcl-2 expression, which inhibits cytochrome c release and blocks the activation of caspases. The inhibitory effect of PACAP on the apoptotic cascade suggests that selective, stable, and potent PACAP derivatives could potentially be of therapeutic value for the treatment of post-traumatic and/or chronic neurodegenerative processes.
Collapse
Affiliation(s)
- Agnieszka Dejda
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, Mont-Saint-Aignan, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Lim SB, Rubinstein I, Önyüksel H. Freeze drying of peptide drugs self-associated with long-circulating, biocompatible and biodegradable sterically stabilized phospholipid nanomicelles. Int J Pharm 2008; 356:345-50. [PMID: 18289811 PMCID: PMC2413132 DOI: 10.1016/j.ijpharm.2008.01.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/07/2008] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to determine optimal lipid concentration range for lyophilization of sterically stabilized phospholipid nanomicelles (SSM) and the freeze drying feasibility of self-associated therapeutic peptide-SSM assemblies. SSM at 5-20 mM 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy-poly(ethylene glycol 2000) (DSPE-PEG(2000)) were analyzed for particle size and viscosity before and after freeze drying which showed no significant changes (p>0.05). However, a steep increase in viscosity was seen for SSM above 15 mM phospholipid implying micelle-micelle interaction. Greater shrinkage of lyophilized cakes was observed below 10 mM phospholipid while they were more fibrous above 15 mM. Therefore, 10-15 mM DSPE-PEG(2000) was chosen as the optimal phospholipid concentration for lyophilized SSM. When vasoactive intestinal peptide (VIP), glucagon-like peptide 1 (GLP-1) or gastric inhibitory peptide (GIP) (each, 67 microM) was added to SSM (10mM), formulations showed no significant change in particle size, peptide fluorescence and peptide alpha-helicity before and after lyophilization. In conclusion, we found that peptide drug-SSM interactions are conserved during lyophilization.
Collapse
Affiliation(s)
- Sok Bee Lim
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Israel Rubinstein
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
- Jesse Brown VA Medical Center, Chicago, Illinois 60612
| | - Hayat Önyüksel
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60612
| |
Collapse
|
19
|
Thevenot J, Troutier AL, David L, Delair T, Ladavière C. Steric stabilization of lipid/polymer particle assemblies by poly(ethylene glycol)-lipids. Biomacromolecules 2007; 8:3651-60. [PMID: 17958441 DOI: 10.1021/bm700753q] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biocompatible and biodegradable assemblies consisting of spherical particles coated with lipid layers were prepared from sub-micrometer poly(lactic acid) particles and lipid mixtures composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-3-trimethylammonium-propane. These original colloidal assemblies, named LipoParticles, are of a great interest in biotechnology and biomedicine. Nevertheless, a major limitation of their use is their poor colloidal stability toward ionic strength. Indeed, electrostatic repulsions failed to stabilize LipoParticles in aqueous solutions containing more than 10 mM NaCl. By analogy with the extensive use of poly(ethylene glycol) (PEG)-lipid conjugates to improve the circulation lifetime of liposomes in vivo, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] with various PEG chain lengths was added to the lipid formulation. Here, we show that LipoParticle stabilization was enhanced at least up to 150 mM NaCl (for more than 1 year at 4 degrees C). To determine the structure of PEG-modified LipoParticles as a function of the PEG chain length and the PEG-lipid fraction in the lipid formulation, a thorough physicochemical characterization was carried out by means of many techniques including quasi-elastic light scattering, zeta potential measurements, transmission electron microscopy, 1H NMR spectroscopy, and small-angle X-ray scattering. Finally, an attempt was made to link the resulting structural data to the colloidal behavior of PEG-modified LipoParticles.
Collapse
Affiliation(s)
- Julie Thevenot
- Unite Mixte de Reecherche 2714, Centre National de la Recherche Scientifique/bioMérieux, Systèmes Macromoléculaires et Physiopathologie Humaine, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|