1
|
Jayawardena D, Anbazhagan AN, Guzman G, Dudeja PK, Onyuksel H. Vasoactive Intestinal Peptide Nanomedicine for the Management of Inflammatory Bowel Disease. Mol Pharm 2017; 14:3698-3708. [PMID: 28991483 DOI: 10.1021/acs.molpharmaceut.7b00452] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disorder of the intestine, with increasing incidence worldwide. At present, the management of IBD is an unmet medical need due to the ineffectiveness of currently available drugs in treating all patients, and there is strong demand for novel therapeutics. In this regard, vasoactive intestinal peptide, a potent anti-inflammatory endogenous hormone, has shown promise in managing multiple immune disorders in animal models. However, when administered in the free form, VIP undergoes rapid degradation in vivo, and with continuous infusion, it causes severe dose limiting side effects. To overcome these barriers, we have developed a superior mode to deliver VIP in its native form, using sterically stabilized micelles (VIP-SSM). Our previous studies demonstrated that, VIP, when administered in SSM, prevented joint damage and inflammation in a mouse model of rheumatoid arthritis at a significantly lower dose than the free peptide, completely abrogating the serious side effect of hypotension associated with VIP. In the current study, we demonstrate the therapeutic benefit of VIP-SSM over free peptide in reversing severe colitis associated with IBD. First, we conducted preliminary studies with dextran sulfate sodium (DSS) induced colitis in mice, to determine the effectiveness of VIP administered on alternate days in reducing disease severity. Thereafter, a single intra peritoneal injection of VIP-SSM or the free peptide was used to determine its therapeutic effect on the reversal of colitis and associated diarrhea. The results demonstrated that when administered on alternate days, both VIP-SSM and VIP were capable of alleviating DSS colitis in mice. However, when administered as a single dose, in a therapeutic setting, VIP-SSM showed superior benefits compared to the free peptide in ameliorating colitis phenotype. Namely, the loss of solid fecal pellets and increased fluid accumulation in colon resulting from DSS insult was abrogated in VIP-SSM treated mice and not with free VIP. Furthermore, reduced protein and mRNA levels of the major chloride bicarbonate exchanger, down regulated in adenoma (DRA), seen with DSS was reversed with VIP-SSM, but not with the free peptide. Similarly, VIP-SSM treatment significantly reduced the elevated mRNA levels of pro-inflammatory cytokines and showed significant histologic recovery when compared to mice treated with free VIP. Therefore, these results demonstrated that as a single dose, the anti-inflammatory and antidiarrheal effects of VIP can be achieved effectively when administered as a nanomedicine. Therefore, we propose VIP-SSM to be developed as a potential therapeutic tool for treating ulcerative colitis, a type of IBD.
Collapse
Affiliation(s)
| | | | | | - Pradeep K Dudeja
- Jesse Brown VA Medical Center , Chicago Illinois 60612, United States
| | | |
Collapse
|
2
|
Maduna T, Lelievre V. Neuropeptides shaping the central nervous system development: Spatiotemporal actions of VIP and PACAP through complementary signaling pathways. J Neurosci Res 2016; 94:1472-1487. [PMID: 27717098 DOI: 10.1002/jnr.23915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 01/18/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are neuropeptides with wide, complementary, and overlapping distributions in the central and peripheral nervous systems, where they exert important regulatory roles in many physiological processes. VIP and PACAP display a large range of biological cellular targets and functions in the adult nervous system including regulation of neurotransmission and neuroendocrine secretion and neuroprotective and neuroimmune responses. As the main focus of the present review, VIP and PACAP also have been long implicated in nervous system development and maturation through their interaction with the seven transmembrane domain G protein-coupled receptors, PAC1, VPAC1, and VPAC2, initiating multiple signaling pathways. Compared with PAC1, which solely binds PACAP with very high affinity, VPACs exhibit high affinities for both VIP and PACAP but differ from each other because of their pharmacological profile for both natural accessory peptides and synthetic or chimeric molecules, with agonistic and antagonistic properties. Complementary to initial pharmacological studies, transgenic animals lacking these neuropeptides or their receptors have been used to further characterize the neuroanatomical, electrophysiological, and behavioral roles of PACAP and VIP in the developing central nervous system. In this review, we recapitulate the critical steps and processes guiding/driving neurodevelopment in vertebrates and superimposing the potential contribution of PACAP and VIP receptors on the given timeline. We also describe how alterations in VIP/PACAP signaling may contribute to both (neuro)developmental and adult pathologies and suggest that tuning of VIP/PACAP signaling in a spatiotemporal manner may represent a novel avenue for preventive therapies of neurological and psychiatric disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tando Maduna
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| | - Vincent Lelievre
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
3
|
Delgado M. Immunobiology of the Pituitary Adenylate Cyclase-Activating Peptide. CURRENT TOPICS IN NEUROTOXICITY 2016:691-708. [DOI: 10.1007/978-3-319-35135-3_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Modèles animaux de la prématurité : mesures comportementales des effets des lésions cérébrales. ENFANCE 2013. [DOI: 10.4074/s0013754513001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Roy V, Leroux P, Arabo A, Marret S, Gonzalez B. Modèles animaux de la prématurité : mesures comportementales des effets des lésions cérébrales. ENFANCE 2013. [DOI: 10.3917/enf1.131.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
6
|
Delgado M, Ganea D. Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions. Amino Acids 2011; 45:25-39. [PMID: 22139413 DOI: 10.1007/s00726-011-1184-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/22/2011] [Indexed: 01/07/2023]
Abstract
Vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide/neurotransmitter, is widely distributed in both the central and peripheral nervous system. VIP is released by both neurons and immune cells. Various cell types, including immune cells, express VIP receptors. VIP has pleiotropic effects as a neurotransmitter, immune regulator, vasodilator and secretagogue. This review is focused on VIP production and effects on immune cells, VIP receptor signaling as related to immune functions, and the involvement of VIP in inflammatory and autoimmune disorders. The review addresses present clinical use of VIP and future therapeutic directions.
Collapse
Affiliation(s)
- Mario Delgado
- Instituto de Parasitologia y Biomedicina, IPBLN-CSIC, Granada, Spain
| | | |
Collapse
|
7
|
Passemard S, El Ghouzzi V, Nasser H, Verney C, Vodjdani G, Lacaud A, Lebon S, Laburthe M, Robberecht P, Nardelli J, Mani S, Verloes A, Gressens P, Lelièvre V. VIP blockade leads to microcephaly in mice via disruption of Mcph1-Chk1 signaling. J Clin Invest 2011; 121:3071-87. [PMID: 21737879 DOI: 10.1172/jci43824] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 05/11/2011] [Indexed: 01/14/2023] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a genetic disorder that causes a reduction of cortical outgrowth without severe interference with cortical patterning. It is associated with mutations in a number of genes encoding protein involved in mitotic spindle formation and centrosomal activities or cell cycle control. We have shown previously that blocking vasoactive intestinal peptide (VIP) during gestation in mice by using a VIP antagonist (VA) results in microcephaly. Here, we have shown that the cortical abnormalities caused by prenatal VA administration mimic the phenotype described in MCPH patients and that VIP blockade during neurogenesis specifically disrupts Mcph1 signaling. VA administration reduced neuroepithelial progenitor proliferation by increasing cell cycle length and promoting cell cycle exit and premature neuronal differentiation. Quantitative RT-PCR and Western blot showed that VA downregulated Mcph1. Inhibition of Mcph1 expression led to downregulation of Chk1 and reduction of Chk1 kinase activity. The inhibition of Mcph1 and Chk1 affected the expression of a specific subset of cell cycle–controlling genes and turned off neural stem cell proliferation in neurospheres. Furthermore, in vitro silencing of either Mcph1 or Chk1 in neurospheres mimicked VA-induced inhibition of cell proliferation. These results demonstrate that VIP blockade induces microcephaly through Mcph1 signaling and suggest that VIP/Mcph1/Chk1 signaling is key for normal cortical development.
Collapse
|
8
|
Goursaud S, Focant MC, Berger JV, Nizet Y, Maloteaux J, Hermans E. The VPAC
2
agonist peptide histidine isoleucine (PHI) up‐regulates glutamate transport in the corpus callosum of a rat model of amyotrophic lateral sclerosis (hSOD1
G93A
) by inhibiting caspase‐3 mediated inactivation of GLT‐1a. FASEB J 2011; 25:3674-86. [DOI: 10.1096/fj.11-182337] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stéphanie Goursaud
- Group of Neuropharmacology, Institute of NeuroscienceUniversité Catholique de Louvain Brussels Belgium
| | - Marylène C. Focant
- Group of Neuropharmacology, Institute of NeuroscienceUniversité Catholique de Louvain Brussels Belgium
| | - Julie V. Berger
- Group of Neuropharmacology, Institute of NeuroscienceUniversité Catholique de Louvain Brussels Belgium
| | - Yannick Nizet
- Laboratory of Experimental SurgeryInstitute of Experimental and Clinical Research, Université Catholique de Louvain Brussels Belgium
| | - Jean‐Marie Maloteaux
- Group of Neuropharmacology, Institute of NeuroscienceUniversité Catholique de Louvain Brussels Belgium
| | - Emmanuel Hermans
- Group of Neuropharmacology, Institute of NeuroscienceUniversité Catholique de Louvain Brussels Belgium
| |
Collapse
|
9
|
Sokolowska P, Passemard S, Mok A, Schwendimann L, Gozes I, Gressens P. Neuroprotective effects of NAP against excitotoxic brain damage in the newborn mice: implications for cerebral palsy. Neuroscience 2010; 173:156-68. [PMID: 21073926 DOI: 10.1016/j.neuroscience.2010.10.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 10/23/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
Abstract
Activity-dependent neuroprotective protein (ADNP) was shown to be essential for embryogenesis and brain development while NAP, an active motif of ADNP, is neuroprotective in a broad range of neurodegenerative disorders. In the present study, we examined the protective potential of ADNP/NAP in a mouse model of excitotoxic brain lesion mimicking brain damage associated with cerebral palsy. We demonstrated that NAP had a potent neuroprotective effect against ibotenate-induced excitotoxic damage in the cortical plate and the white matter of P5 mice, and moderate against brain lesions of P0 mice. In contrast, endogenous ADNP appears not to be involved in the response to excitotoxic challenge in the studied model. Our findings further show that NAP reduced the number of apoptotic neurons through activation of PI-3K/Akt pathway in the cortical plate or both PI-3K/Akt and MAPK/MEK1 kinases in the white matter. In addition, NAP prevented ibotenate-induced loss of pre-oligodendrocytes without affecting the number of astrocytes or activated microglia around the site of injection. These findings indicate that protective actions of NAP are mediated by triggering transduction pathways that are crucial for neuronal and oligodendroglial survival, thus, NAP might be a promising therapeutic agent for treating developing brain damage.
Collapse
|
10
|
Differential regulation of vasoactive intestinal peptide (VIP) in the dentate gyrus and hippocampus via the NO-cGMP pathway following kainic acid-induced seizure in the rat. J Mol Neurosci 2010; 42:359-69. [PMID: 20369387 DOI: 10.1007/s12031-010-9353-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 03/12/2010] [Indexed: 12/14/2022]
Abstract
We have previously shown that kainic acid (KA) increases nitric oxide (NO) synthase (NOS) production in the rat dentate gyrus (DG) and hippocampus (CA3), and NOS inhibition [(by N(G)-nitro-L-arginine methylester (L-NAME)] modulates the vasoactive intestinal peptide (VIP)-responsive gene, activity-dependent neuroprotective protein, and alters neuro- and astrogliogenesis (Cosgrave et al. in Neurobiol Dis 30(3):281-292 2008, J Mol Neurosci 39(1-2):9-21, 2009, 2010). In the present study, using the same model we demonstrate that VIP synthesis is differentially regulated by the NO-cyclic guanosine monophosphate (cGMP) pathway in the DG and CA3 at 3 h and 3 days post-KA. At 3 h post-KA: In L-NAME+KA/7-nitroindazole (7-NI)+KA, stratum granulosum (SG) and subgranular zone (SGZ) cells were intensely stained for VIP when compared with L-NAME/7-NI/KA alone. Soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, blocks cGMP production), suppressed astrocytic activation (glial fibrillary acidic protein) but other cell types were VIP(+); however, ODQ+KA suppressed overall VIP synthesis in the DG. At 3 days post-KA: In L-NAME+KA/7-NI+KA, SGZ and SG cells continued to express VIP, while in the KA alone, only SGZ cells were VIP(+). ODQ increased VIP(+) cells in the SG, and in contrast to 3 h, VIP-containing nNOS(+) cells increased in ODQ+KA when compared to vehicle+KA. In the hippocampus, 7-NI/ODQ had no effect on VIP at 3 h/3 days, while L-NAME+KA at 3 days increased VIP(+) cells, but reduced VIP-like immunoreactivity in astrocytes. These results suggest that the NO-cGMP pathway differentially regulates VIP in the DG and hippocampus during seizure.
Collapse
|
11
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 2009; 61:283-357. [PMID: 19805477 DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 860] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally alpha-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing hormone-glucagon superfamily. The sequence of PACAP has been remarkably well conserved during evolution from protochordates to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide, the activity of which remains unknown. Two types of PACAP binding sites have been characterized: type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP, whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes: the PACAP-specific PAC1-R, which is coupled to several transduction systems, and the PACAP/VIP-indifferent VPAC1-R and VPAC2-R, which are primarily coupled to adenylyl cyclase. PAC1-Rs are particularly abundant in the brain, the pituitary and the adrenal gland, whereas VPAC receptors are expressed mainly in lung, liver, and testis. The development of transgenic animal models and specific PACAP receptor ligands has strongly contributed to deciphering the various actions of PACAP. Consistent with the wide distribution of PACAP and its receptors, the peptide has now been shown to exert a large array of pharmacological effects and biological functions. The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.
Collapse
Affiliation(s)
- David Vaudry
- Institut National de la Santé et de la Recherche Médicale U413, European Institute for Peptide Research (Institut Fédératif de Recherches Multidisciplinaires sur les Peptides 23), Mont-Saint-Aignan, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Griesmaier E, Keller M. Neuroprotective strategies in excitotoxic brain injury: potential applications to the preterm brain. FUTURE NEUROLOGY 2009. [DOI: 10.2217/fnl.09.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neuronal and oligodendroglial cell death owing to increased glutamate levels plays an important role in the pathophysiology of hypoxic-, ischemic- and inflammation-mediated brain injury as well as in disorders such as epilepsy, Alzheimer’s, Parkinson’s or Huntington’s disease. In addition, excitotoxic brain injury is known to be a major contributing factor to brain injury in preterm infants. Excitotoxicity is characterized as excessive glutamatergic activation of postsynaptic receptors that consequently leads to cell injury and cell death. The major excitatory amino acid neurotransmitter is glutamate. Glutamate plays a key role in brain development, affecting progenitor cell differentiation, proliferation, migration and survival. In physiological conditions the presence of glutamate in the synapse is regulated by ATP-dependent glutamate transporters in neurons and glial cells, with astrocytes being responsible for a major part of glutamate uptake in the brain. In pathologic circumstances the function of the transporters is impaired, leading to glutamate accumulation in the synaptic cleft and in turn excessive activation of postsynaptic glutamate receptors with subsequent massive Ca2+ influx, activation of neuronal nitric oxide synthase, translocation of proapoptotic genes to the mitochondria, mitochondrial dysfunction, release of cytochrome C into the cytosol, activation of caspases and subsequent cell death. Based on the pathogenic concept of an overactivation of the excitatory pathways, glutamate receptors have been a longstanding therapeutic target for rational drug design. This article reviews the pathophysiology of excitotoxic brain injury in the example of preterm brain injury, as well as current research on therapeutic antiexcitotoxic strategies.
Collapse
Affiliation(s)
- Elke Griesmaier
- Department of Pediatrics IV, Medical University Innsbruck, Austria, Anichstr. 35, 6020 Innsbruck, Austria
| | - Matthias Keller
- Department of Pediatrics I University Hospital Essen, Hufelandstraße 55, 45147 Essen Germany
| |
Collapse
|
13
|
Bednarek N, Clément Y, Lelièvre V, Olivier P, Loron G, Garnotel R, Gressens P. Ontogeny of MMPs and TIMPs in the murine neocortex. Pediatr Res 2009; 65:296-300. [PMID: 19092727 DOI: 10.1203/pdr.0b013e3181973aee] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) have been implicated in normal brain development, adult stroke, and, more recently, perinatal brain injury. Here, our objective was to obtain comprehensive and comparative data on the ontogeny of MMP-2, MMP-9, TIMP-1, and TIMP-2 in the neocortex of male and female mice belonging to various strains, from embryonic life to adulthood. We used gelatin zymography, ELISA, and real-time PCR analyses. MMP-2, MMP-9, and TIMP-1 activity and/or expression peaked during embryonic life and the early neonatal period, whereas TIMP-2 peaked during the first two postnatal weeks. Comparable results were obtained in all the mouse strains except BALB/c, where MMP-2 levels were considerably lower at all ages compared with the other strains. No gender effect was observed on any of the study parameters. This comprehensive study will serve as a basis for future investigations into the role for MMPs and TIMPs in normal brain development and prenatal brain injury.
Collapse
|
14
|
Koh SWM, Cheng J, Dodson RM, Ku CYT, Abbondandolo CJ. VIP down-regulates the inflammatory potential and promotes survival of dying (neural crest-derived) corneal endothelial cells ex vivo: necrosis to apoptosis switch and up-regulation of Bcl-2 and N-cadherin. J Neurochem 2009; 109:792-806. [PMID: 19250342 DOI: 10.1111/j.1471-4159.2009.06012.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The neuropeptide vasoactive intestinal peptide (VIP) is anti-inflammatory and protective in the immune and nervous systems, respectively. This study demonstrated in corneal endothelial (CE) cells injured by severe oxidative stress (1.4 mM H(2)O(2)) in bovine corneal organ cultures that VIP pre-treatment (0, 10(-10), 10(-8), and 10(-6) M; 15 min), in a VIP concentration-dependent manner, switched the inflammation-causing necrosis to inflammation-neutral apoptosis (showing annexin V-binding, chromatin condensation, and DNA fragmentation) and upheld ATP levels in a VIP antagonist (SN)VIPhyb-sensitive manner, while up-regulated mRNA levels of the anti-apoptotic Bcl-2 and the differentiation marker N-cadherin in a kinase A inhibitor-sensitive manner. As a result, VIP, in a concentration-dependent and VIP antagonist-sensitive manners, promoted long-term CE cell survival. ATP levels, a determining factor in the choice of apoptosis versus necrosis, measured after VIP pre-treatment and 0.5 min post-H(2)O(2) were 39.6 +/- 3.3, 50.8 +/- 6.2, 60.1 +/- 4.8, and 53.6 +/- 5.3 pmoles/microg protein (mean +/- SEM), respectively (p < 0.05, anova). VIP treatment alone concentration-dependently increased levels of N-cadherin (Koh et al. 2008), the phosphorylated cAMP-responsive-element binding protein and Bcl-2, while 10(-8) M VIP, in a VIP antagonist (SN)VIPhyb-sensitive manner, increased ATP level by 38% (p < 0.02) and decreased glycogen level by 32% (p < 0.02). VPAC1 (not VPAC2) receptor was expressed in CE cells. Thus, CE cell VIP/VPAC1 signaling is both anti-inflammatory and protective in the corneal endothelium.
Collapse
Affiliation(s)
- Shay-Whey M Koh
- Department of Ophthalmology & Visual Sciences, University of Maryland, Baltimore, Maryland 21201, USA.
| | | | | | | | | |
Collapse
|
15
|
Perrone S, Turrisi G, Buonocore G. Antioxidant therapy and neuroprotection in the newborn. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17455111.2.6.715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Injury to the perinatal brain is a leading cause of childhood mortality and lifelong disability. Despite recent improvements in neonatal care, no effective treatment for perinatal brain lesions is available. The newborn, especially if preterm, is highly prone to oxidative stress (OS) and to the toxic effect of free radicals (FRs). At birth, the newborn is exposed to a relatively hyperoxic environment caused by an increased oxygen bioavailability with greatly enhanced generation of FRs. Additional sources (e.g., inflammation, hypoxia, ischemia, glutamate and free iron release) occur, magnifying OS. In the preterm baby, the perinatal transition is accompanied by the immaturity of the antioxidant systems and the reduced ability to induce efficient homeostatic mechanisms designed to control overproduction of cell-damaging FRs. Improved understanding of the pathophysiological mechanism involved in perinatal brain lesions helps to identify potential targets for neuroprotective interventions, and the knowledge of these mechanisms has enabled scientists to develop new therapeutic strategies that have confirmed their neuroprotective effects in animal studies. Considering the growing role of OS in preterm newborn morbidity in respect to the higher risk of FR damage in these babies, erythropoietin, allopurinol, melatonin and hypothermia demonstrate great promise as potential neuroprotectans. This article provides an overview of the pathogenesis of FR-mediated diseases of the newborn and the antioxidant strategies now tested in order to reduce OS and its damaging effects.
Collapse
Affiliation(s)
| | | | - Giuseppe Buonocore
- Professor of Paediatrics, Department of Pediatrics, Obstetrics & Reproductive Medicine, University of Siena, Italy
| |
Collapse
|
16
|
Interactions of PACAP and ceramides in the control of granule cell apoptosis during cerebellar development. J Mol Neurosci 2008; 36:8-15. [PMID: 18574733 DOI: 10.1007/s12031-008-9111-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 02/28/2008] [Indexed: 12/27/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that belongs to the secretin/glucagon/vasoactive intestinal polypeptide superfamily. The PACAPergic system is actively expressed in the developing cerebellum of mammals. In particular, PACAP receptors are expressed by granule cell precursors suggesting a role of the peptide in neurogenesis of this cell type. Consistent with this hypothesis, several studies reported antiapoptotic effects of PACAP in the developing cerebellum. On the other hand, the sphingomyelin metabolites ceramides are recognized as important signaling molecules that play pivotal roles during neuronal development. Ceramides, which production can be induced by death factors such as FasL or TNFalpha, are involved in the control of cell survival during brain development through activation of caspase-dependent mechanisms. The present review focuses on the interactions between PACAP and ceramides in the control of granule cell survival and on the transduction mechanisms associated with the anti- and proapoptotic effects of PACAP and ceramides, respectively.
Collapse
|