1
|
Zhang X, Yang L. Elucidating the Pathogenic Mechanism of Spinal Muscular Atrophy Through the Investigation of UTS2. FRONT BIOSCI-LANDMRK 2025; 30:28242. [PMID: 40018937 DOI: 10.31083/fbl28242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/12/2024] [Accepted: 12/25/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a severe neuromuscular disorder caused by mutations in the survival motor neuron 1 (SMN1) gene, resulting in progressive motor neuron loss and muscle atrophy. The urotensin 2 (UTS2) gene, located on chromosome 9q34.2, plays a significant role in cellular activities such as proliferation, apoptosis, and inflammatory responses. Notably, elevated expression levels of UTS2 have been observed in SMA patients. However, its precise contribution to disease pathogenesis remains unclear. This study aimed to investigate the effects of UTS2, which is overexpressed in SMA patients, in SMA cell models using a UTS2 inhibitor. METHODS We conducted genomic sequencing and bioinformatics analysis on clinical samples to identify proteins highly expressed in association with SMA. Using RNA interference technology, we suppressed SMN1 gene expression in bone marrow mesenchymal stem cells (MSCs) to establish an in vitro cellular model of SMA. To assess the biological consequences of SMN1 gene knockdown, we employed molecular biological techniques such as immunofluorescence, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and western blotting. Furthermore, we treated the SMA cellular model with the urantide UTS2 receptor inhibitor and examined its effects on cell proliferation, apoptosis, and the expression of relevant proteins. RESULTS UTS2 was successfully identified as a highly expressed protein associated with SMA. A stable MSC model with SMN1 gene knockdown was established. RNA interference (RNAi) technology effectively suppressed SMN1 gene expression, leading to changes in cellular morphology and neuron-specific marker expression. Urantide intervention significantly affected both proliferation and apoptosis in the SMA cell model in a dose-dependent manner. Techniques such as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, TUNEL fluorescence staining, and flow cytometry analysis revealed that uride decreased cell viability while increasing the proportion of apoptotic cells. Following urantide intervention, there was a notable increase in caspase-3 messenger ribonucleic acid (mRNA) levels, as well as an increase in caspase-3 protein expression, as demonstrated by immunofluorescence analysis. CONCLUSION We elucidated the role of the UTS2 gene in an SMA cell model, emphasizing its dysregulation and identifying potential therapeutic targets. Urantide, a UTS2 inhibitor, had significant biological effects on the SMA cell model, indicating that it is a promising therapeutic strategy for SMA. These findings provide valuable insights for advancing drug development and clinical treatment of SMA.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, 230601 Hefei, Anhui, China
- Department of Pediatrics, Fuyang People's Hospital, 236000 Fuyang, Anhui, China
| | - Liqi Yang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, 230601 Hefei, Anhui, China
| |
Collapse
|
2
|
Michael OS, Kanthakumar P, Soni H, Rajesh Lenin R, Abhiram Jha K, Gangaraju R, Adebiyi A. Urotensin II system in chronic kidney disease. Curr Res Physiol 2024; 7:100126. [PMID: 38779598 PMCID: PMC11109353 DOI: 10.1016/j.crphys.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic kidney disease (CKD) is a progressive and long-term condition marked by a gradual decline in kidney function. CKD is prevalent among those with conditions such as diabetes mellitus, hypertension, and glomerulonephritis. Affecting over 10% of the global population, CKD stands as a significant cause of morbidity and mortality. Despite substantial advances in understanding CKD pathophysiology and management, there is still a need to explore novel mechanisms and potential therapeutic targets. Urotensin II (UII), a potent vasoactive peptide, has garnered attention for its possible role in the development and progression of CKD. The UII system consists of endogenous ligands UII and UII-related peptide (URP) and their receptor, UT. URP pathophysiology is understudied, but alterations in tissue expression levels of UII and UT and blood or urinary UII concentrations have been linked to cardiovascular and kidney dysfunctions, including systemic hypertension, chronic heart failure, glomerulonephritis, and diabetes. UII gene polymorphisms are associated with increased risk of diabetes. Pharmacological inhibition or genetic ablation of UT mitigated kidney and cardiovascular disease in rodents, making the UII system a potential target for slowing CKD progression. However, a deeper understanding of the UII system's cellular mechanisms in renal and extrarenal organs is essential for comprehending its role in CKD pathophysiology. This review explores the evolving connections between the UII system and CKD, addressing potential mechanisms, therapeutic implications, controversies, and unexplored concepts.
Collapse
Affiliation(s)
- Olugbenga S. Michael
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Praghalathan Kanthakumar
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hitesh Soni
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Raji Rajesh Lenin
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kumar Abhiram Jha
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adebowale Adebiyi
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Anesthesiology and Perioperative Medicine, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Nassour H, Pétrin D, Devost D, Billard E, Sleno R, Hébert TE, Chatenet D. Evidence for heterodimerization and functional interaction of the urotensin II and the angiotensin II type 1 receptors. Cell Signal 2024; 116:111056. [PMID: 38262555 DOI: 10.1016/j.cellsig.2024.111056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
Despite the observation of synergistic interactions between the urotensinergic and angiotensinergic systems, the interplay between the urotensin II receptor (hUT) and the angiotensin II type 1 receptor (hAT1R) in regulating cellular signaling remains incompletely understood. Notably, the putative interaction between hUT and hAT1R could engender reciprocal allosteric modulation of their signaling signatures, defining a unique role for these complexes in cardiovascular physiology and pathophysiology. Using a combination of co-immunoprecipitation, bioluminescence resonance energy transfer (BRET) and FlAsH BRET-based conformational biosensors, we first demonstrated the physical interaction between hUT and hAT1R. Next, to analyze how this functional interaction regulated proximal and distal hUT- and hAT1R-associated signaling pathways, we used BRET-based signaling biosensors and western blots to profile pathway-specific signaling in HEK 293 cells expressing hUT, hAT1R or both. We observed that hUT-hAT1R heterodimers triggered distinct signaling outcomes compared to their respective parent receptors alone. Notably, co-transfection of hUT and hAT1R has no impact on hUII-induced Gq activation but significantly reduced the potency and efficacy of Ang II to mediate Gq activation. Interestingly, URP, the second hUT endogenous ligand, produce a distinct signaling signature compared to hUII at hUT-hAT1R. Our results therefore suggest that assembly of hUT with hAT1R might be important for allosteric modulation of outcomes associated with specific hardwired signaling complexes in healthy and disease states. Altogether, our work, which potentially explains the interplay observed in native cells and tissues, validates such complexes as potential targets to promote the design of compounds that can modulate heterodimer function selectively.
Collapse
Affiliation(s)
- Hassan Nassour
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Ville de Laval, QC, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Etienne Billard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Rory Sleno
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada.
| | - David Chatenet
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Ville de Laval, QC, Canada.
| |
Collapse
|
4
|
Wei X, Diarra S, Douchez A, Cunico Dallagnol JC, Hébert TE, Chatenet D, Lubell WD. Urotensin II Receptor Modulation with 1,3,4-Benzotriazepin-2-one Tetrapeptide Mimics. J Med Chem 2023; 66:14241-14262. [PMID: 37800680 DOI: 10.1021/acs.jmedchem.3c01307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Urotensin II receptor (UT) modulators that differentiate the effects of the endogenous cyclic peptide ligands urotensin II (UII) and urotensin II-related peptide (URP) offer potential for dissecting their respective biological roles in disease etiology. Selective modulators of hUII and URP activities were obtained using 1,3,4-benzotriazepin-2-one mimics of a purported bioactive γ-turn conformation about the Bip-Lys-Tyr tripeptide sequence of urocontrin ([Bip4]URP). Considering an active β-turn conformer about the shared Phe-Trp-Lys-Tyr sequence of UII and URP, 8-substituted 1,3,4-benzotriazepin-2-ones were designed to mimic the Phe-Bip-Lys-Tyr tetrapeptide sequence of urocontrin, synthesized, and examined for biological activity. Subtle 5- and 8-position modifications resulted in biased signaling and selective modulation of hUII- or URP-induced vasoconstriction. For example, p-hydroxyphenethyl analogs 17b-d were strong Gα13 and βarr1 activators devoid of Gαq-mediated signaling. Tertiary amides 15d and 17d negatively modulated hUII-induced vasoconstriction without affecting URP-mediated responses. Benzotriazepinone carboxamides proved to be exceptional tools for elucidating the pharmacological complexity of UT.
Collapse
Affiliation(s)
- Xiaozheng Wei
- Département de Chimie, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, Québec, Canada H2V 0B3
| | - Sitan Diarra
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Ville de Laval, Québec, Canada H7V 1B7
| | - Antoine Douchez
- Département de Chimie, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, Québec, Canada H2V 0B3
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Ville de Laval, Québec, Canada H7V 1B7
| | - Juliana C Cunico Dallagnol
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade SirWilliam Osler, Montréal, Québec, Canada H3G 1Y6
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Ville de Laval, Québec, Canada H7V 1B7
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade SirWilliam Osler, Montréal, Québec, Canada H3G 1Y6
| | - David Chatenet
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Ville de Laval, Québec, Canada H7V 1B7
| | - William D Lubell
- Département de Chimie, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, Québec, Canada H2V 0B3
| |
Collapse
|
5
|
Souza JB, Sousa MG, Laurinavicius AG, Hygídio DDA, Vilela ADA, Colombo FC, Assef JE. Advanced echocardiography techniques (AETs) to assess left atrial structure and function in individuals with resistant hypertension. Echocardiography 2023; 40:792-801. [PMID: 37395940 DOI: 10.1111/echo.15646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023] Open
Abstract
AIMS Resistant hypertension (RH) is a challenging phenotype within the hypertension (HTN) spectrum, requiring careful assessment and follow-up. Evaluation of left atrial function may be clinically informative, but is usually neglected. Advanced Echocardiography Techniques (AETs), such as Strain Analysis and three-dimensional echocardiography (3D ECHO) may be useful complementary tools to assess atrial function in patients with RH. METHODS AND RESULTS Ninety-six eligible adult patients were categorized into three groups: resistant hypertensive (RH), controlled hypertensive (CH), and normotensive (N), and underwent AETs to identify morphofunctional changes in the left atrium (LA) across different HTN phenotypes. The LA reservoir strain was significantly lower among RH than in N and CH patients (p < .001). Accordingly, LA conduit strain showed a gradient through the groups: higher among N, followed by CH and RH patients (p = .015). LA contraction strain was higher among CH than in N and RH patients (p = .02). Maximum indexed, pre-A, and minimum atrial volumes obtained by 3D ECHO showed differences between N and the others (p < .001), but not between CH and RH. N patients showed a higher fraction of passive emptying of the LA than the others (p = .02), with no difference between CH and RH. Total emptying of the LA only differed between N and RH patients, while active emptying of the LA showed no difference between the groups (p = .82). CONCLUSION The left atrium may present early functional changes in response to HTN, which are detectable by AETs. AETs, especially S-LA, allowed to identify markers of atrial myocardial damage in both RH and CH patients.
Collapse
|
6
|
Schuster R, Steffen P, Dreyer B, Rohn S, Schlüter H, Riedner M. Identifying Circulating Urotensin II and Urotensin II-Related Peptide-Generating Enzymes in the Human Plasma Fraction Cohn IV-4. J Proteome Res 2021; 20:5368-5378. [PMID: 34734734 DOI: 10.1021/acs.jproteome.1c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Urotensin II (UII) and UII-related peptide (URP) are vasoactive peptide hormones causing strong vasoconstriction or vasodilation, depending on the type of blood vessel. In humans, the active forms are resulting from proteolytic cleavage of their inactive precursor protein. In blood plasma, a defined protease converting the inactive UII and URP precursors into their active forms has not been identified yet. Using mass spectrometry-based enzyme screening for detecting UII- and URP-converting enzymes, the human plasma fraction Cohn IV-4 was chromatographed, and the resulting fractions were screened for UII- or URP-generating activity. Plasma kallikrein (PK) as a UII- and URP-generating protease was identified. URP generation was also found for the serine protease factor XIa, plasmin, thrombin, and, to a smaller extent, factor XIIa. It was demonstrated that in the Cohn IV-4 fraction, PK accounts for a significant amount of UII- and URP-generating activity.
Collapse
Affiliation(s)
- Raphael Schuster
- Institute of Organic Chemistry, Department of Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| | - Pascal Steffen
- Bowel Cancer & Biomarker Lab, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Benjamin Dreyer
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sascha Rohn
- Hamburg School of Food Science, Institute of Food Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany.,Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Riedner
- Institute of Organic Chemistry, Department of Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
7
|
Liang Y, Xu Y, Ding L, Chen X, Li H. Urotensin II Induces Cardiac Fibrosis through the TGF-β/Smad Signaling Pathway during the Development of Cardiac Hypertrophy. Int Heart J 2021; 62:1135-1144. [PMID: 34588407 DOI: 10.1536/ihj.21-032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Myocardial fibrosis is an important pathological phenomenon of cardiac remodeling that is induced by hypertension, myocardial ischemia, valvular heart disease, hypertrophic cardiomyopathy, and other heart diseases and can progress to heart failure. Urotensin II (UII) is regarded as a cardiovascular autacoid/hormone that is not only the most potent vasoconstrictor in mammals but also involved in cardiac remodeling. However, the molecular mechanisms responsible for UII-induced cardiac fibrosis have not yet been fully elucidated. Therefore, we aimed to investigate the effect of UII on myocardial fibrosis in cardiac hypertrophy and the mechanism of UII-induced cardiac fibrosis. Cardiac tissue from mice subjected to Transverse aortic constriction (TAC) was collected. Cardiac hypertrophy, myocardial fibrosis, and the expression of UII protein were assessed using echocardiography and pathological and molecular biological analyses. The effect of UII on fibrosis was evaluated in UII-treated mice and isolated rat primary cardiac fibroblasts, and the results indicated that UII induced significant myocardial fibrosis and increases in the proliferation and fibrotic responses both in mice and cultured fibroblasts. Mechanistically, UII treatment induced activation of the TGF-β/Smad signaling pathway, which was suppressed by the UII receptor antagonist. In conclusion, UII plays critical roles in cardiac fibrosis by modulating the TGF-β/Smads signaling pathway, which may be a promising therapeutic target in hypertrophic cardiomyopathy and related problems, such as cardiac remodeling and heart failure.
Collapse
Affiliation(s)
- Yanyan Liang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Yifeng Xu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Lin Ding
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Xiaoqing Chen
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Hongli Li
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University
| |
Collapse
|
8
|
Le Joncour V, Guichet PO, Dembélé KP, Mutel A, Campisi D, Perzo N, Desrues L, Modzelewski R, Couraud PO, Honnorat J, Ferracci FX, Marguet F, Laquerrière A, Vera P, Bohn P, Langlois O, Morin F, Gandolfo P, Castel H. Targeting the Urotensin II/UT G Protein-Coupled Receptor to Counteract Angiogenesis and Mesenchymal Hypoxia/Necrosis in Glioblastoma. Front Cell Dev Biol 2021; 9:652544. [PMID: 33937253 PMCID: PMC8079989 DOI: 10.3389/fcell.2021.652544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastomas (GBMs) are the most common primary brain tumors characterized by strong invasiveness and angiogenesis. GBM cells and microenvironment secrete angiogenic factors and also express chemoattractant G protein-coupled receptors (GPCRs) to their advantage. We investigated the role of the vasoactive peptide urotensin II (UII) and its receptor UT on GBM angiogenesis and tested potential ligand/therapeutic options based on this system. On glioma patient samples, the expression of UII and UT increased with the grade with marked expression in the vascular and peri-necrotic mesenchymal hypoxic areas being correlated with vascular density. In vitro human UII stimulated human endothelial HUV-EC-C and hCMEC/D3 cell motility and tubulogenesis. In mouse-transplanted Matrigel sponges, mouse (mUII) and human UII markedly stimulated invasion by macrophages, endothelial, and smooth muscle cells. In U87 GBM xenografts expressing UII and UT in the glial and vascular compartments, UII accelerated tumor development, favored hypoxia and necrosis associated with increased proliferation (Ki67), and induced metalloproteinase (MMP)-2 and -9 expression in Nude mice. UII also promoted a “tortuous” vascular collagen-IV expressing network and integrin expression mainly in the vascular compartment. GBM angiogenesis and integrin αvβ3 were confirmed by in vivo99mTc-RGD tracer imaging and tumoral capture in the non-necrotic area of U87 xenografts in Nude mice. Peptide analogs of UII and UT antagonist were also tested as potential tumor repressor. Urotensin II-related peptide URP inhibited angiogenesis in vitro and failed to attract vascular and inflammatory components in Matrigel in vivo. Interestingly, the UT antagonist/biased ligand urantide and the non-peptide UT antagonist palosuran prevented UII-induced tubulogenesis in vitro and significantly delayed tumor growth in vivo. Urantide drastically prevented endogenous and UII-induced GBM angiogenesis, MMP, and integrin activations, associated with GBM tumoral growth. These findings show that UII induces GBM aggressiveness with necrosis and angiogenesis through integrin activation, a mesenchymal behavior that can be targeted by UT biased ligands/antagonists.
Collapse
Affiliation(s)
- Vadim Le Joncour
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Pierre-Olivier Guichet
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Kleouforo-Paul Dembélé
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Alexandre Mutel
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Daniele Campisi
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Nicolas Perzo
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Laurence Desrues
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Romain Modzelewski
- EA 4108, Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), University of Rouen, Mont-Saint-Aignan, France
| | | | - Jérôme Honnorat
- Neuro-Oncology Department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,Institute NeuroMyoGéne, INSERM U1217/CNRS UMR 5310, Lyon, France.,University Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - François-Xavier Ferracci
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France.,Neurosurgery Service, Rouen CHU Hospital, Rouen, France
| | - Florent Marguet
- Anathomocytopathology Service, Rouen CHU Hospital, Rouen, France
| | | | - Pierre Vera
- EA 4108, Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), University of Rouen, Mont-Saint-Aignan, France
| | - Pierre Bohn
- EA 4108, Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), University of Rouen, Mont-Saint-Aignan, France
| | - Olivier Langlois
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France.,Neurosurgery Service, Rouen CHU Hospital, Rouen, France
| | - Fabrice Morin
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Pierrick Gandolfo
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Hélène Castel
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| |
Collapse
|
9
|
Billard E, Chatenet D. Insights into the Molecular Determinants Involved in Urocontrin and Urocontrin A Action. ACS Med Chem Lett 2020; 11:1717-1722. [PMID: 32944139 DOI: 10.1021/acsmedchemlett.0c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022] Open
Abstract
In the past few years, we have identified two allosteric modulators of the urotensinergic system with probe-dependent action, termed Urocontrin (UC) and Urocontrin A (UCA). Such action is atypical and important since it will allow us to understand the specific function of the functionally selective cognate ligands of this system, namely urotensin II and urotensin II-related peptide. Delineating the molecular determinants involved in this particular behavior would represent an important step toward designing small molecules suitable for pharmacologic and/or therapeutic intervention. Hence, we undertook an exploratory research by replacing the Trp4 residue of URP with several para-substituted phenylalanine amino acids in order to get a grasp on the required nature, distance, and orientation of the side chain of this residue for allosteric modulatory action. We found that the position of the second aromatic group is crucial, and we identified two new allosteric modulators: [Trip4]URP and [Phe(pPy-4)4]URP with probe-dependent action.
Collapse
Affiliation(s)
- Etienne Billard
- INRS - Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7 V 1B7, Canada
| | - David Chatenet
- INRS - Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7 V 1B7, Canada
| |
Collapse
|
10
|
Nassour H, Iddir M, Chatenet D. Towards Targeting the Urotensinergic System: Overview and Challenges. Trends Pharmacol Sci 2019; 40:725-734. [DOI: 10.1016/j.tips.2019.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
|
11
|
Billard E, Hébert TE, Chatenet D. Discovery of New Allosteric Modulators of the Urotensinergic System through Substitution of the Urotensin II-Related Peptide (URP) Phenylalanine Residue. J Med Chem 2018; 61:8707-8716. [PMID: 30183282 DOI: 10.1021/acs.jmedchem.8b00789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII) and urotensin II-related peptide (URP) are functionally selective, suggesting that these two hormones might play distinct physiological role through different interactions with their cognate receptor UT. Hypothesizing that the Phe3 residue of URP, which is also present in UII, is a key-element of its specific UT activation, we evaluated the impact of its replacement by non-natural amino acids in URP. Each compound was evaluated for its ability to bind UT, induce rat aortic ring contraction, and activate Gq, G12, and β-arrestin 1 signaling pathways. Such modifications impaired contractile efficacy, reflected by a reduced aptitude to activate G12 in URP but not in the truncated but equipotent UII4-11. Moreover, we have identified two structurally different UT modulators: [d-Phe(pI)3]URP and [Bip3]URP, which exert a probe-dependent action against UII and URP. These compounds should help us understand the specific roles of these hormones as well as guide further therapeutic development.
Collapse
Affiliation(s)
- Etienne Billard
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP) , Université du Québec , Ville de Laval , Québec H7V 1B7 , Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics , McGill University , Montréal , Québec H3A 1A3 , Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP) , Université du Québec , Ville de Laval , Québec H7V 1B7 , Canada
| |
Collapse
|
12
|
Billard É, Iddir M, Nassour H, Lee-Gosselin L, Poujol de Molliens M, Chatenet D. New directions for urotensin II receptor ligands. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Étienne Billard
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| | - Mustapha Iddir
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| | - Hassan Nassour
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| | - Laura Lee-Gosselin
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| | - Mathilde Poujol de Molliens
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| |
Collapse
|
13
|
Douchez A, Billard E, Hébert TE, Chatenet D, Lubell WD. Design, Synthesis, and Biological Assessment of Biased Allosteric Modulation of the Urotensin II Receptor Using Achiral 1,3,4-Benzotriazepin-2-one Turn Mimics. J Med Chem 2017; 60:9838-9859. [DOI: 10.1021/acs.jmedchem.7b01525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Antoine Douchez
- Département
de Chimie, Université de Montréal, CP 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
- INRS—Institut
Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides
et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | - Etienne Billard
- INRS—Institut
Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides
et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | - Terence E. Hébert
- Department
of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - David Chatenet
- INRS—Institut
Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides
et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | - William D. Lubell
- Département
de Chimie, Université de Montréal, CP 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
14
|
Zhang H, Luo H, Sun J, Liu C, Tian Y, Chen H, Zhang C. Mild coronary artery stenosis has no impact on cardiac and vascular parameters in miniature swine exposed to positive acceleration stress. J Cardiovasc Med (Hagerstown) 2017; 17:713-8. [PMID: 25799013 DOI: 10.2459/jcm.0000000000000014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Exposure of pilots' heart to acceleration-associated stress (+Gz stress) is an adverse effect of high-performance aviation. The occurrence of coronary heart diseases is one of the most frequent medical causes leading to cessation of flying. AIM To assess the effects of +Gz stress on coronary artery stenosis (CAS) in a minimally invasive miniature swine model with a fast recovery. METHODS The proximal left anterior descending branch was ligated in 20 swine using silk suture. CAS degree (mild, moderate, severe) was analyzed by quantitative computerized angiography. Five swine underwent a sham operation. +Gz stress exposure was performed and venous blood was collected before/after exposure. Plasma C-reactive protein (CRP), endothelin (ET)-1, angiotensin (Ang) II and urotensin 2 (U2) levels were measured. RESULTS CAS models were successful in 18 animals. Two swine exhibited ventricular fibrillation during the procedure and died. Plasma CRP, ET-1, Ang II and U2 changed significantly after maximal tolerated +Gz stress exposure (all P < 0.05). After maximal tolerated +Gz stress exposure, plasma CRP, ET-1, Ang II and U2 levels increased in the moderate and severe stenosis groups, compared with the sham group (all P < 0.05), but there was no significant difference between the mild stenosis group and the sham group (all P > 0.05). CONCLUSION The fully endoscopic operation method successfully generated animal models of different degrees of CAS. Plasma CRP, ET-1, Ang II and U2 levels increased after +Gz stress exposure with increasing CAS severity. Animals with mild stenosis showed no ill effect under +Gz stress, suggesting that pilots with mild stenosis might be allowed to continue flying, but it must be confirmed in humans.
Collapse
Affiliation(s)
- Haitao Zhang
- aDepartment of Cardiology, Air Force Clinic Institution of Anhui Medical University bDepartment of Cardiology, General Hospital of Air Force, PLA cAnimal Experimental Center of Fuwai Hospital, National Heart Center of China, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Castel H, Desrues L, Joubert JE, Tonon MC, Prézeau L, Chabbert M, Morin F, Gandolfo P. The G Protein-Coupled Receptor UT of the Neuropeptide Urotensin II Displays Structural and Functional Chemokine Features. Front Endocrinol (Lausanne) 2017; 8:76. [PMID: 28487672 PMCID: PMC5403833 DOI: 10.3389/fendo.2017.00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/28/2017] [Indexed: 12/16/2022] Open
Abstract
The urotensinergic system was previously considered as being linked to numerous physiopathological states, including atherosclerosis, heart failure, hypertension, pre-eclampsia, diabetes, renal disease, as well as brain vascular lesions. Thus, it turns out that the actions of the urotensin II (UII)/G protein-coupled receptor UT system in animal models are currently not predictive enough in regard to their effects in human clinical trials and that UII analogs, established to target UT, were not as beneficial as expected in pathological situations. Thus, many questions remain regarding the overall signaling profiles of UT leading to complex involvement in cardiovascular and inflammatory responses as well as cancer. We address the potential UT chemotactic structural and functional definition under an evolutionary angle, by the existence of a common conserved structural feature among chemokine receptorsopioïdergic receptors and UT, i.e., a specific proline position in the transmembrane domain-2 TM2 (P2.58) likely responsible for a kink helical structure that would play a key role in chemokine functions. Even if the last decade was devoted to the elucidation of the cardiovascular control by the urotensinergic system, we also attempt here to discuss the role of UII on inflammation and migration, likely providing a peptide chemokine status for UII. Indeed, our recent work established that activation of UT by a gradient concentration of UII recruits Gαi/o and Gα13 couplings in a spatiotemporal way, controlling key signaling events leading to chemotaxis. We think that this new vision of the urotensinergic system should help considering UT as a chemotactic therapeutic target in pathological situations involving cell chemoattraction.
Collapse
Affiliation(s)
- Hélène Castel
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
- *Correspondence: Hélène Castel,
| | - Laurence Desrues
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jane-Eileen Joubert
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Marie-Christine Tonon
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Laurent Prézeau
- CNRS UMR 5203, INSERM U661, Institute of Functional Genomic (IGF), University of Montpellier 1 and 2, Montpellier, France
| | - Marie Chabbert
- UMR CNRS 6214, INSERM 1083, Faculté de Médecine 3, Angers, France
| | - Fabrice Morin
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Pierrick Gandolfo
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
16
|
Zhao S, Li Y, Gao S, Wang X, Sun L, Cheng D, Bai L, Guan H, Wang R, Fan J, Liu E. Autocrine Human Urotensin II Enhances Macrophage-Derived Foam Cell Formation in Transgenic Rabbits. BIOMED RESEARCH INTERNATIONAL 2015; 2015:843959. [PMID: 26640798 PMCID: PMC4659961 DOI: 10.1155/2015/843959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022]
Abstract
Circulating urotensin II (UII) is involved in the development of atherosclerosis. However, the role of autocrine UII in the development of atherosclerosis remains unclear. Here, we tested the hypothesis that autocrine UII would promote atherosclerosis. Transgenic rabbits were created as a model to study macrophage-specific expressing human UII (hUII) and used to investigate the role of autocrine UII in the development of atherosclerosis. Transgenic rabbits and their nontransgenic littermates were fed a high cholesterol diet to induce atherosclerosis. Comparing the transgenic rabbits with their nontransgenic littermates, it was observed that hUII expression increased the macrophage-positive area in the atherosclerotic lesions by 45% and the positive area ratio by 56% in the transgenic rabbits. Autocrine hUII significantly decreased the smooth muscle cell-positive area ratio in transgenic rabbits (by 54%), without affecting the plasma levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and glucose and adipose tissue contents. These results elucidated for the first time that autocrine UII plays an important role in the development of atherosclerosis by increasing the accumulation of macrophage-derived foam cell.
Collapse
Affiliation(s)
- Sihai Zhao
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Yafeng Li
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Shoucui Gao
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Xiaojing Wang
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Lijing Sun
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Daxing Cheng
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Liang Bai
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Hua Guan
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Rong Wang
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Enqi Liu
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| |
Collapse
|
17
|
Dufour-Gallant J, Chatenet D, Lubell WD. De Novo Conception of Small Molecule Modulators Based on Endogenous Peptide Ligands: Pyrrolodiazepin-2-one γ-Turn Mimics That Differentially Modulate Urotensin II Receptor-Mediated Vasoconstriction ex Vivo. J Med Chem 2015; 58:4624-37. [DOI: 10.1021/acs.jmedchem.5b00162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Julien Dufour-Gallant
- Département
de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
- INRS—Institut
Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides
et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | - David Chatenet
- INRS—Institut
Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides
et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | - William D. Lubell
- Département
de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
18
|
Vaudry H, Leprince J, Chatenet D, Fournier A, Lambert DG, Le Mével JC, Ohlstein EH, Schwertani A, Tostivint H, Vaudry D. International Union of Basic and Clinical Pharmacology. XCII. Urotensin II, urotensin II-related peptide, and their receptor: from structure to function. Pharmacol Rev 2015; 67:214-58. [PMID: 25535277 DOI: 10.1124/pr.114.009480] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Urotensin II (UII) is a cyclic neuropeptide that was first isolated from the urophysis of teleost fish on the basis of its ability to contract the hindgut. Subsequently, UII was characterized in tetrapods including humans. Phylogenetic studies and synteny analysis indicate that UII and its paralogous peptide urotensin II-related peptide (URP) belong to the somatostatin/cortistatin superfamily. In mammals, the UII and URP genes are primarily expressed in cholinergic neurons of the brainstem and spinal cord. UII and URP mRNAs are also present in various organs notably in the cardiovascular, renal, and endocrine systems. UII and URP activate a common G protein-coupled receptor, called UT, that exhibits relatively high sequence identity with somatostatin, opioid, and galanin receptors. The UT gene is widely expressed in the central nervous system (CNS) and in peripheral tissues including the retina, heart, vascular bed, lung, kidney, adrenal medulla, and skeletal muscle. Structure-activity relationship studies and NMR conformational analysis have led to the rational design of a number of peptidic and nonpeptidic UT agonists and antagonists. Consistent with the wide distribution of UT, UII has now been shown to exert a large array of biologic activities, in particular in the CNS, the cardiovascular system, and the kidney. Here, we review the current knowledge concerning the pleiotropic actions of UII and discusses the possible use of antagonists for future therapeutic applications.
Collapse
Affiliation(s)
- Hubert Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jérôme Leprince
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Chatenet
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Alain Fournier
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David G Lambert
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jean-Claude Le Mével
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Eliot H Ohlstein
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Adel Schwertani
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Hervé Tostivint
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| |
Collapse
|
19
|
Abstract
BACKGROUND The objective of this study was to explore the expression of urotensin II (UII), its receptor (GPR14), and vascular endothelial growth factor (VEGF), as well as their associations in the ischaemic brains of rats with focal cerebral ischaemia, under normal and diabetic conditions. METHODS Diabetes mellitus (DM) was induced by injection of streptozotocin (STZ) into Sprague - Dawley rats. Focal cerebral ischaemia was induced by middle cerebral artery occlusion (MCAO) four weeks after DM onset by STZ. Rats (n=80) were divided into four groups: normal control, DM, MCAO, and DM/MCAO. Immunohistochemistry and reverse-transcriptase-polymerase chain reaction (RT-PCR) were used to detect the expression of UII, GPR14 and VEGF in the diabetic and ischaemic brain. RESULTS Expression of UII and GPR14 was increased at mRNA and protein levels in the DM and MCAO group compared with controls. In the DM/MCAO group, expression of UII and GPR14 was increased significantly in the ischaemic brain, and was accompanied by a significantly increased VEGF expression. CONCLUSION Diabetes mellitus was seen to aggravate brain lesions after ischaemia, and UII may have an important role.
Collapse
|
20
|
Krishnamoorthy S, Smith CD, Al-Rubaye AA, Erf GF, Wideman RF, Anthony NB, Rhoads DD. A quantitative trait locus for ascites on chromosome 9 in broiler chicken lines. Poult Sci 2014; 93:307-17. [PMID: 24570451 DOI: 10.3382/ps.2013-03359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A genome-wide SNP survey was used to identify chromosomal regions that showed linkage disequilibrium with respect to ascites susceptibility and ventricular hypertrophy in an F2 cross between previously described ascites-resistant and -susceptible lines. Variable number tandem repeats were used to obtain genotype data to further characterize these regions. A region on chromosome 9 (12 to 13 Mbp in 2011 assembly) shows association with ascites in the ascites lines and in several commercial broiler breeder lines with a significant sex effect. There are 2 candidate genes, AGTR1 (an angiotensin II type 1 receptor) and UTS2D (urotensin 2 domain containing), in this region that have been associated with hypertension and hypoxic response in mammals.
Collapse
|
21
|
You Z, Al Kindi H, Abdul-Karim A, Barrette PO, Schwertani A. Blocking the urotensin II receptor pathway ameliorates the metabolic syndrome and improves cardiac function in obese mice. FASEB J 2013; 28:1210-20. [PMID: 24297699 DOI: 10.1096/fj.13-236471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The metabolic syndrome is defined by the presence of hyperlipidemia, obesity, hypertension, and diabetes. The syndrome is associated with significant cardiovascular morbidity and mortality. The aim of the present study was to determine the role of the vasoactive peptide urotensin II (UII) in the pathogenesis of the metabolic syndrome. We used obese mice (ob/ob) to determine the effect of UII receptor (UT) blockage on the different facets of the metabolic syndrome with special emphasis on cardiac function. Our data demonstrate a significant increase in UII and UT expression in the myocardium of obese mice accompanied by a significant decrease in sarco/endoplasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) expression, as well as intracellular Na(+) and Ca(2+) compared with wild-type mice (P<0.05). Treatment of ob/ob mice with the UII receptor antagonist SB657510 significantly improved glucose levels, blood pressure, hyperlipidemia, expression of myocardial SERCA2a, intracellular Na(+) and Ca(2+) and cardiac function in association with a decrease in weight gain, and mammalian target of rapamycin (mTOR) and sodium/hydrogen exchanger 1 (NHE-1) protein expression compared with vehicle (P<0.05). These findings demonstrate an important role for UII in the pathogenesis of the metabolic syndrome and suggest that the use of UT receptor antagonists may provide a new therapeutic tool for the treatment of this syndrome.
Collapse
Affiliation(s)
- Zhipeng You
- 1McGill University Health Center, Ste. C9-166, Montreal General Hospital, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada.
| | | | | | | | | |
Collapse
|
22
|
Chatenet D, Folch B, Feytens D, Létourneau M, Tourwé D, Doucet N, Fournier A. Development and Pharmacological Characterization of Conformationally Constrained Urotensin II-Related Peptide Agonists. J Med Chem 2013; 56:9612-22. [DOI: 10.1021/jm401153j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David Chatenet
- INRS-Institut
Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, Ville de Laval, Québec, QC H7V 1B7, Canada
- Laboratoire International
Associé Samuel de Champlain, INSERM-INRS-Université
de Rouen
| | - Benjamin Folch
- INRS-Institut
Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, Ville de Laval, Québec, QC H7V 1B7, Canada
| | - Debby Feytens
- Department
of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Myriam Létourneau
- INRS-Institut
Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, Ville de Laval, Québec, QC H7V 1B7, Canada
- Laboratoire International
Associé Samuel de Champlain, INSERM-INRS-Université
de Rouen
| | - Dirk Tourwé
- Department
of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Nicolas Doucet
- INRS-Institut
Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, Ville de Laval, Québec, QC H7V 1B7, Canada
- Regroupement
Québécois de Recherche sur la Fonction, la Structure
et l’Ingénierie des Protéines, PROTEO, Québec, QC G1V 0A6, Canada
- GRASP,
Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Bellini Pavillion, Room 453, 3649 Promenade Sir William Osler, Montréal, QC H3G 0B1, Canada
| | - Alain Fournier
- INRS-Institut
Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, Ville de Laval, Québec, QC H7V 1B7, Canada
- Laboratoire International
Associé Samuel de Champlain, INSERM-INRS-Université
de Rouen
| |
Collapse
|
23
|
Chatenet D, Létourneau M, Nguyen QT, Doan ND, Dupuis J, Fournier A. Discovery of new antagonists aimed at discriminating UII and URP-mediated biological activities: insight into UII and URP receptor activation. Br J Pharmacol 2013; 168:807-21. [PMID: 22994258 DOI: 10.1111/j.1476-5381.2012.02217.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 08/15/2012] [Accepted: 08/27/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent evidence suggested that urotensin II (UII) and its paralog peptide UII-related peptide (URP) might exert common but also divergent physiological actions. Unfortunately, none of the existing antagonists were designed to discriminate specific UII- or URP-associated actions, and our understanding, on how these two endogenous peptides can trigger different, but also common responses, is limited. EXPERIMENTAL APPROACH Ex vivo rat and monkey aortic ring contraction as well as dissociation kinetics studies using transfected CHO cells expressing the human urotensin (UT) receptors were used in this study. KEY RESULTS Ex vivo rat and monkey aortic ring contraction studies revealed the propensity of [Pep(4)]URP to decrease the maximal response of human UII (hUII) without any significant change in potency, whereas no effect was noticeable on the URP-induced vasoconstriction. Dissociation experiments demonstrated the ability of [Pep(4)]URP to increase the dissociation rate of hUII, but not URP. Surprisingly, URP, an equipotent UII paralog, was also able to accelerate the dissociation rate of membrane-bound (125)I-hUII, whereas hUII had no noticeable effect on URP dissociation kinetics. Further experiments suggested that an interaction between the glutamic residue at position 1 of hUII and the UT receptor seems to be critical to induce conformational changes associated with agonistic activation. Finally, we demonstrated that the N-terminal domain of the rat UII isoform was able to act as a specific antagonist of the URP-associated actions. CONCLUSION Such compounds, that is [Pep(4)]URP and rUII(1-7), should prove to be useful as new pharmacological tools to decipher the specific role of UII and URP in vitro but also in vivo.
Collapse
Affiliation(s)
- D Chatenet
- Laboratoire d'études moléculaires et pharmacologiques des peptides, Université du Québec, INRS-Institut Armand-Frappier, Ville de Laval, QC, Canada.
| | | | | | | | | | | |
Collapse
|
24
|
You Z, Genest J, Barrette PO, Hafiane A, Behm DJ, D'Orleans-Juste P, Schwertani AG. Genetic and pharmacological manipulation of urotensin II ameliorate the metabolic and atherosclerosis sequalae in mice. Arterioscler Thromb Vasc Biol 2012; 32:1809-16. [PMID: 22723440 DOI: 10.1161/atvbaha.112.252973] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Urotensin II (UII) is a potent vasoactive peptide that binds to the urotensin receptor-coupled receptor-14 (known as UT) and exerts a wide range of actions in humans and experimental animals. We tested the hypothesis that UII gene deletion or UT blockade ameliorate experimental atherosclerosis. METHODS AND RESULTS We observed a significant reduction in weight gain, visceral fat, blood pressure, circulating plasma lipids, and proatherogenic cytokines and improvement of glucose tolerance in UII knockout mice compared with wild type (P<0.05). Deletion of UII after an apolipoprotein E knockout resulted in a significant reduction in serum cytokines, adipokines, and aortic atherosclerosis compared with apolipoprotein E knockout mice. Similarly, treatment of apolipoprotein E knockout mice fed on high-fat diet with the UT antagonist SB657510A reduced weight gain, visceral fat, and hyperlipidemia and improved glucose tolerance (P<0.05) and attenuated the initiation and progression of atherosclerosis. The UT antagonist also decreased aortic extracellular signal-regulated kinase 1/2 phosphorylation and oxidant formation and serum level of cytokines (P<0.05). CONCLUSIONS These findings demonstrate for the first time the role of UII gene deletion in atherosclerosis and suggest that the use of pharmaceutical agents aimed at blocking the UII pathway may provide a novel approach in the treatment of atherosclerosis and its associated precursors such as obesity, hyperlipidemia, diabetes mellitus, and hypertension.
Collapse
Affiliation(s)
- Zhipeng You
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Chatenet D, Nguyen QT, Létourneau M, Dupuis J, Fournier A. Urocontrin, a novel UT receptor ligand with a unique pharmacological profile. Biochem Pharmacol 2012; 83:608-15. [DOI: 10.1016/j.bcp.2011.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 01/23/2023]
|
26
|
Chatenet D, Nguyen TTM, Létourneau M, Fournier A. Update on the urotensinergic system: new trends in receptor localization, activation, and drug design. Front Endocrinol (Lausanne) 2012; 3:174. [PMID: 23293631 PMCID: PMC3533682 DOI: 10.3389/fendo.2012.00174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/10/2012] [Indexed: 12/17/2022] Open
Abstract
The urotensinergic system plays central roles in the physiological regulation of major mammalian organ systems, including the cardiovascular system. As a matter of fact, this system has been linked to numerous pathophysiological states including atherosclerosis, heart failure, hypertension, diabetes as well as psychological, and neurological disorders. The delineation of the (patho)physiological roles of the urotensinergic system has been hampered by the absence of potent and selective antagonists for the urotensin II-receptor (UT). Thus, a more precise definition of the molecular functioning of the urotensinergic system, in normal conditions as well as in a pathological state is still critically needed. The recent discovery of nuclear UT within cardiomyocytes has highlighted the cellular complexity of this system and suggested that UT-associated biological responses are not only initiated at the cell surface but may result from the integration of extracellular and intracellular signaling pathways. Thus, such nuclear-localized receptors, regulating distinct signaling pathways, may represent new therapeutic targets. With the recent observation that urotensin II (UII) and urotensin II-related peptide (URP) exert different biological effects and the postulate that they could also have distinct pathophysiological roles in hypertension, it appears crucial to reassess the recognition process involving UII and URP with UT, and to push forward the development of new analogs of the UT system aimed at discriminating UII- and URP-mediated biological activities. The recent development of such compounds, i.e. urocontrin A and rUII(1-7), is certainly useful to decipher the specific roles of UII and URP in vitro and in vivo. Altogether, these studies, which provide important information regarding the pharmacology of the urotensinergic system and the conformational requirements for binding and activation, will ultimately lead to the development of potent and selective drugs.
Collapse
Affiliation(s)
- David Chatenet
- Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, Ville de LavalQC, Canada
- Laboratoire International Associé Samuel de Champlain (INSERM/INRS-Université de Rouen)France
- *Correspondence: David Chatenet and Alain Fournier, Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Ville de Laval, QC H7V 1B7, Canada. e-mail: ;
| | - Thi-Tuyet M. Nguyen
- Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, Ville de LavalQC, Canada
- Laboratoire International Associé Samuel de Champlain (INSERM/INRS-Université de Rouen)France
| | - Myriam Létourneau
- Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, Ville de LavalQC, Canada
- Laboratoire International Associé Samuel de Champlain (INSERM/INRS-Université de Rouen)France
| | - Alain Fournier
- Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, Ville de LavalQC, Canada
- Laboratoire International Associé Samuel de Champlain (INSERM/INRS-Université de Rouen)France
- *Correspondence: David Chatenet and Alain Fournier, Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Ville de Laval, QC H7V 1B7, Canada. e-mail: ;
| |
Collapse
|
27
|
Bai XY, Liu XC, Yang Q, Tang XD, He GW. The interaction between human urotensin II and vasodilator agents in human internal mammary artery with possible clinical implications. Ann Thorac Surg 2011; 92:610-616. [PMID: 21704284 DOI: 10.1016/j.athoracsur.2011.03.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND Graft spasm in the internal mammary artery (IMA) may occur after coronary artery bypass grafting (CABG). We investigated the effect of human urotensin II (hU-II), a cyclic peptide hormone present in human blood and tissues, and the effect of vasodilators on hU-II-mediated response in human IMA. METHODS Fresh IMA segments (n=114) taken from 50 patients undergoing CABG were studied in a myograph. The interaction between hU-II and various calcium antagonists or glyceryl trinitrate (GTN) was investigated in 2 ways: relaxing effect of vasodilators on the hU-II-induced precontraction and depressing effect of vasodilator agents on the contraction caused by hU-II (n=6 to 10 in each subgroup). RESULTS Human urotensin II caused contractile response in all human IMA. In potassium chloride-contraction, full (nifedipine: 99.1 %±2.7%) or nearly full (diltiazem: 93.5%±4.8%) relaxation with 30.9-fold higher potency to nifedipine than to diltiazem (EC50 [effective concentration causing 50% of maximal response] -8.24±0.21 vs -6.75±0.20 log M, p=0.0002) and in hU-II-contraction, nearly full relaxation (nifedipine: 90.6%±4.6%; diltiazem: 95.0%±1.7%) with 5.8-fold higher potency to nifedipine than to diltiazem (EC50 -7.55±0.26 vs -6.79±0.25 log M, p=0.03) were observed. The GTN caused nearly full relaxation (93.1%±4.8%) but GTN pretreatment had limited effect in prevention of the hU-II-induced contraction, whereas diltiazem and nifedipine reduced subsequent contraction to hU-II. CONCLUSIONS Human urotensin II is a potent vasoconstrictor in human IMA. Calcium antagonists and GTN relax the contraction caused by hU-II with different potencies. However, calcium antagonists are more effective than GTN in preventing the contraction induced by hU-II. These findings may have clinical implications in CABG.
Collapse
Affiliation(s)
- Xiao-Yan Bai
- TEDA International Cardiovascular Hospital, Medical College, Nankai University, Tianjin, China
| | | | | | | | | |
Collapse
|
28
|
Wang H, Dong K, Xue X, Feng P, Wang X. Elevated expression of urotensin II and its receptor in diethylnitrosamine-mediated precancerous lesions in rat liver. Peptides 2011; 32:382-7. [PMID: 21056072 DOI: 10.1016/j.peptides.2010.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII) is a somatostatin-like peptide involved in cell proliferation and in tumor biology. To explore the role of liver-derived UII in the pathogenesis of precancerous liver lesions in rat, we investigated the expression of UII and its receptor, UT, in diethylnitrosamine (DEN)-induced precancerous liver lesions and the effects of UII on cell proliferation by hepatic oval cells. Radioimmunoassay, RT-PCR, immunohistochemistry and western blot were used in this study. Compared with untreated controls, rats treated with DEN showed increased UII content by 47.7% in plasma and by 164.9% in liver tissue (all P<0.01). The expression of UII protein and of both UT mRNA and protein was significantly enhanced in the liver of treated rats. Western blot analysis revealed that the expression of phosphorylated protein kinase C (p-PKC) and phosphorylated extracellular signal-regulated kinase (p-ERK1/2) was increased in the liver of treated animals. Treatment with UII (10(-10)-10(-6)M) for 24h significantly increased number of cultured hepatic oval cells (at 10(-9)-10(-8)M). However, during the pre-incubation with calphostin C (inhibitor of PKC) or PD98059 (inhibitor of MEK), the proliferation was decreased by 40.1% and 25.4% respectively (both P<0.05). In DEN-induced precancerous liver lesions, the UII/UT system was up-regulated, which may contribute to the pathogenesis of liver cancer through a PKC- or ERK1/2-dependent pro-mitogenic pathway in an autocrine/paracrine manner.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Pathophysiology, Capital Medical University, Beijing, 100069, China
| | | | | | | | | |
Collapse
|
29
|
Iglewski M, Grant SR. Urotensin II-induced signaling involved in proliferation of vascular smooth muscle cells. Vasc Health Risk Manag 2010; 6:723-34. [PMID: 20859543 PMCID: PMC2941785 DOI: 10.2147/vhrm.s11129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Indexed: 01/02/2023] Open
Abstract
The urotensin II receptor, bound by the ligand urotensin II, generates second messengers, ie, inositol triphosphate and diacylglycerol, which stimulate the subsequent release of calcium (Ca2+) in vascular smooth muscle cells. Ca2+ influx leads to the activation of Ca2+-dependent kinases (CaMK) via calmodulin binding, resulting in cellular proliferation. We hypothesize that urotensin II signaling in pulmonary arterial vascular smooth muscle cells (Pac1) and primary aortic vascular smooth muscle cells (PAVSMC) results in phosphorylation of Ca2+/calmodulin-dependent kinases leading to cellular proliferation. Exposure of Pac1 cultures to urotensin II increased intracellular Ca2+, subsequently activating Ca2+/calmodulin-dependent kinase kinase (CaMKK), and Ca2+/calmodulin-dependent kinase Type I (CaMKI), extracellular signal-regulated kinase (ERK 1/2), and protein kinase D. Treatment of Pac1 and PAVSMC with urotensin II increased proliferation as measured by 3H-thymidine uptake. The urotensin II-induced increase in 3H-thymidine incorporation was inhibited by a CaMKK inhibitor. Taken together, our results demonstrate that urotensin II stimulation of smooth muscle cells leads to a Ca2+/calmodulin-dependent kinase-mediated increase in cellular proliferation.
Collapse
Affiliation(s)
- Myriam Iglewski
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | | |
Collapse
|
30
|
Vaudry H, Do Rego JC, Le Mevel JC, Chatenet D, Tostivint H, Fournier A, Tonon MC, Pelletier G, Conlon JM, Leprince J. Urotensin II, from fish to human. Ann N Y Acad Sci 2010; 1200:53-66. [PMID: 20633133 DOI: 10.1111/j.1749-6632.2010.05514.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cyclic peptide urotensin II (UII) was originally isolated from the urophysis of teleost fish on the basis of its ability to contract intestinal smooth muscle. The UII peptide has subsequently been isolated from frog brain and, later on, the pre-proUII cDNA has been characterized in mammals, including humans. A UII paralog called urotensin II-related peptide (URP) has been identified in the rat brain. The UII and URP genes originate from the same ancestral gene as the somatostatin and cortistatin genes. In the central nervous system (CNS) of tetrapods, UII is expressed primarily in motoneurons of the brainstem and spinal cord. The biological actions of UII and URP are mediated through a G protein-coupled receptor, termed UT, that exhibits high sequence similarity with the somatostatin receptors. The UT gene is widely expressed in the CNS and in peripheral organs. Consistent with the broad distribution of UT, UII and URP exert a large array of behavioral effects and regulate endocrine, cardiovascular, renal, and immune functions.
Collapse
Affiliation(s)
- Hubert Vaudry
- Laboratory of Cellular Neuroendocrinology, INSERM U413, European Institute for Peptide Research (IFRMP 23), University of Rouen, Mont-Saint-Aignan, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kompa AR, Wang BH, Phrommintikul A, Ho PY, Kelly DJ, Behm DJ, Douglas SA, Krum H. Chronic urotensin II receptor antagonist treatment does not alter hypertrophy or fibrosis in a rat model of pressure-overload hypertrophy. Peptides 2010; 31:1523-30. [PMID: 20452383 DOI: 10.1016/j.peptides.2010.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/29/2010] [Accepted: 04/29/2010] [Indexed: 01/24/2023]
Abstract
Urotensin II (UII) is a potential mediator in the pathogenesis of cardiovascular disease, and inhibition of its actions at the urotensin receptor (UT) has been shown to improve cardiac function and structural changes of the myocardium in a model of myocardial infarction. In this study we utilized a model of pressure-overload hypertrophy induced by abdominal aortic constriction (AAC) which resulted in hypertrophy, increased fibrosis and impaired diastolic and systolic function. These changes were associated with a 4-fold increase in UII protein expression in the myocardium. Treatment of animals with a selective UT (SB-657510) antagonist for 20 weeks at a dose of 1500 ppm did not improve cardiac function as assessed by echocardiography and pressure-volume loop analysis, nor did it inhibit left ventricular hypertrophy or fibrosis. We hypothesize that other neurohumoral pathways may have a greater involvement in the pathogenesis of this model. Targeting the UII system appears to be insufficient to observe a beneficial outcome.
Collapse
Affiliation(s)
- Andrew R Kompa
- Department of Medicine, Monash University, Alfred Hospital, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Takahashi K, Hirose T, Mori N, Morimoto R, Kohzuki M, Imai Y, Totsune K. The renin-angiotensin system, adrenomedullins and urotensin II in the kidney: possible renoprotection via the kidney peptide systems. Peptides 2009; 30:1575-85. [PMID: 19477209 DOI: 10.1016/j.peptides.2009.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/18/2009] [Accepted: 05/18/2009] [Indexed: 01/29/2023]
Abstract
The incidence of chronic kidney disease, such as diabetic nephropathy, is increasing throughout the world. Many biologically active peptides play important roles in the kidney. The classical example is the renin-angiotensin system (RAS). Angiotensin II plays critical roles in the progression of chronic kidney disease through its vasoconstrictor action, stimulatory action on cell proliferation, and reactive oxygen-generating activity. A renin inhibitor, aliskiren, has recently been shown to be a clinically effective drug to reduce proteinuria in patients with diabetic nephropathy. (Pro)renin receptor, a specific receptor for renin and prorenin, was newly identified as a member of the RAS. When bound to prorenin, (pro)renin receptor activates the angiotensin I-generating activity of prorenin in the absence of cleavage of the prosegment, and directly stimulates the pathway of mitogen-activated protein kinase independently from the RAS. The kidney peptides that antagonize the intrarenal RAS may have renoprotective actions. Adrenomedullins, potent vasodilator peptides, have been shown to have renoprotective actions. On the other hand, urotensin II, a potent vasoconstrictor peptide, may promote the renal dysfunction in chronic kidney disease together with the renal RAS. Thus, in addition to the renin inhibitor and (pro)renin receptor, adrenomedullins and urotensin II may be novel targets to develop therapeutic strategies against chronic kidney disease.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | | | | | | | |
Collapse
|