1
|
Vázquez-López R, Solano-Gálvez S, León-Chávez BA, Thompson-Bonilla MR, Guerrero-González T, Gómez-Conde E, Martínez-Fong D, González-Barrios JA. Characterization of Gene Families Encoding Beta-Lactamases of Gram-Negative Rods Isolated from Ready-to-Eat Vegetables in Mexico City. High Throughput 2018; 7:ht7040036. [PMID: 30477153 PMCID: PMC6306796 DOI: 10.3390/ht7040036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/01/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Beta-lactam resistant bacteria, which are commonly resident in tertiary hospitals, have emerged as a worldwide health problem because of ready-to-eat vegetable intake. We aimed to characterize the genes that provide resistance to beta-lactam antibiotics in Enterobacteriaceae, isolated from five commercial salad brands for human consumption in Mexico City. In total, twenty-five samples were collected, grown in blood agar plates, and the bacteria were biochemistry identified and antimicrobial susceptibility testing was done. The carried family genes were identified by endpoint PCR and the specific genes were confirmed with whole genome sequencing (WGS) by Next Generation Sequencing (NGS). Twelve positive cultures were identified and their microbiological distribution was as follows: 8.3% for Enterobacter aerogene (n = 1), 8.3% for Serratia fonticola (n = 1), 16.7% for Serratia marcesens (n = 2), 16.7% for Klebsiella pneumoniae (n = 2), and 50% (n = 6) for Enterobacter cloacae. The endpoint PCR results showed 11 colonies positive for blaBIL (91.7%), 11 for blaSHV (91.7%), 11 for blaCTX (97.7%), 12 for blaDHA (100%), four for blaVIM (33.3%), two for blaOXA (16.7%), two for blaIMP (16.7%), one for blaKPC (8.3%), and one for blaTEM (8.3%) gen; all samples were negative for blaROB, blaCMY, blaP, blaCFX and blaLAP gene. The sequencing analysis revealed a specific genotype for Enterobacter cloacae (blaSHV-12, blaCTX-M-15, blaDHA-1, blaKPC-2); Serratia marcescens (blaSHV-1, blaCTX-M-3, blaDHA-1, blaVIM-2); Klebsiella pneumoniae (blaSHV-12, blaCTX-M-15, blaDHA-1); Serratia fonticola (blaSHV-12, blaVIM-1, blaDHA-1); and, Enterobacter aerogene (blaSHV-1, blaCTX-M-1, blaDHA-1, blaVIM-2, blaOXA-9). Our results indicate that beta-lactam-resistant bacteria have acquired integrons with a different number of genes that provide pan-resistance to beta-lactam antibiotics, including penicillins, oxacillins, cefalosporins, monobactams, carbapenems, and imipenems.
Collapse
Affiliation(s)
- Rosalino Vázquez-López
- CICSA Facultad de Ciencias de la Salud Universidad Anáhuac Mexico Campus Norte, Huixquilucan, Estado de Mexico 52786, Mexico.
| | - Sandra Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico. Coyoacán, Ciudad de Mexico 04510, Mexico.
| | - Bertha A León-Chávez
- Laboratorio de Investigaciones Químico-Clínicas, Facultad de Ciencias Químicas, Benemerita Universidad Autónoma de Puebla, San Manuel, Ciudad Universitaria, Puebla 72570, Mexico.
| | - María R Thompson-Bonilla
- Laboratorio de Medicina Genómica, Hospital Regional "Primero de Octubre", ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de Mexico 07300, Mexico.
| | - Tayde Guerrero-González
- Laboratorio de Medicina Genómica, Hospital Regional "Primero de Octubre", ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de Mexico 07300, Mexico.
| | - Eduardo Gómez-Conde
- División de Investigación en Salud, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades, Centro Médico Nacional General de División "Manuel Ávila Camacho", Instituto Mexicano del Seguro Social (IMSS), Puebla 72090, Mexico.
| | - Daniel Martínez-Fong
- Departamento de Fisiología Biofísica y Neurociencias, Centro de Investigación y Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de Mexico 07360, Mexico.
| | - Juan A González-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional "Primero de Octubre", ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de Mexico 07300, Mexico.
| |
Collapse
|
2
|
Wende F, Meyering-Vos M, Hoffmann KH. IDENTIFICATION OF THE FGL-AMIDE ALLATOSTATIN GENE OF THE PRIMITIVE TERMITE Mastotermes darwiniensis AND THE WOODROACH Cryptocercus darwini. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 91:88-108. [PMID: 26513739 DOI: 10.1002/arch.21310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Allatostatins with the C-terminal ending Tyr/Phe-Xaa-Phe-Gly-Leu/Ile-amide (FGLa/ASTs) are widespread neuropeptides with multiple functions. The gene encoding the FGLa/AST polypeptide precursor was first isolated from cockroaches and since then could be identified in many insects and crustaceans. With its strictly conserved regions in combination with variable regions the gene seems to be a good candidate for phylogenetic analyses between closely and distantly related species. Here, the structure of the FGLa/AST gene of the most primitive termite, the giant northern termite Mastotermes darwiniensis Froggatt, was identified. The FGLa/AST gene of the woodroach Cryptocercus darwini was also determined. Precursor sequences of both species possess the general organization of dictyopteran FGLa/AST precursors containing 14 putative FGLa/AST peptides. In M. darwiniensis, only 11 out of the 14 FGLa/AST-like peptides possess the C-terminal conserved region Y/FXFGL/I/V/M and four of the putative peptide structures are not followed by a Gly residue that would lead to nonamidated peptides. Phylogenetic analyses show the high degree of similarity of dictyopteran FGLa/AST sequences. The position of termites, nested within the Blattaria, confirms that termites have evolved from primitive cockroaches.
Collapse
Affiliation(s)
- Franziska Wende
- Department of Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| | | | - Klaus H Hoffmann
- Department of Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
3
|
Martínez-Pérez F, Bendena WG, Chang BSW, Tobe SS. Influence of codon usage bias on FGLamide-allatostatin mRNA secondary structure. Peptides 2011; 32:509-17. [PMID: 20950662 DOI: 10.1016/j.peptides.2010.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 02/07/2023]
Abstract
The FGLamide allatostatins (ASTs) are invertebrate neuropeptides which inhibit juvenile hormone biosynthesis in Dictyoptera and related orders. They also show myomodulatory activity. FGLamide AST nucleotide frequencies and codon bias were investigated with respect to possible effects on mRNA secondary structure. 367 putative FGLamide ASTs and their potential endoproteolytic cleavage sites were identified from 40 species of crustaceans, chelicerates and insects. Among these, 55% comprised only 11 amino acids. An FGLamide AST consensus was identified to be (X)(1→16)Y(S/A/N/G)FGLGKR, with a strong bias for the codons UUU encoding for Phe and AAA for Lys, which can form strong Watson-Crick pairing in all peptides analyzed. The physical distance between these codons favor a loop structure from Ser/Ala-Phe to Lys-Arg. Other loop and hairpin loops were also inferred from the codon frequencies in the N-terminal motif, and the first amino acids from the C-terminal motif, or the dibasic potential endoproteolytic cleavage site. Our results indicate that nucleotide frequencies and codon usage bias in FGLamide ASTs tend to favor mRNA folds in the codon sequence in the C-terminal active peptide core and at the dibasic potential endoproteolytic cleavage site.
Collapse
Affiliation(s)
- Francisco Martínez-Pérez
- Department of Cell and Systems Biology, University of Toronto, 110 St. George St., Toronto, ON M5S 3G5, Canada
| | | | | | | |
Collapse
|