1
|
Matsumoto T, Taguchi K, Kobayashi T. Relationships between advanced glycation end products (AGEs), vasoactive substances, and vascular function. J Smooth Muscle Res 2022; 57:94-107. [PMID: 35095032 PMCID: PMC8795595 DOI: 10.1540/jsmr.57.94] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) are major cell types that control vascular function, and hence dysfunction of these cells plays a key role in the development and progression of vasculopathies. Abnormal vascular responsiveness to vasoactive substances including vasoconstrictors and vasodilators has been observed in various arteries in diseases including diabetes, hypertension, chronic kidney diseases, and atherosclerosis. Several substances derived from ECs tightly control vascular function, such as endothelium-derived relaxing and contracting factors, and it is known that abnormal vascular signaling of these endothelium-derived substances is often observed in various diseases. Derangement of signaling in VSMCs and altered function influence vascular reactivity to vasoactive substances and tone, which are important determinants of vascular resistance and blood pressure. However, understanding the molecular mechanisms underlying abnormalities of vascular functions in pathological states is difficult because multiple substances interact in the development of these processes. Advanced glycation end products (AGEs), a heterogeneous group of bioactive compounds, are thought to contribute to vascular dysfunction, which in turn cause the development of several diseases including diabetes, hypertension, stroke, and atherosclerosis. A growing body of evidence suggests that AGEs could affect these cells and modulate vascular function. This study is focused on the link between AGEs and functions of ECs and VSMCs, particularly the modulative effects of AGEs on vascular reactivities to vasoactive substances.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
2
|
Matsumoto T, Takayanagi K, Kojima M, Taguchi K, Kobayashi T. Indoxyl sulfate enhances endothelin-1-induced contraction via impairment of NO/cGMP signaling in rat aorta. Pflugers Arch 2021; 473:1247-1259. [PMID: 34021781 DOI: 10.1007/s00424-021-02581-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
The microbiome-derived tryptophan metabolite, indoxyl sulfate, is considered a harmful vascular toxin. Here, we examined the effects of indoxyl sulfate on endothelin-1 (ET-1)-induced contraction in rat thoracic aortas. Indoxyl sulfate (10-3 M, 60 min) increased ET-1-induced contraction but did not affect isotonic high-K+-induced contraction. The ET-1-induced contraction was enhanced by endothelial denudation in both control and indoxyl sulfate-treated groups. BQ123 (10-6 M), an ETA receptor antagonist, reduced the ET-1-induced contraction in both control and indoxyl sulfate groups. BQ788 (10-6 M), an ETB receptor antagonist, increased the contraction in the control group but had no effect on the indoxyl sulfate group. Conversely, indoxyl sulfate inhibited relaxation induced by IRL1620, an ETB receptor agonist. L-NNA, an NO synthase (NOS) inhibitor, increased the ET-1-induced contractions in both the control and indoxyl sulfate groups, whereas L-NPA (10-6 M), a specific neuronal NOS inhibitor, did not affect the ET-1-induced contraction in both groups. However, ODQ, an inhibitor of soluble guanylyl cyclase, increased the ET-1-induced contraction in both groups. Organic anion transporter (OAT) inhibitor probenecid (10-3 M) and antioxidant N-acetyl-L-cysteine (NAC; 5 × 10-3 M) inhibited the effects of indoxyl sulfate. A cell-permeant superoxide scavenger reduced the ET-1-induced contraction in the indoxyl sulfate group. The aortic activity of SOD was reduced by indoxyl sulfate. The present study revealed that indoxyl sulfate augments ET-1-induced contraction in rat aortae. This enhancement may be due to the impairment of NO/cGMP signaling and may be attributed to impairment of the antioxidant systems via cellular uptake through OATs.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Keisuke Takayanagi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Mihoka Kojima
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
3
|
Zhang Y, Liu J, Jia W, Tian X, Jiang P, Cheng Z, Li J. AGEs/RAGE blockade downregulates Endothenin-1 (ET-1), mitigating Human Umbilical Vein Endothelial Cells (HUVEC) injury in deep vein thrombosis (DVT). Bioengineered 2021; 12:1360-1368. [PMID: 33896376 PMCID: PMC8806329 DOI: 10.1080/21655979.2021.1917980] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This study is aimed at identifying the roles of AGE/RAGE and ET-1 in deep vein thrombosis (DVT). Advanced glycation end products (AGEs) in glycated human serum albumin (M-HSA) were detected by ELISA. The viability of HUVECs was examined by CCK-8 assay. Flow cytometry was performed to detect cell apoptosis, followed by ELISA for the detection of inflammatory cytokine level and oxidative stress level in HUVECs. Immunofluorescence was performed to detect ET-1 and eNOS expression. The expression of specific proteins was assayed by western blot. As a result, decreased HUVEC viability was observed after stimulation with M-HSA, whereas RAGE inhibitor improved it. Cell apoptosis showed the opposite trend. Additionally, M-HSA-induced inflammatory cytokine release and oxidative stress of HUVECs were both alleviated by RAGE inhibitor. RAGE inhibitor also increased the levels of NO and eNOS while decreasing the level of ET-1 in M-HSA-stimulated HUVECs. Furthermore, decreased protein expression of Bax, cleaved-caspase3, RAGE, p65, ET-1 and iNOS was observed after treatment with RAGE inhibitor, in addition to increased protein expression of Bcl-2 and eNOS. In conclusion, blocking AGE/RAGE pathway downregulates ET-1, thereby mitigating HUVEC damage in DVT.
Collapse
Affiliation(s)
- Yunxin Zhang
- Department of Vascular Surgery, 1-7 Beijing Jishuitan Hospital, Beijing, China
| | - Jianlong Liu
- Department of Vascular Surgery, 1-7 Beijing Jishuitan Hospital, Beijing, China
| | - Wei Jia
- Department of Vascular Surgery, 1-7 Beijing Jishuitan Hospital, Beijing, China
| | - Xuan Tian
- Department of Vascular Surgery, 1-7 Beijing Jishuitan Hospital, Beijing, China
| | - Peng Jiang
- Department of Vascular Surgery, 1-7 Beijing Jishuitan Hospital, Beijing, China
| | - Zhiyuan Cheng
- Department of Vascular Surgery, 1-7 Beijing Jishuitan Hospital, Beijing, China
| | - Jinyong Li
- Department of Vascular Surgery, 1-7 Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
4
|
Abstract
In the face of the global epidemic of diabetes, it is critical that we update our knowledge about the pathogenesis of diabetes and the related micro alterations on the vascular network in the body. This may ultimately lead to early diagnosis and novel treatment options for delaying the progression of diabetic complications. Research has recently revealed the pivotal role of endothelin in the pathogenesis of diabetic complications, particularly in the regulation of the capillary flow, which is affected in the course of retinopathy. Although there are several reviews on various approaches to the treatment of diabetes, including normalization of glucose and fat metabolism, no reviews in literature have focused on the endothelin system as a therapeutic target or early indicator of diabetic microangiopathy. In this review, we summarize some of the experimental and clinical evidence suggesting that current therapeutic approaches to diabetes may include the modulation of the blood concentration of compounds of the endothelin system. In addition, we will briefly discuss the beneficial effects produced by the inhibition of the production of high levels of endothelin in vasculopathy, with focus on diabetic retinopathy. The cutting-edge technology currently widely used in opththalmology, such as the OCT angiography, allows us to detect very early retinal morphological changes alongside alterations in choroidal and retinal vascular network. Combination of such changes with highly sensitive measurements of alterations in serum concentrations of endothelin may lead to more efficient early detection and treatment of diabetes and related macro/microvascular complications.
Collapse
|
5
|
Matsumoto T, Lopes RAM, Taguchi K, Kobayashi T, Tostes RC. Linking the beneficial effects of current therapeutic approaches in diabetes to the vascular endothelin system. Life Sci 2014; 118:129-35. [PMID: 24418002 DOI: 10.1016/j.lfs.2013.12.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/04/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022]
Abstract
The rising epidemic of diabetes worldwide is of significant concern. Although the ultimate objective is to prevent the development and find a cure for the disease, prevention and treatment of diabetic complications is very important. Vascular complications in diabetes, or diabetic vasculopathy, include macro- and microvascular dysfunction and represent the principal cause of morbidity and mortality in diabetic patients. Endothelial dysfunction plays a pivotal role in the development and progression of diabetic vasculopathy. Endothelin-1 (ET-1), an endothelial cell-derived peptide, is a potent vasoconstrictor with mitogenic, pro-oxidative and pro-inflammatory properties that are particularly relevant to the pathophysiology of diabetic vasculopathy. Overproduction of ET-1 is reported in patients and animal models of diabetes and the functional effects of ET-1 and its receptors are also greatly altered in diabetic conditions. The current therapeutic approaches in diabetes include glucose lowering, sensitization to insulin, reduction of fatty acids and vasculoprotective therapies. However, whether and how these therapeutic approaches affect the ET-1 system remain poorly understood. Accordingly, in the present review, we will focus on experimental and clinical evidence that indicates a role for ET-1 in diabetic vasculopathy and on the effects of current therapeutic approaches in diabetes on the vascular ET-1 system.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Rheure A M Lopes
- Department of Pharmacology, Medical School of Ribeirao Preto, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900, Brazil
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Rita C Tostes
- Department of Pharmacology, Medical School of Ribeirao Preto, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900, Brazil
| |
Collapse
|
6
|
Delbin MA, Davel APC, Couto GK, de Araújo GG, Rossoni LV, Antunes E, Zanesco A. Interaction between advanced glycation end products formation and vascular responses in femoral and coronary arteries from exercised diabetic rats. PLoS One 2012; 7:e53318. [PMID: 23285277 PMCID: PMC3532341 DOI: 10.1371/journal.pone.0053318] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 11/29/2012] [Indexed: 01/28/2023] Open
Abstract
Background The majority of studies have investigated the effect of exercise training (TR) on vascular responses in diabetic animals (DB), but none evaluated nitric oxide (NO) and advanced glycation end products (AGEs) formation associated with oxidant and antioxidant activities in femoral and coronary arteries from trained diabetic rats. Our hypothesis was that 8-week TR would alter AGEs levels in type 1 diabetic rats ameliorating vascular responsiveness. Methodology/Principal Findings Male Wistar rats were divided into control sedentary (C/SD), sedentary diabetic (SD/DB), and trained diabetic (TR/DB). DB was induced by streptozotocin (i.p.: 60 mg/kg). TR was performed for 60 min per day, 5 days/week, during 8 weeks. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), phenylephrine (PHE) and tromboxane analog (U46619) were obtained. The protein expressions of eNOS, receptor for AGEs (RAGE), Cu/Zn-SOD and Mn-SOD were analyzed. Tissues NO production and reactive oxygen species (ROS) generation were evaluated. Plasma nitrate/nitrite (NOx−), superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS) and Nε-(carboxymethyl) lysine (CML, AGE biomarker). A rightward shift in the concentration-response curves to ACh was observed in femoral and coronary arteries from SD/DB that was accompanied by an increase in TBARS and CML levels. Decreased in the eNOS expression, tissues NO production and NOx− levels were associated with increased ROS generation. A positive interaction between the beneficial effect of TR on the relaxing responses to ACh and the reduction in TBARS and CML levels were observed without changing in antioxidant activities. The eNOS protein expression, tissues NO production and ROS generation were fully re-established in TR/DB, but plasma NOx− levels were partially restored. Conclusion Shear stress induced by TR fully restores the eNOS/NO pathway in both preparations from non-treated diabetic rats, however, a massive production of AGEs still affecting relaxing responses possibly involving other endothelium-dependent vasodilator agents, mainly in coronary artery.
Collapse
MESH Headings
- Animals
- Antioxidants/metabolism
- Antioxidants/pharmacology
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/physiopathology
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Experimental/therapy
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Endothelium-Dependent Relaxing Factors/metabolism
- Endothelium-Dependent Relaxing Factors/pharmacology
- Femoral Artery/drug effects
- Femoral Artery/metabolism
- Femoral Artery/physiopathology
- Glycation End Products, Advanced/metabolism
- Glycation End Products, Advanced/pharmacology
- Male
- Physical Conditioning, Animal
- Rats
- Rats, Wistar
- Reactive Oxygen Species/metabolism
- Reactive Oxygen Species/pharmacology
- Streptozocin
Collapse
Affiliation(s)
- Maria A. Delbin
- Department of Physical Education, Institute of Bioscience, University of São Paulo State (UNESP), Rio Claro, São Paulo, Brazil
| | - Ana Paula C. Davel
- Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gisele Kruger Couto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Gustavo G. de Araújo
- Department of Physical Education, Institute of Bioscience, University of São Paulo State (UNESP), Rio Claro, São Paulo, Brazil
| | - Luciana Venturini Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Angelina Zanesco
- Department of Physical Education, Institute of Bioscience, University of São Paulo State (UNESP), Rio Claro, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
7
|
Mukohda M, Okada M, Hara Y, Yamawaki H. Methylglyoxal accumulation in arterial walls causes vascular contractile dysfunction in spontaneously hypertensive rats. J Pharmacol Sci 2012; 120:26-35. [PMID: 22971844 DOI: 10.1254/jphs.12088fp] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Methylglyoxal (MGO) is a metabolite of glucose and perhaps mediates diabetes-related macrovascular complications including hypertension. In the present study, we examined if MGO accumulation affects vascular reactivity of isolated mesenteric artery from spontaneously hypertensive rats (SHR). Five-week-old SHR were treated with an MGO scavenger, aminoguanidine (AG), for 5 weeks. AG partially normalized increased blood pressure in SHR. In mesenteric artery from SHR treated with AG, increased accumulation of MGO-derived advanced glycation end-products was reversed. In mesenteric artery from SHR, AG normalized impaired acetylcholine (ACh)-induced relaxation and increased angiotensin (Ang) II-induced contraction. Reactive oxygen species (ROS) production increased in SHR mesenteric artery, and acute treatment with a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) inhibitor augmented ACh-induced relaxation. Protein expression of NOX1 and Ang II type 2 receptor (AT2R) increased in SHR mesenteric artery, which was normalized by AG. Acute treatment with an AT2R blocker but not a NOX inhibitor normalized the increased Ang II-induced contraction in SHR mesenteric artery. The present results demonstrate that MGO accumulation in mesenteric artery may mediate development of hypertension in SHR at least in part via increased ROS-mediated impairment of endothelium-dependent relaxation and AT2R-mediated increased Ang II contraction.
Collapse
Affiliation(s)
- Masashi Mukohda
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan
| | | | | | | |
Collapse
|