1
|
Hrithik MTH, Ahmed S, Kim Y. Damage signal induced by Bacillus thuringiensis infection triggers immune responses via a DAMP molecule in lepidopteran insect, Spodoptera exigua. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104559. [PMID: 36181778 DOI: 10.1016/j.dci.2022.104559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Insect immunity defends the infection of an insect pathogenic bacterium, Bacillus thuringiensis (Bt). However, it was not clear on the recognition of Bt infection by the insect immune system. This study tested a physiological function of dorsal switch protein 1 (DSP1) in the Bt infection. DSP1 is classified into HMGB1-like damage-associated molecular pattern (DAMP) in insects. Upon Bt infection in a lepidopteran Spodoptera exigua, DSP1 was released from the nuclei of the midgut epithelium and activated immune responses. For this DSP1 release, a functional binding between Bt and its receptors on the midgut epithelium was required because any RNA interference (RNAi) treatments of Bt receptor (cadherin or ABCC) prevented the DSP1 release and became susceptible to the bacterial infection. The DSP1 release was required for the gene induction of Repat33, which is a member of response to pathogen gene family and its gene product mediated cellular and humoral immune responses against pathogen infection in S. exigua. The released DSP1 activated phospholipase A2 (PLA2) to produce eicosanoids, which induced the Repat33 expression because a hemocoelic injection of a recombinant DSP1 induced the Repat33 expression without Bt infection. However, any inhibition of PLA2 activity impaired the DAMP signaling between DSP1 and Repat33. DSP1 also up-regulated two other immune mediators, nitric oxide (NO) and a cytokine called plasmatocyte-spreading peptide (PSP). Either NO or PSP activated PLA2 to up-regulate Repat33 expression. These results suggest that Bt infection of the insect midgut generates a DAMP signal via DSP1 release, which turns on NO or the cytokine-PLA2-Repat33 immune signaling pathway.
Collapse
Affiliation(s)
| | - Shabbir Ahmed
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
2
|
Guo Y, Ma H, Huang Q. Yeast β-glucan with different degrees of oxidation: Capability of adsorbing lead ions and protective effect against lead-induced PC12 cytotoxicity. Int J Biol Macromol 2022; 208:1063-1071. [PMID: 35378154 DOI: 10.1016/j.ijbiomac.2022.03.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/29/2022] [Accepted: 03/30/2022] [Indexed: 11/05/2022]
Abstract
This study investigated the adsorption behavior of Pb2+ by three different oxidized yeast β-glucans (OYG) and their effect on lead-induced PC12 cytotoxicity. The analysis revealed that the adsorption kinetics conformed to pseudo-first-order model and the adsorption capacities for Pb2+ (36.50, 41.61 and 50.31 μg/mg for OYG1-3) showed a positive correlation with oxidation degree (15.2%, 47.3% and 71.2% for OYG1-3). Additionally, the lead adsorption by OYGs showed an endothermic process and the adsorption capacity increased with the increasing Pb2+ concentration in the aqueous phase. Then, it was found that OYGs were biocompatible and could increase cell viability from 60% to 80% during lead stress. Nuclear staining revealed an inhibitory effect of OYGs on cell apoptosis, with the best performance for OYG3. Furthermore, OYGs could significantly suppress lead-induced production of reactive oxygen species (ROS) and nitric oxide (NO) in PC12 cells. Specifically, when being supplemented with 20 μg/mL OYG3, the increase of fluorescence intensity caused by the production of ROS and NO in PC12 cells were significantly alleviated from 2.65 and 2.6 to 1.23 and 1.35-fold, respectively. Our findings indicate that OYGs could adsorb lead effectively and protect PC12 cells from lead-induced cytotoxicity.
Collapse
Affiliation(s)
- Yujie Guo
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyu Ma
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Batista KKDS, Vieira CS, Florentino EB, Caruso KFB, Teixeira PTP, Moraes CDS, Genta FA, de Azambuja P, de Castro DP. Nitric oxide effects on Rhodnius prolixus's immune responses, gut microbiota and Trypanosoma cruzi development. JOURNAL OF INSECT PHYSIOLOGY 2020; 126:104100. [PMID: 32822690 DOI: 10.1016/j.jinsphys.2020.104100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 08/14/2020] [Indexed: 05/21/2023]
Abstract
The immune system of Rhodnius prolixus comprehends the synthesis of different effectors that modulate the intestinal microbiota population and the life cycle of the parasite Trypanosoma cruzi inside the vector midgut. One of these immune responses is the production of reactive nitrogen species (RNS) derived by the action of nitric oxide synthase (NOS). Therefore, we investigated the effects of L-arginine, the substrate for nitric oxide (NO) production and Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NOS, added in the insect blood meal. We analyzed the impact of these treatments on the immune responses and development of intestinal bacteria and parasites on R. prolixus nymphs. The L-arginine treatment in R. prolixus nymphs induced a higher NOS gene expression in the fat body and increased NO production, but reduced catalase and antimicrobial activities in the midgut. As expected, L-NAME treatment reduced NOS gene expression in the fat body. In addition, L-NAME treatment diminished catalase activity in the hemolymph and posterior midgut reduced phenoloxidase activity in the anterior midgut and increased the antimicrobial activity in the hemolymph. Both treatments caused a reduction in the cultivatable intestinal microbiota, especially in insects treated with L-NAME. However, T. cruzi development in the insect's digestive tract was suppressed after L-arginine treatment and the opposite was observed with L-NAME, which resulted in higher parasite counts. Therefore, we conclude that induction and inhibition of NOS and NO production are associated with other R. prolixus humoral immune responses, such as catalase, phenoloxidase, and antibacterial activities in different insect organs. These alterations reflect on intestinal microbiota and T. cruzi development.
Collapse
Affiliation(s)
| | - Cecília Stahl Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Karina Francine Bravo Caruso
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Caroline da Silva Moraes
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Fernando Ariel Genta
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Patrícia de Azambuja
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Daniele Pereira de Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Agave sisalana extract induces cell death in Aedes aegypti hemocytes increasing nitric oxide production. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2015.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Annual post‐market environmental monitoring (PMEM) report on the cultivation of genetically modified maize MON 810 in 2014 from Monsanto Europe S.A. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|