1
|
Abd-Ellatif RN, Nasef NA, El-Horany HES, Emam MN, Younis RL, El Gheit REA, Elseady W, Radwan DA, Hafez YM, Eissa A, Aboalsoud A, Shalaby RH, Atef MM. Adrenomedullin Mitigates Doxorubicin-Induced Nephrotoxicity in Rats: Role of Oxidative Stress, Inflammation, Apoptosis, and Pyroptosis. Int J Mol Sci 2022; 23:14570. [PMID: 36498902 PMCID: PMC9741179 DOI: 10.3390/ijms232314570] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Doxorubicin (DOX) is an anticancer antibiotic which has various effects in human cancers. It is one of the commonly known causes of drug-induced nephrotoxicity, which results in acute renal injury. Adrenomedullin (ADM), a vasodilator peptide, is widely distributed in many tissues and has potent protective effects. Therefore, the current study aimed to examine the protective potential mechanisms of ADM against DOX-induced nephrotoxicity. A total of 28 male Wistar rats were randomized into four groups: control group, doxorubicin group (15 mg/kg single intraperitoneal injection of DOX), adrenomedullin + doxorubicin group (12 μg/kg/day intraperitoneal injection of ADM) 3 days prior to DOX injection and continuing for 14 days after the model was established, and adrenomedullin group. Kidney function biomarkers, oxidative stress markers, and inflammatory mediators (TNF-α, NLRP3, IL-1β, and IL-18) were assessed. The expressions of gasdermin D and ASC were assessed by real-time PCR. Furthermore, the abundances of caspase-1 (p20), Bcl-2, and Bax immunoreactivity were evaluated. ADM administration improved the biochemical parameters of DOX-induced nephrotoxicity, significantly reduced oxidative damage markers and inflammatory mediators, and suppressed both apoptosis and pyroptosis. These results were confirmed by the histopathological findings and revealed that ADM's antioxidant, anti-inflammatory, anti-apoptotic, and anti-pyroptotic properties may have prospective applications in the amelioration of DOX-induced nephrotoxicity.
Collapse
Affiliation(s)
- Rania Nagi Abd-Ellatif
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Nahla Anas Nasef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Hemat El-Sayed El-Horany
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Biochemistry Department, College of Medicine, Ha’il University, Ha’il 2440, Saudi Arabia
| | - Marwa Nagy Emam
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Reham Lotfy Younis
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Walaa Elseady
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Doaa A. Radwan
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ahmad Eissa
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Alshimaa Aboalsoud
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Rania H. Shalaby
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Dubai Medical College for Girls, Dubai 20170, United Arab Emirates
| | - Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
2
|
Endogenous Vasoactive Peptides and Vascular Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1534470. [PMID: 36225176 PMCID: PMC9550461 DOI: 10.1155/2022/1534470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Vascular aging is a specific type of organic aging that plays a central role in the morbidity and mortality of cardiovascular and cerebrovascular diseases among the elderly. It is essential to develop novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental cellular and molecular aging processes. Endogenous vasoactive peptides are compounds formed by a group of amino acids connected by peptide chains that exert regulatory roles in intercellular interactions involved in a variety of biological and pathological processes. Emerging evidence suggests that a variety of vasoactive peptides play important roles in the occurrence and development of vascular aging and related diseases such as atherosclerosis, hypertension, vascular calcification, abdominal aortic aneurysms, and stroke. This review will summarize the cumulative roles and mechanisms of several important endogenous vasoactive peptides in vascular aging and vascular aging-related diseases. In addition, we also aim to explore the promising diagnostic function as biomarkers and the potential therapeutic application of endogenous vasoactive peptides in vascular aging-related diseases.
Collapse
|
3
|
Kita T, Kitamura K. Translational studies of adrenomedullin and related peptides regarding cardiovascular diseases. Hypertens Res 2022; 45:389-400. [PMID: 34992239 PMCID: PMC8732970 DOI: 10.1038/s41440-021-00806-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022]
Abstract
Adrenomedullin (AM) is a vasodilative peptide with various physiological functions, including the maintenance of vascular tone and endothelial barrier function. AM levels are markedly increased during severe inflammation, such as that associated with sepsis; thus, AM is expected to be a useful clinical marker and therapeutic agent for inflammation. However, as the increase in AM levels in cardiovascular diseases (CVDs) is relatively low compared to that in infectious diseases, the value of AM as a marker of CVDs seems to be less important. Limitations pertaining to the administrative route and short half-life of AM in the bloodstream (<30 min) restrict the therapeutic applications of AM for CVDs. In early human studies, various applications of AM for CVDs were attempted, including for heart failure, myocardial infarction, pulmonary hypertension, and peripheral artery disease; however, none achieved success. We have developed AM as a therapeutic agent for inflammatory bowel disease in which the vasodilatory effect of AM is minimized. A clinical trial evaluating this AM formulation for acute cerebral infarction is ongoing. We have also developed AM derivatives that exhibit a longer half-life and less vasodilative activity. These AM derivatives can be administered by subcutaneous injection at long-term intervals. Accordingly, these derivatives will reduce the inconvenience in use compared to that for native AM and expand the possible applications of AM for treating CVDs. In this review, we present the latest translational status of AM and its derivatives.
Collapse
Affiliation(s)
- Toshihiro Kita
- Department of Projects Research, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan.
| | - Kazuo Kitamura
- Department of Projects Research, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
4
|
Yoshimoto T, Saito S, Omae K, Hattori Y, Fukuma K, Kitamura K, Kakuta R, Kita T, Maruyama H, Yamamoto H, Ihara M. Study Protocol for a Randomized, Double-Blind, Placebo-Controlled, Phase-II Trial: AdrenoMedullin for Ischemic Stroke Study. J Stroke Cerebrovasc Dis 2021; 30:105761. [PMID: 33813084 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/14/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Adrenomedullin (AM), a vasoactive peptide, has strong anti-inflammatory and angiogenic properties, which have been reported to ameliorate the consequences of ischemic stroke in several animal models. After a phase I study in healthy volunteers, two phase II trials of AM for inflammatory bowel diseases have been recently completed. The current AdrenoMedullin For Ischemic Stroke (AMFIS) study aims to assess the safety and efficacy of AM in patients with acute ischemic stroke. MATERIALS AND METHODS The AMFIS study is an investigator-initiated, randomized, double-blind, phase-II trial. AM or placebo will be administered to patients with non-cardioembolic ischemic stroke within 24 h after stroke onset. In the first cohort of the AMFIS study, patients will be randomly allocated to the investigation treatment A (30 μg/kg of AM in total for 7 days, n = 20) or placebo group (n = 10). In the second cohort, patients will be assigned to the investigation treatment B (56 μg/kg of AM in total for 7 days, n = 20) or placebo group (n = 10). RESULTS Serious adverse events related to the protocol treatment will be evaluated as the primary outcome. All adverse events will be analyzed as the secondary outcome. Regarding efficacy endpoints, the change in National Institutes of Health Stroke Scale and modified Rankin Scale scores will be compared between investigation treatment and placebo groups. CONCLUSIONS AM is expected to be a safe and effective treatment for ischemic stroke.
Collapse
Affiliation(s)
- Takeshi Yoshimoto
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan; Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Hiroshima, Japan.
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan; Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan.
| | - Katsuhiro Omae
- Department of Data Science, National Cerebral and Cardiovascular Center, Suita, Japan.
| | - Yorito Hattori
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan.
| | - Kazuki Fukuma
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan.
| | - Kazuo Kitamura
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| | - Ryosuke Kakuta
- Department of Data Science, National Cerebral and Cardiovascular Center, Suita, Japan.
| | - Toshihiro Kita
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Hiroshima, Japan.
| | - Haruko Yamamoto
- Department of Data Science, National Cerebral and Cardiovascular Center, Suita, Japan.
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan.
| |
Collapse
|
5
|
Ihara M, Washida K, Yoshimoto T, Saito S. Adrenomedullin: A vasoactive agent for sporadic and hereditary vascular cognitive impairment. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100007. [PMID: 36324729 PMCID: PMC9616331 DOI: 10.1016/j.cccb.2021.100007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/14/2021] [Accepted: 02/26/2021] [Indexed: 04/16/2023]
Abstract
Adrenomedullin (AM) is an endogenous peptide mainly secreted from endothelial cells, which has multiple physiological actions such as anti-inflammation, vasodilation, vascular permeability regulation and angiogenesis. Blood AM levels are upregulated in a variety of pathological states including sepsis, severe COVID-19, acute ischemic stroke and vascular cognitive impairment with white matter changes, likely serving as a compensatory biological defense response against infection and ischemia. AM is currently being tested in clinical trials for ulcerative colitis, Crohn's disease, severe COVID-19 for its anti-inflammatory properties and in ischemic stroke for its additional angiogenic action. AM has been proposed as a therapeutic option for vascular cognitive impairment as its arteriogenic and angiogenic properties are thought to contribute to a slowing of cognitive decline in mice after chronic cerebral hypoperfusion. As AM promotes differentiation of oligodendrocyte precursor cells into mature oligodendrocytes under hypoxic conditions, AM could also be used in the treatment of CADASIL, where reduced oxygen delivery is thought to lead to the death of hypoxia-prone oligodendrocytes. AM therefore holds potential as an innovative therapeutic drug, which may regenerate blood vessels, while controlling inflammation in cerebrovascular diseases.
Collapse
|
6
|
Nagata S, Yamasaki M, Kitamura K. Polyethylene glycol-conjugated human adrenomedullin as a possible treatment for vascular dementia. Peptides 2019; 121:170133. [PMID: 31449828 DOI: 10.1016/j.peptides.2019.170133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
Abstract
Adrenomedullin (AM) is a multifunctional bioactive peptide. Recent studies have shown that AM has protective effects against ischemic brain damage. We recently prepared a long-acting human AM derivative that was conjugated with a 60 kDa polyethylene glycol (PEG-AM), which had an effect similar to that of native AM. In this study, we examined the effect of PEG-AM on four-vessel occlusion model rats, which exhibit vascular dementia. From day 10 to day 14 after surgery, the learning and memory abilities of the rats were examined using a Morris water maze. The rats were treated with a single subcutaneous injection of 1.0 or 10.0 nmol/kg of PEG-AM. PEG-AM treatment reduced the escape latency in the hidden platform test. Furthermore, the treatment increased the time spent in the platform quadrant in the probe test. The data showed that PEG-AM injection prevented memory loss and learning disorders in dose-dependent manner. On day 14, the immunoreactive AM concentration in plasma was 9.749 ± 2.167 pM in the high-dose group (10.0 nmol/kg) and 0.334 ± 0.073 pM in the low-dose group (1.0 nmol/kg). However, even in the low-dose group, a significant effect was observed in both tests. The present data indicate that PEG-AM is a possible therapeutic agent for the treatment of ischemic brain injury or vascular dementia.
Collapse
Affiliation(s)
- Sayaka Nagata
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan.
| | - Motoo Yamasaki
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Kazuo Kitamura
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
7
|
Nasyrov E, Nolan KA, Wenger RH, Marti HH, Kunze R. The neuronal oxygen-sensing pathway controls postnatal vascularization of the murine brain. FASEB J 2019; 33:12812-12824. [PMID: 31469589 DOI: 10.1096/fj.201901385rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The contribution of neurons to growth and refinement of the microvasculature during postnatal brain development is only partially understood. Tissue hypoxia is the physiologic stimulus for angiogenesis by enhancing angiogenic mediators partly through activation of hypoxia-inducible factors (HIFs). Hence, we investigated the HIF oxygen-sensing pathway in postmitotic neurons for physiologic angiogenesis in the murine forebrain during postnatal development by using mice lacking the HIF suppressing enzyme prolyl-4-hydroxylase domain (PHD)2 and/or HIF-1/2α in postmitotic neurons. Perinatal activation or inactivation of the HIF pathway in neurons inversely modulated brain vascularization, including endothelial cell number and proliferation, density of total and perfused microvessels, and vascular branching. Accordingly, several angiogenesis-related genes were up-regulated in vivo and in primary neurons derived from PHD2-deficient mice. Among them, only VEGF and adrenomedullin (Adm) promoted angiogenic sprouting of brain endothelial cells. VEGF and Adm additively enhanced endothelial sprouting through activation of multiple pathways. PHD2 deficiency in neurons caused HIF-α stabilization and increased VEGF mRNA levels not only in neurons but unexpectedly also in astrocytes, suggesting a new mechanism of neuron-to-astrocyte signaling. Collectively, our results identify the PHD-HIF pathway in neurons as an important determinant for vascularization of the brain during postnatal development.-Nasyrov, E., Nolan, K. A., Wenger, R. H., Marti, H. H., Kunze, R. The neuronal oxygen-sensing pathway controls postnatal vascularization of the murine brain.
Collapse
Affiliation(s)
- Emil Nasyrov
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Karen A Nolan
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research Kidney.CH, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research Kidney.CH, Zurich, Switzerland
| | - Hugo H Marti
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Reiner Kunze
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
8
|
Endogenous calcitonin gene-related peptide suppresses ischemic brain injuries and progression of cognitive decline. J Hypertens 2019; 36:876-891. [PMID: 29266061 DOI: 10.1097/hjh.0000000000001649] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide and produced by alternative splicing of the transcript of the calcitonin/CGRP gene. Originally identified as a strong vasodilatory and hypotensive peptide, CGRP is now known to be a pleiotropic molecule distributed in various organs, including the brain. METHOD In this study, we used CGRP knockout mice (CGRP-/-) to examine the actions of endogenous CGRP during cerebral ischemia. To induce acute and chronic cerebral ischemia, mice were subjected to middle cerebral artery occlusion (MCAO) and bilateral common carotid artery stenosis (BCAS). RESULTS In the cerebral cortex of wild-type mice, CGRP expression was upregulated after acute infarction. In CGRP-/- subjected to MCAO or BCAS, recovery of cerebral blood flow was slower and exhibited more extensive neuronal cell death. Expression of the inflammatory cytokines was higher in CGRP-/- than wild type in the acute phase of ischemia. Pathological analysis during the chronic phase revealed more extensive neuronal cell loss and demyelination and higher levels of oxidative stress in CGRP-/- than wild-type. CGRP-/- also showed less compensatory capillary growth. In an eight-arm radial maze test, CGRP-/- exhibited poorer reference memory than wild-type. On the other hand, CGRP administration promoted cerebral blood flow recovery after cerebral ischemia. We also found that CGRP directly inhibited the cell death of primary cortical neurons. CONCLUSION These results indicate endogenous CGRP is protective against ischemia-induced neuronal cell injury. CGRP could, thus, be a novel candidate for use in the treatment of both cerebral ischemia and progression of cognitive decline.
Collapse
|
9
|
Koyama T, Kuriyama N, Ozaki E, Matsui D, Watanabe I, Takeshita W, Iwai K, Watanabe Y, Nakatochi M, Shimanoe C, Tanaka K, Oze I, Ito H, Uemura H, Katsuura-Kamano S, Ibusuki R, Shimoshikiryo I, Takashima N, Kadota A, Kawai S, Sasakabe T, Okada R, Hishida A, Naito M, Kuriki K, Endoh K, Furusyo N, Ikezaki H, Suzuki S, Hosono A, Mikami H, Nakamura Y, Kubo M, Wakai K. Genetic Variants of RAMP2 and CLR are Associated with Stroke. J Atheroscler Thromb 2017; 24:1267-1281. [PMID: 28904253 PMCID: PMC5742372 DOI: 10.5551/jat.41517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM Stroke is associated closely with vascular homeostasis, and several complex processes and interacting pathways, which involve various genetic and environmental factors, contribute to the risk of stroke. Although adrenomedullin (ADM) has a number of physiological and vasoprotective functions, there are few studies of the ADM receptor system in humans. The ADM receptor comprises a calcitonin-receptor-like receptor (CLR) and receptor activity-modifying proteins (RAMPs). We analyzed single nucleotide polymorphisms (SNPs) in the RAMP2 and CLR genes to determine their association with stroke in the light of gene-environment interactions. METHODS Using cross-sectional data from the Japan Multi-Institutional Collaborative Cohort Study in the baseline surveys, 14,087 participants from 12 research areas were genotyped. We conducted a hypothesis-based association between stroke prevalence and SNPs in the RAMP2 and CLR genes based on data abstracted from two SNPs in RAMP2 and 369 SNPs in CLR. We selected five SNPs from among the CLR variants (rs77035639, rs3815524, rs75380157, rs574603859, and rs147565266) and one RAMP2 SNP (rs753152), which were associated with stroke, for analysis. RESULTS Five of the SNPs (rs77035639, rs3815524, rs75380157, rs147565266, and rs753152) showed no significant association with obesity, ischemic heart disease, hypertension, dyslipidemia, and diabetes. In the logistic regression analysis, rs574603859 had a lower odds ratio (0.238; 95% confidence interval, 0.076-0.745, adjusted for age, sex, and research area) and the other SNPs had higher odds ratios for association with stroke. CONCLUSIONS This was the first study to investigate the relationships between ADM receptor genes (RAMP2 and CLR) and stroke in the light of gene-environment interactions in human.
Collapse
Affiliation(s)
- Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine
| | - Nagato Kuriyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine
| | - Etsuko Ozaki
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine
| | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine
| | - Isao Watanabe
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine
| | - Wakiko Takeshita
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine
| | - Komei Iwai
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine
| | - Yoshiyuki Watanabe
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine
| | - Masahiro Nakatochi
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital
| | - Chisato Shimanoe
- Department of Preventive Medicine, Faculty of Medicine, Saga University
| | - Keitaro Tanaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University
| | - Isao Oze
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute
| | - Hidemi Ito
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute
| | - Hirokazu Uemura
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Rie Ibusuki
- Department of International Islands and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Ippei Shimoshikiryo
- Department of International Islands and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences
| | | | - Aya Kadota
- Department of Public Health, Shiga University of Medical Science.,Center for Epidemiologic Research in Asia, Shiga University of Medical Science
| | - Sayo Kawai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine
| | - Tae Sasakabe
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine
| | - Kiyonori Kuriki
- Laboratory of Public Health, School of Food and Nutritional Sciences, University of Shizuoka
| | - Kaori Endoh
- Laboratory of Public Health, School of Food and Nutritional Sciences, University of Shizuoka
| | - Norihiro Furusyo
- Department of Environmental Medicine and Infectious Disease, Kyushu University
| | - Hiroaki Ikezaki
- Department of Environmental Medicine and Infectious Disease, Kyushu University
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences
| | - Akihiro Hosono
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences
| | - Haruo Mikami
- Cancer Prevention Center, Chiba Cancer Center Research Institute
| | - Yohko Nakamura
- Cancer Prevention Center, Chiba Cancer Center Research Institute
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine
| |
Collapse
|
10
|
Routledge SJ, Ladds G, Poyner DR. The effects of RAMPs upon cell signalling. Mol Cell Endocrinol 2017; 449:12-20. [PMID: 28390954 DOI: 10.1016/j.mce.2017.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/01/2017] [Accepted: 03/24/2017] [Indexed: 12/29/2022]
Abstract
G protein-coupled receptors (GPCRs) play a vital role in signal transduction. It is now clear that numerous other molecules within the cell and at the cell surface interact with GPCRs to modulate their signalling properties. Receptor activity modifying proteins (RAMPs) are a group of single transmembrane domain proteins which have been predominantly demonstrated to interact with Family B GPCRs, but interactions with Family A and C receptors have recently begun to emerge. These interactions can influence cell surface expression, ligand binding preferences and G protein-coupling, thus modulating GPCR signal transduction. There is still a great deal of research to be conducted into the effects of RAMPs on GPCR signalling; their effects upon Family B GPCRs are still not fully documented, in addition to their potential interactions with Family A and C GPCRs. New interactions could have a significant impact on the development of therapeutics.
Collapse
Affiliation(s)
- Sarah J Routledge
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom.
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
11
|
Kuwasako K, Kitamura K, Nagata S, Sekiguchi T, Danfeng J, Murakami M, Hattori Y, Kato J. β-arrestins negatively control human adrenomedullin type 1-receptor internalization. Biochem Biophys Res Commun 2017; 487:438-443. [PMID: 28427767 DOI: 10.1016/j.bbrc.2017.04.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/16/2017] [Indexed: 02/08/2023]
Abstract
Adrenomedullin (AM) is a potent hypotensive peptide that exerts a powerful variety of protective effects against multiorgan damage through the AM type 1 receptor (AM1 receptor), which consists of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 2 (RAMP2). Two β-arrestin (β-arr) isoforms, β-arr-1 and β-arr-2, play a central role in the agonist-induced internalization of many receptors for receptor resensitization. Notably, β-arr-biased agonists are now being tested in phase II clinical trials, targeting acute pain and acute heart failure. Here, we examined the effects of β-arr-1 and β-arr-2 on human AM1 receptor internalization. We constructed a V5-tagged chimera in which the cytoplasmic C-terminal tail (C-tail) of CLR was replaced with that of the β2-adrenergic receptor (β2-AR), and it was transiently transfected into HEK-293 cells that stably expressed RAMP2. The cell-surface expression and internalization of the wild-type or chimeric receptor were quantified by flow cytometric analysis. The [125I]AM binding and the AM-induced cAMP production of these receptors were also determined. Surprisingly, the coexpression of β-arr-1 or -2 resulted in significant decreases in AM1 receptor internalization without affecting AM binding and signaling prior to receptor internalization. Dominant-negative (DN) β-arr-1 or -2 also significantly decreased AM-induced AM1 receptor internalization. In contrast, the AM-induced internalization of the chimeric AM1 receptor was markedly augmented by the cotransfection of β-arr-1 or -2 and significantly reduced by the coexpression of DN-β-arr-1 or -2. These results were consistent with those seen for β2-AR. Thus, both β-arrs negatively control AM1 receptor internalization, which depends on the C-tail of CLR.
Collapse
Affiliation(s)
- Kenji Kuwasako
- Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Kazuo Kitamura
- Division of Circulation and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Sayaka Nagata
- Division of Circulation and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Ishikawa 927-0553, Japan
| | - Jiang Danfeng
- Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Manabu Murakami
- Department of Pharmacology, Hirosaki University, Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Johji Kato
- Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
12
|
Cheng L, Yu H, Yan N, Lai K, Xiang M. Hypoxia-Inducible Factor-1α Target Genes Contribute to Retinal Neuroprotection. Front Cell Neurosci 2017; 11:20. [PMID: 28289375 PMCID: PMC5326762 DOI: 10.3389/fncel.2017.00020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 01/23/2017] [Indexed: 02/05/2023] Open
Abstract
Hypoxia-inducible factor (HIF) is a transcription factor that facilitates cellular adaptation to hypoxia and ischemia. Long-standing evidence suggests that one isotype of HIF, HIF-1α, is involved in the pathogenesis of various solid tumors and cardiac diseases. However, the role of HIF-1α in retina remains poorly understood. HIF-1α has been recognized as neuroprotective in cerebral ischemia in the past two decades. Additionally, an increasing number of studies has shown that HIF-1α and its target genes contribute to retinal neuroprotection. This review will focus on recent advances in the studies of HIF-1α and its target genes that contribute to retinal neuroprotection. A thorough understanding of the function of HIF-1α and its target genes may lead to identification of novel therapeutic targets for treating degenerative retinal diseases including glaucoma, age-related macular degeneration, diabetic retinopathy, and retinal vein occlusions.
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University Guangzhou, China
| | - Honghua Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China; Department of Ophthalmology, General Hospital of Guangzhou Military Command of PLAGuangzhou, China
| | - Naihong Yan
- Department of Ophthalmology and Ophthalmic Laboratories, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University Guangzhou, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China; Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical SchoolPiscataway, NJ, USA
| |
Collapse
|
13
|
Kuwasako K, Sekiguchi T, Nagata S, Jiang D, Hayashi H, Murakami M, Hattori Y, Kitamura K, Kato J. Inhibitory effects of two G protein-coupled receptor kinases on the cell surface expression and signaling of the human adrenomedullin receptor. Biochem Biophys Res Commun 2016; 470:894-9. [PMID: 26820533 DOI: 10.1016/j.bbrc.2016.01.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/22/2016] [Indexed: 01/08/2023]
Abstract
Receptor activity-modifying protein 2 (RAMP2) enables the calcitonin receptor-like receptor (CLR, a family B GPCR) to form the type 1 adrenomedullin receptor (AM1 receptor). Here, we investigated the effects of the five non-visual GPCR kinases (GRKs 2 through 6) on the cell surface expression of the human (h)AM1 receptor by cotransfecting each of these GRKs into HEK-293 cells that stably expressed hRAMP2. Flow cytometric analysis revealed that when coexpressed with GRK4 or GRK5, the cell surface expression of the AM1 receptor was markedly decreased prior to stimulation with AM, thereby attenuating both the specific [(125)I]AM binding and AM-induced cAMP production. These inhibitory effects of both GRKs were abolished by the replacement of the cytoplasmic C-terminal tail (C-tail) of CLR with that of the calcitonin receptor (a family B GPCR) or β2-adrenergic receptor (a family A GPCR). Among the sequentially truncated CLR C-tail mutants, those lacking the five residues 449-453 (Ser-Phe-Ser-Asn-Ser) abolished the inhibition of the cell surface expression of CLR via the overexpression of GRK4 or GRK5. Thus, we provided new insight into the function of GRKs in agonist-unstimulated GPCR trafficking using a recombinant AM1 receptor and further determined the region of the CLR C-tail responsible for this GRK function.
Collapse
Affiliation(s)
- Kenji Kuwasako
- Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan.
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa, 927-0553, Japan
| | - Sayaka Nagata
- Division of Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Danfeng Jiang
- Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Hidetaka Hayashi
- Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Manabu Murakami
- Department of Pharmacology, Hirosaki University, Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Kazuo Kitamura
- Division of Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Johji Kato
- Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan
| |
Collapse
|