1
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
2
|
Lopez L, De Waard S, Meudal H, Caumes C, Khakh K, Peigneur S, Oliveira-Mendes B, Lin S, De Waele J, Montnach J, Cestèle S, Tessier A, Johnson JP, Mantegazza M, Tytgat J, Cohen C, Béroud R, Bosmans F, Landon C, De Waard M. Structure-function relationship of new peptides activating human Na v1.1. Biomed Pharmacother 2023; 165:115173. [PMID: 37453200 DOI: 10.1016/j.biopha.2023.115173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Nav1.1 is an important pharmacological target as this voltage-gated sodium channel is involved in neurological and cardiac syndromes. Channel activators are actively sought to try to compensate for haploinsufficiency in several of these pathologies. Herein we used a natural source of new peptide compounds active on ion channels and screened for drugs capable to inhibit channel inactivation as a way to compensate for decreased channel function. We discovered that JzTx-34 is highly active on Nav1.1 and subsequently performed a full structure-activity relationship investigation to identify its pharmacophore. These experiments will help interpret the mechanism of action of this and formerly identified peptides as well as the future identification of new peptides. We also reveal structural determinants that make natural ICK peptides active against Nav1.1 challenging to synthesize. Altogether, the knowledge gained by this study will help facilitate the discovery and development of new compounds active on this critical ion channel target.
Collapse
Affiliation(s)
- Ludivine Lopez
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Smartox Biotechnology, Saint-Egrève, France
| | - Stephan De Waard
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; LabEx "Ion Channels, Science and Therapeutics", Valbonne, France
| | - Hervé Meudal
- Center for Molecular Biophysics, CNRS, rue Charles Sadron, CS 80054, Orléans 45071, France
| | | | - Kuldip Khakh
- Xenon Pharmaceuticals, Burnaby, British Columbia, Canada
| | | | | | - Sophia Lin
- Xenon Pharmaceuticals, Burnaby, British Columbia, Canada
| | - Jolien De Waele
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Jérôme Montnach
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Sandrine Cestèle
- Université Cote d'Azur, CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis, France
| | - Agnès Tessier
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - J P Johnson
- Xenon Pharmaceuticals, Burnaby, British Columbia, Canada
| | - Massimo Mantegazza
- Université Cote d'Azur, CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis, France
| | - Jan Tytgat
- University of Leuven, 3000 Leuven, Belgium
| | - Charles Cohen
- Xenon Pharmaceuticals, Burnaby, British Columbia, Canada
| | | | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Céline Landon
- Center for Molecular Biophysics, CNRS, rue Charles Sadron, CS 80054, Orléans 45071, France
| | - Michel De Waard
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Smartox Biotechnology, Saint-Egrève, France; LabEx "Ion Channels, Science and Therapeutics", Valbonne, France.
| |
Collapse
|
3
|
Xie J, Robinson SD, Gilding EK, Jami S, Deuis JR, Rehm FBH, Yap K, Ragnarsson L, Chan LY, Hamilton BR, Harvey PJ, Craik DJ, Vetter I, Durek T. Neurotoxic and cytotoxic peptides underlie the painful stings of the tree nettle Urtica ferox. J Biol Chem 2022; 298:102218. [PMID: 35780839 PMCID: PMC9352542 DOI: 10.1016/j.jbc.2022.102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
The stinging hairs of plants from the family Urticaceae inject compounds that inflict pain to deter herbivores. The sting of the New Zealand tree nettle (Urtica ferox) is among the most painful of these and can cause systemic symptoms that can even be life-threatening; however, the molecular species effecting this response have not been elucidated. Here we reveal that two classes of peptide toxin are responsible for the symptoms of U. ferox stings: Δ-Uf1a is a cytotoxic thionin that causes pain via disruption of cell membranes, while β/δ-Uf2a defines a new class of neurotoxin that causes pain and systemic symptoms via modulation of voltage-gated sodium (NaV) channels. We demonstrate using whole-cell patch-clamp electrophysiology experiments that β/δ-Uf2a is a potent modulator of human NaV1.5 (EC50: 55 nM), NaV1.6 (EC50: 0.86 nM), and NaV1.7 (EC50: 208 nM), where it shifts the activation threshold to more negative potentials and slows fast inactivation. We further found that both toxin classes are widespread among members of the Urticeae tribe within Urticaceae, suggesting that they are likely to be pain-causing agents underlying the stings of other Urtica species. Comparative analysis of nettles of Urtica, and the recently described pain-causing peptides from nettles of another genus, Dendrocnide, indicates that members of tribe Urticeae have developed a diverse arsenal of pain-causing peptides.
Collapse
Affiliation(s)
- Jing Xie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sina Jami
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabian B H Rehm
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lotten Ragnarsson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lai Yue Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brett R Hamilton
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
4
|
Spider Knottin Pharmacology at Voltage-Gated Sodium Channels and Their Potential to Modulate Pain Pathways. Toxins (Basel) 2019; 11:toxins11110626. [PMID: 31671792 PMCID: PMC6891507 DOI: 10.3390/toxins11110626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels (NaVs) are a key determinant of neuronal signalling. Neurotoxins from diverse taxa that selectively activate or inhibit NaV channels have helped unravel the role of NaV channels in diseases, including chronic pain. Spider venoms contain the most diverse array of inhibitor cystine knot (ICK) toxins (knottins). This review provides an overview on how spider knottins modulate NaV channels and describes the structural features and molecular determinants that influence their affinity and subtype selectivity. Genetic and functional evidence support a major involvement of NaV subtypes in various chronic pain conditions. The exquisite inhibitory properties of spider knottins over key NaV subtypes make them the best lead molecules for the development of novel analgesics to treat chronic pain.
Collapse
|
5
|
Deuis JR, Mueller A, Israel MR, Vetter I. The pharmacology of voltage-gated sodium channel activators. Neuropharmacology 2017; 127:87-108. [PMID: 28416444 DOI: 10.1016/j.neuropharm.2017.04.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
Toxins and venom components that target voltage-gated sodium (NaV) channels have evolved numerous times due to the importance of this class of ion channels in the normal physiological function of peripheral and central neurons as well as cardiac and skeletal muscle. NaV channel activators in particular have been isolated from the venom of spiders, wasps, snakes, scorpions, cone snails and sea anemone and are also produced by plants, bacteria and algae. These compounds have provided key insight into the molecular structure, function and pathophysiological roles of NaV channels and are important tools due to their at times exquisite subtype-selectivity. We review the pharmacology of NaV channel activators with particular emphasis on mammalian isoforms and discuss putative applications for these compounds. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Alexander Mueller
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Qld 4102, Australia.
| |
Collapse
|
6
|
Tao H, Chen X, Lu M, Wu Y, Deng M, Zeng X, Liu Z, Liang S. Molecular determinant for the tarantula toxin Jingzhaotoxin-I slowing the fast inactivation of voltage-gated sodium channels. Toxicon 2015; 111:13-21. [PMID: 26721415 DOI: 10.1016/j.toxicon.2015.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022]
Abstract
Peptide toxins often have divergent pharmacological functions and are powerful tools for a deep review on the current understanding of the structure-function relationships of voltage-gated sodium channels (VGSCs). However, knowing about the interaction of site 3 toxins from tarantula venoms with VGSCs is not sufficient. In the present study, using whole-cell patch clamp technique, we determined the effects of Jingzhaotoxin-I (JZTX-I) on five VGSC subtypes expressed in HEK293 cells. The results showed that JZTX-I could inhibit the inactivation of rNav1.2, rNav1.3, rNav1.4, hNav1.5 and hNav1.7 channels with the IC50 of 870 ± 8 nM, 845 ± 4 nM, 339 ± 5 nM, 335 ± 9 nM, and 348 ± 6 nM, respectively. The affinity of the toxin interaction with subtypes (rNav1.4, hNav1.5, and hNav1.7) was only 2-fold higher than that for subtypes (rNav1.2 and rNav1.3). The toxin delayed the inactivation of VGSCs without affecting the activation and steady-state inactivation kinetics in the physiological range of voltages. Site-directed mutagenesis indicated that the toxin interacted with site 3 located at the extracellular S3-S4 linker of domain IV, and the acidic residue Asp at the position1609 in hNav1.5 was crucial for JZTX-I activity. Our results provide new insights in single key residue that allows toxins to recognize distinct ion channels with similar potency and enhance our understanding of the structure-function relationships of toxin-channel interactions.
Collapse
Affiliation(s)
- Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China.
| | - Xia Chen
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Min Lu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yuanyuan Wu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Meichun Deng
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha 410013, Hunan, China
| | - Xiongzhi Zeng
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Zhonghua Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|