1
|
Freuville L, Matthys C, Quinton L, Gillet JP. Venom-derived peptides for breaking through the glass ceiling of drug development. Front Chem 2024; 12:1465459. [PMID: 39398192 PMCID: PMC11468230 DOI: 10.3389/fchem.2024.1465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Collapse
Affiliation(s)
- Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chloé Matthys
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
2
|
Ma B, Shi S, Ren S, Qu C, Zhao Z, An H. Corydaline binds to a druggable pocket of hEAG1 channel and inhibits hepatic carcinoma cell viability. Eur J Pharmacol 2024; 962:176240. [PMID: 38048981 DOI: 10.1016/j.ejphar.2023.176240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Ether-à-go-go (EAG) potassium channels play a crucial role in the regulation of neuronal excitability and cancer progression, rendering them potential drug targets for cancer therapy. However, the scarcity of information regarding the selection sites on hEAG1 has posed a challenge in the discovery of new hEAG1 inhibitors. In this study, we introduced a novel natural product, corydaline, which selectively inhibits the hEAG1 channel without sensitivity to other KCNH channels. The IC50 of corydaline for the hEAG1 channel was 11.3 ± 0.6 μM, whereas the IC50 for hEAG2 and hERG1 were 73.6 ± 9.9 μM and 111.4 ± 8.5 μM, respectively. Molecular dynamics simulations together with site-directed mutagenesis, have unveiled that the site corydaline forms interactions with Lys217, Phe273, Pro276, Trp295 and Arg366, situated within the intracellular transmembrane segments S1-S4 of the voltage-sensor domain, be considered a novel drug pocket for hEAG1. Additionally, the intergaration of sequence alignment and 3D structural modeling revealed differences between the voltage sensor domain of hEAG1 channel and other EAG channels, suggesting the feasibility of a VSD modulation approach that could potentially lead to the selective inhibition of hEAG1 channels. Furthermore, antitumor experiments demonstrated that corydaline can inhibit the proliferation and migration of hepatic carcinoma cells by targeting hEAG1. The identification of this novel druggable pocket offers the possibility for drug screening against diseases linked to abnormal hEAG1 channels.
Collapse
Affiliation(s)
- Biao Ma
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Molecular Biophysics, Hebei Province, China; Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Sai Shi
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Shuxi Ren
- School of Sciences, Hebei University of Technology, Tianjin, 300401, China
| | - Chang Qu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Molecular Biophysics, Hebei Province, China; Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhen Zhao
- Key Laboratory of Molecular Biophysics, Hebei Province, China; Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Molecular Biophysics, Hebei Province, China; Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
3
|
Martínez-Hernández L, López-Vera E, Aguilar MB, Rodriguez-Ruiz XC, Ortíz-Arellano MA. κO-SrVIA Conopeptide, a Novel Inhibitor Peptide for Two Members of the Human EAG Potassium Channel Family. Int J Mol Sci 2023; 24:11513. [PMID: 37511269 PMCID: PMC10380377 DOI: 10.3390/ijms241411513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The first conotoxin affecting the voltage-gated potassium channels of the EAG family was identified and characterized from the venom of the vermivorous species Conus spurius from the Gulf of Mexico. This conopeptide, initially named Cs68 and later designated κO-SrVIA, is extremely hydrophobic and comprises 31 amino acid residues, including six Cysteines in the framework VI/VII, and a free C-terminus. It inhibits the currents mediated by two human EAG subtypes, Kv10.1 (IC50 = 1.88 ± 1.08 µM) and Kv11.1 (IC50 = 2.44 ± 1.06 µM), and also the human subtype Kv1.6 (IC50 = 3.6 ± 1.04 µM). Despite its clear effects on potassium channels, it shares a high sequence identity with δ-like-AtVIA and δ-TsVIA. Also, κO-SrVIA is the third conopeptide from the venom of C. spurius with effects on potassium channels, and the seventh conotoxin that blocks Kv1.6 channels.
Collapse
Affiliation(s)
- Luis Martínez-Hernández
- Posgrado en Ciencias Biológicas, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Estuardo López-Vera
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Manuel B. Aguilar
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Mexico;
| | - Ximena C. Rodriguez-Ruiz
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Mónica A. Ortíz-Arellano
- Laboratorio de Malacología, Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Mazatlán 82000, Mexico;
| |
Collapse
|
4
|
Rashno Z, Rismani E, Ghasemi JB, Mansouri M, Shabani M, Afgar A, Dabiri S, Rezaei Makhouri F, Hatami A, Harandi MF. Design of ion channel blocking, toxin-like Kunitz inhibitor peptides from the tapeworm, Echinococcus granulosus, with potential anti-cancer activity. Sci Rep 2023; 13:11465. [PMID: 37454225 PMCID: PMC10349847 DOI: 10.1038/s41598-023-38159-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Over-expression of K+ channels has been reported in human cancers and is associated with the poor prognosis of several malignancies. EAG1, a particular potassium ion channel, is widely expressed in the brain but poorly expressed in other normal tissues. Kunitz proteins are dominant in metazoan including the dog tapeworm, Echinococcus granulosus. Using computational analyses on one A-type potassium channel, EAG1, and in vitro cellular methods, including major cancer cell biomarkers expression, immunocytochemistry and whole-cell patch clamp, we demonstrated the anti-tumor activity of three synthetic small peptides derived from E. granulosus Kunitz4 protease inhibitors. Experiments showed induced significant apoptosis and inhibition of proliferation in both cancer cell lines via disruption in cell-cycle transition from the G0/G1 to S phase. Western blotting showed that the levels of cell cycle-related proteins including P27 and P53 were altered upon kunitz4-a and kunitz4-c treatment. Patch clamp analysis demonstrated a significant increase in spontaneous firing frequency in Purkinje neurons, and exposure to kunitz4-c was associated with an increase in the number of rebound action potentials after hyperpolarized current. This noteworthy component in nature could act as an ion channel blocker and is a potential candidate for cancer chemotherapy based on potassium channel blockage.
Collapse
Affiliation(s)
- Zahra Rashno
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Jahan B Ghasemi
- Faculty of Chemistry, School of Sciences, University of Tehran, Tehran, Iran
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abbas Hatami
- Pathology and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran.
| |
Collapse
|
5
|
Zúñiga L, Cayo A, González W, Vilos C, Zúñiga R. Potassium Channels as a Target for Cancer Therapy: Current Perspectives. Onco Targets Ther 2022; 15:783-797. [PMID: 35899081 PMCID: PMC9309325 DOI: 10.2147/ott.s326614] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
Potassium (K+) channels are highly regulated membrane proteins that control the potassium ion flux and respond to different cellular stimuli. These ion channels are grouped into three major families, Kv (voltage-gated K+ channel), Kir (inwardly rectifying K+ channel) and K2P (two-pore K+ channels), according to the structure, to mediate the K+ currents. In cancer, alterations in K+ channel function can promote the acquisition of the so-called hallmarks of cancer – cell proliferation, resistance to apoptosis, metabolic changes, angiogenesis, and migratory capabilities – emerging as targets for the development of new therapeutic drugs. In this review, we focus our attention on the different K+ channels associated with the most relevant and prevalent cancer types. We summarize our knowledge about the potassium channels structure and function, their cancer dysregulated expression and discuss the K+ channels modulator and the strategies for designing new drugs.
Collapse
Affiliation(s)
- Leandro Zúñiga
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Angel Cayo
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Cristian Vilos
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile.,Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca, 3460000, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Rafael Zúñiga
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| |
Collapse
|
6
|
Loza-Huerta A, Milo E, Picones A, Hernández-Cruz A, Luis E. Thallium-sensitive fluorescent assay reveals loperamide as a new inhibitor of the potassium channel Kv10.1. Pharmacol Rep 2021; 73:1744-1753. [PMID: 34213738 DOI: 10.1007/s43440-021-00304-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ion channels have been proposed as therapeutic targets for different types of malignancies. One of the most studied ion channels in cancer is the voltage-gated potassium channel ether-à-go-go 1 or Kv10.1. Various studies have shown that Kv10.1 expression induces the proliferation of several cancer cell lines and in vivo tumor models, while blocking or silencing inhibits proliferation. Kv10.1 is a promising target for drug discovery modulators that could be used in cancer treatment. This work aimed to screen for new Kv10.1 channel modulators using a thallium influx-based assay. METHODS Pharmacological effects of small molecules on Kv10.1 channel activity were studied using a thallium-based fluorescent assay and patch-clamp electrophysiological recordings, both performed in HEK293 stably expressing the human Kv10.1 potassium channel. RESULTS In thallium-sensitive fluorescent assays, we found that the small molecules loperamide and amitriptyline exert a potent inhibition on the activity of the oncogenic potassium channel Kv10.1. These results were confirmed by electrophysiological recordings, which showed that loperamide and amitriptyline decreased the amplitude of Kv10.1 currents in a dose-dependent manner. Both drugs could be promising tools for further studies. CONCLUSIONS Thallium-sensitive fluorescent assay represents a reliable methodological tool for the primary screening of different molecules with potential activity on Kv10.1 channels or other K+ channels.
Collapse
Affiliation(s)
- Arlet Loza-Huerta
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U. 04510, Mexico City, Mexico
| | - Edgar Milo
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U. 04510, Mexico City, Mexico
| | - Arturo Picones
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U. 04510, Mexico City, Mexico
| | - Arturo Hernández-Cruz
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U. 04510, Mexico City, Mexico.,Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U. 04510, Mexico City, Mexico
| | - Enoch Luis
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U. 04510, Mexico City, Mexico. .,Cátedras CONACYT - Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U. 04510, Mexico City, Mexico.
| |
Collapse
|
7
|
Toplak Ž, Hendrickx LA, Abdelaziz R, Shi X, Peigneur S, Tomašič T, Tytgat J, Peterlin-Mašič L, Pardo LA. Overcoming challenges of HERG potassium channel liability through rational design: Eag1 inhibitors for cancer treatment. Med Res Rev 2021; 42:183-226. [PMID: 33945158 DOI: 10.1002/med.21808] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Two decades of research have proven the relevance of ion channel expression for tumor progression in virtually every indication, and it has become clear that inhibition of specific ion channels will eventually become part of the oncology therapeutic arsenal. However, ion channels play relevant roles in all aspects of physiology, and specificity for the tumor tissue remains a challenge to avoid undesired effects. Eag1 (KV 10.1) is a voltage-gated potassium channel whose expression is very restricted in healthy tissues outside of the brain, while it is overexpressed in 70% of human tumors. Inhibition of Eag1 reduces tumor growth, but the search for potent inhibitors for tumor therapy suffers from the structural similarities with the cardiac HERG channel, a major off-target. Existing inhibitors show low specificity between the two channels, and screenings for Eag1 binders are prone to enrichment in compounds that also bind HERG. Rational drug design requires knowledge of the structure of the target and the understanding of structure-function relationships. Recent studies have shown subtle structural differences between Eag1 and HERG channels with profound functional impact. Thus, although both targets' structure is likely too similar to identify leads that exclusively bind to one of the channels, the structural information combined with the new knowledge of the functional relevance of particular residues or areas suggests the possibility of selective targeting of Eag1 in cancer therapies. Further development of selective Eag1 inhibitors can lead to first-in-class compounds for the treatment of different cancers.
Collapse
Affiliation(s)
- Žan Toplak
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Louise A Hendrickx
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Reham Abdelaziz
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Xiaoyi Shi
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Steve Peigneur
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Jan Tytgat
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | | | - Luis A Pardo
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
8
|
Hernández-Meza JM, Mares-Sámano S, Garduño-Juárez R. Insights into the Molecular Inhibition of the Oncogenic Channel K V10.1 by Globular Toxins. J Chem Inf Model 2021; 61:2328-2340. [PMID: 33900765 DOI: 10.1021/acs.jcim.0c01353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inhibition of the expression of the human ether-à-go-go (hEAG1 or hKV10.1) channel is associated with a dramatic reduction in the growth of several cancerous tumors. The modulation of this channel's activity is a promising target for the development of new anticancer drugs. Although some small molecules have shown inhibitory activity against KV10.1, their lack of specificity has prevented their use in humans. In vitro studies have recently identified a limited number of peptide toxins with proven specificity in their hKV10.1 channel inhibitory effect. These peptide toxins have become desirable candidates to use as lead compounds to design more potent and specific hKV10.1 inhibitors. However, the currently available studies lack the atomic resolution needed to characterize the molecular features that favor their binding to hKV10.1. In this work, we present the first attempt to locate the possible hKV10.1 binding sites of the animal peptide toxins APETx4, Aa1a, Ap1a, and k-hefutoxin 1, all of which described as hKV10.1 inhibitors. Our studies incorporated homology modeling to construct a robust three-dimensional (3D) model of hKV10.1, applied protein docking, and multiscale molecular dynamics techniques to reveal in atomic resolution the toxin-channel interactions. Our approach suggests that some peptide toxins bind in the outer vestibule surrounding the pore of hKV10.1; it also identified the channel residues Met397 and Asp398 as possible anchors that stabilize the binding of the evaluated toxins. Finally, a description of the possible mechanism for inhibition and gating is presented.
Collapse
Affiliation(s)
- Juan M Hernández-Meza
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, México
| | - Sergio Mares-Sámano
- CONACYT - Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, México
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, México
| |
Collapse
|
9
|
Bachmann M, Li W, Edwards MJ, Ahmad SA, Patel S, Szabo I, Gulbins E. Voltage-Gated Potassium Channels as Regulators of Cell Death. Front Cell Dev Biol 2020; 8:611853. [PMID: 33381507 PMCID: PMC7767978 DOI: 10.3389/fcell.2020.611853] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Ion channels allow the flux of specific ions across biological membranes, thereby determining ion homeostasis within the cells. Voltage-gated potassium-selective ion channels crucially contribute to the setting of the plasma membrane potential, to volume regulation and to the physiologically relevant modulation of intracellular potassium concentration. In turn, these factors affect cell cycle progression, proliferation and apoptosis. The present review summarizes our current knowledge about the involvement of various voltage-gated channels of the Kv family in the above processes and discusses the possibility of their pharmacological targeting in the context of cancer with special emphasis on Kv1.1, Kv1.3, Kv1.5, Kv2.1, Kv10.1, and Kv11.1.
Collapse
Affiliation(s)
- Magdalena Bachmann
- Department of Biology, University of Padova, Padua, Italy.,Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Weiwei Li
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Michael J Edwards
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Syed A Ahmad
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Sameer Patel
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padua, Italy.,Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padua, Italy
| | - Erich Gulbins
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Novel Therapeutic Approaches of Ion Channels and Transporters in Cancer. Rev Physiol Biochem Pharmacol 2020; 183:45-101. [PMID: 32715321 DOI: 10.1007/112_2020_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expression and function of many ion channels and transporters in cancer cells display major differences in comparison to those from healthy cells. These differences provide the cancer cells with advantages for tumor development. Accordingly, targeting ion channels and transporters have beneficial anticancer effects including inhibition of cancer cell proliferation, migration, invasion, metastasis, tumor vascularization, and chemotherapy resistance, as well as promoting apoptosis. Some of the molecular mechanisms associating ion channels and transporters with cancer include the participation of oxidative stress, immune response, metabolic pathways, drug synergism, as well as noncanonical functions of ion channels. This diversity of mechanisms offers an exciting possibility to suggest novel and more effective therapeutic approaches to fight cancer. Here, we review and discuss most of the current knowledge suggesting novel therapeutic approaches for cancer therapy targeting ion channels and transporters. The role and regulation of ion channels and transporters in cancer provide a plethora of exceptional opportunities in drug design, as well as novel and promising therapeutic approaches that may be used for the benefit of cancer patients.
Collapse
|
11
|
Díaz-García A, Varela D. Voltage-Gated K +/Na + Channels and Scorpion Venom Toxins in Cancer. Front Pharmacol 2020; 11:913. [PMID: 32655396 PMCID: PMC7325878 DOI: 10.3389/fphar.2020.00913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Ion channels have recently been recognized as novel therapeutic targets in cancer research since they are overexpressed in different histological tissues, and their activity is linked to proliferation, tumor progression, angiogenesis, metastasis, and apoptosis. Voltage gated-potassium channels (VGKC) are involved in cell proliferation, cancer progression, cell cycle transition, and apoptosis. Moreover, voltage-dependent sodium channels (VGSC) contribute to decreases in extracellular pH, which, in turn, promotes cancer cell migration and invasion. Furthermore, VGSC and VGKC modulate voltage-sensitive Ca2+ channel activity by controlling the membrane potential and regulating Ca2+ influx, which functions as a second messenger in processes related to proliferation, invasion, migration, and metastasis. The subgroup of these types of channels that have shown a high oncogenic potential have become known as "oncochannels", and the evidence has highlighted them as key potential therapeutic targets. Scorpion venoms contain a high proportion of peptide toxins that act by modulating voltage-gated Na+/K+ channel activity. Increasing scientific data have pointed out that scorpion venoms and their toxins can affect the activity of oncochannels, thus showing their potential for anticancer therapy. In this review, we provide an update of the most relevant voltage-gated Na+\K+ ion channels as cellular targets and discuss the possibility of using scorpion venom and toxins for anticancer therapy.
Collapse
Affiliation(s)
- Alexis Díaz-García
- LifEscozul Chile SpA, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Diego Varela
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Boldrini-França J, Pinheiro-Junior EL, Peigneur S, Pucca MB, Cerni FA, Borges RJ, Costa TR, Carone SEI, Fontes MRDM, Sampaio SV, Arantes EC, Tytgat J. Beyond hemostasis: a snake venom serine protease with potassium channel blocking and potential antitumor activities. Sci Rep 2020; 10:4476. [PMID: 32161292 PMCID: PMC7066243 DOI: 10.1038/s41598-020-61258-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Snake venom serine proteases (SVSPs) are complex and multifunctional enzymes, acting primarily on hemostasis. In this work, we report the hitherto unknown inhibitory effect of a SVSP, named collinein-1, isolated from the venom of Crotalus durissus collilineatus, on a cancer-relevant voltage-gated potassium channel (hEAG1). Among 12 voltage-gated ion channels tested, collinein-1 selectively inhibited hEAG1 currents, with a mechanism independent of its enzymatic activity. Corroboratively, we demonstrated that collinein-1 reduced the viability of human breast cancer cell line MCF7 (high expression of hEAG1), but does not affect the liver carcinoma and the non-tumorigenic epithelial breast cell lines (HepG2 and MCF10A, respectively), which present low expression of hEAG1. In order to obtain both functional and structural validation of this unexpected discovery, where an unusually large ligand acts as an inhibitor of an ion channel, a recombinant and catalytically inactive mutant of collinein-1 (His43Arg) was produced and found to preserve its capability to inhibit hEAG1. A molecular docking model was proposed in which Arg79 of the SVSP 99-loop interacts directly with the potassium selectivity filter of the hEAG1 channel.
Collapse
Affiliation(s)
- Johara Boldrini-França
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil.,University of Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista II, 29102-920, Vila Velha, ES, Brazil
| | - Ernesto Lopes Pinheiro-Junior
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil.,Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49, PO 922, 3000, Leuven, Belgium
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49, PO 922, 3000, Leuven, Belgium
| | - Manuela Berto Pucca
- Medical School of Roraima, Federal University of Roraima, Av. Capitão Ene Garcez, 2413, Bairro Aeroporto, 69310-970, Boa Vista, RR, Brazil
| | - Felipe Augusto Cerni
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil
| | - Rafael Junqueira Borges
- Institute of Biosciences, São Paulo State University (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, 250, 18618-689, Botucatu, SP, Brazil
| | - Tássia Rafaella Costa
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil
| | - Sante Emmanuel Imai Carone
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil
| | - Marcos Roberto de Mattos Fontes
- Institute of Biosciences, São Paulo State University (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, 250, 18618-689, Botucatu, SP, Brazil
| | - Suely Vilela Sampaio
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil
| | - Eliane Candiani Arantes
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil.
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49, PO 922, 3000, Leuven, Belgium.
| |
Collapse
|
13
|
Cid-Uribe JI, Veytia-Bucheli JI, Romero-Gutierrez T, Ortiz E, Possani LD. Scorpion venomics: a 2019 overview. Expert Rev Proteomics 2019; 17:67-83. [DOI: 10.1080/14789450.2020.1705158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jimena I. Cid-Uribe
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - José Ignacio Veytia-Bucheli
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Teresa Romero-Gutierrez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
14
|
B Orts DJ, Peigneur S, Silva-Gonçalves LC, Arcisio-Miranda M, P W Bicudo JE, Tytgat J. AbeTx1 Is a Novel Sea Anemone Toxin with a Dual Mechanism of Action on Shaker-Type K⁺ Channels Activation. Mar Drugs 2018; 16:md16100360. [PMID: 30275388 PMCID: PMC6213216 DOI: 10.3390/md16100360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated potassium (KV) channels regulate diverse physiological processes and are an important target for developing novel therapeutic approaches. Sea anemone (Cnidaria, Anthozoa) venoms comprise a highly complex mixture of peptide toxins with diverse and selective pharmacology on KV channels. From the nematocysts of the sea anemone Actinia bermudensis, a peptide that we named AbeTx1 was purified and functionally characterized on 12 different subtypes of KV channels (KV1.1⁻KV1.6; KV2.1; KV3.1; KV4.2; KV4.3; KV11.1; and, Shaker IR), and three voltage-gated sodium channel isoforms (NaV1.2, NaV1.4, and BgNaV). AbeTx1 was selective for Shaker-related K⁺ channels and is capable of inhibiting K⁺ currents, not only by blocking the K⁺ current of KV1.2 subtype, but by altering the energetics of activation of KV1.1 and KV1.6. Moreover, experiments using six synthetic alanine point-mutated analogs further showed that a ring of basic amino acids acts as a multipoint interaction for the binding of the toxin to the channel. The AbeTx1 primary sequence is composed of 17 amino acids with a high proportion of lysines and arginines, including two disulfide bridges (Cys1⁻Cys4 and Cys2⁻Cys3), and it is devoid of aromatic or aliphatic amino acids. Secondary structure analysis reveals that AbeTx1 has a highly flexible, random-coil-like conformation, but with a tendency of structuring in the beta sheet. Its overall structure is similar to open-ended cyclic peptides found on the scorpion κ-KTx toxins family, cone snail venoms, and antimicrobial peptides.
Collapse
Affiliation(s)
- Diego J B Orts
- Department of Physiology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil.
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium.
| | - Laíz Costa Silva-Gonçalves
- Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica, Universidade Federal de São Paulo, 04023-062 São Paulo, Brazil.
| | - Manoel Arcisio-Miranda
- Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica, Universidade Federal de São Paulo, 04023-062 São Paulo, Brazil.
| | - José Eduardo P W Bicudo
- Department of Physiology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil.
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium.
| |
Collapse
|
15
|
Ma L, Chin YKY, Dekan Z, Herzig V, Chow CY, Heighway J, Lam SW, Guillemin GJ, Alewood PF, King GF. Novel venom-derived inhibitors of the human EAG channel, a putative antiepileptic drug target. Biochem Pharmacol 2018; 158:60-72. [PMID: 30149017 DOI: 10.1016/j.bcp.2018.08.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
Abstract
Recently, we and other groups revealed that gain-of-function mutations in the human ether à go-go voltage-gated potassium channel hEAG1 (Kv10.1) lead to developmental disorders with associated infantile-onset epilepsy. However, the physiological role of hEAG1 in the central nervous system remains elusive. Potent and selective antagonists of hEAG1 are therefore much sought after, both as pharmacological tools for studying the (patho)physiological functions of this enigmatic channel and as potential leads for development of anti-epileptic drugs. Since animal venoms are a rich source of potent ion channel modifiers that have been finely tuned by millions of year of evolution, we screened 108 arachnid venoms for hEAG1 inhibitors using electrophysiology. Two hit peptides (Aa1a and Ap1a) were isolated, sequenced, and chemically synthesised for structure-function studies. Both of these hEAG1 inhibitors are C-terminally amidated peptides containing an inhibitor cystine knot motif, which provides them with exceptional stability in both plasma and cerebrospinal fluid. Aa1a and Ap1a are the most potent peptidic inhibitors of hEAG1 reported to date, and they present a novel mode of action by targeting both the activation and inactivation gating of the channel. These peptides should be useful pharmacological tools for probing hEAG1 function as well as informative leads for the development of novel anti-epileptic drugs.
Collapse
Affiliation(s)
- Linlin Ma
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Yanni K Y Chin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jacqueline Heighway
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sau Wing Lam
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW 2109, Australia; St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
16
|
Yuan S, Gao B, Zhu S. Molecular Dynamics Simulation Reveals Specific Interaction Sites between Scorpion Toxins and K v1.2 Channel: Implications for Design of Highly Selective Drugs. Toxins (Basel) 2017; 9:toxins9110354. [PMID: 29104247 PMCID: PMC5705969 DOI: 10.3390/toxins9110354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/15/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023] Open
Abstract
The Kv1.2 channel plays an important role in the maintenance of resting membrane potential and the regulation of the cellular excitability of neurons, whose silencing or mutations can elicit neuropathic pain or neurological diseases (e.g., epilepsy and ataxia). Scorpion venom contains a variety of peptide toxins targeting the pore region of this channel. Despite a large amount of structural and functional data currently available, their detailed interaction modes are poorly understood. In this work, we choose four Kv1.2-targeted scorpion toxins (Margatoxin, Agitoxin-2, OsK-1, and Mesomartoxin) to construct their complexes with Kv1.2 based on the experimental structure of ChTx-Kv1.2. Molecular dynamics simulation of these complexes lead to the identification of hydrophobic patches, hydrogen-bonds, and salt bridges as three essential forces mediating the interactions between this channel and the toxins, in which four Kv1.2-specific interacting amino acids (D353, Q358, V381, and T383) are identified for the first time. This discovery might help design highly selective Kv1.2-channel inhibitors by altering amino acids of these toxins binding to the four channel residues. Finally, our results provide new evidence in favor of an induced fit model between scorpion toxins and K+ channel interactions.
Collapse
Affiliation(s)
- Shouli Yuan
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
17
|
Moreels L, Peigneur S, Galan DT, De Pauw E, Béress L, Waelkens E, Pardo LA, Quinton L, Tytgat J. APETx4, a Novel Sea Anemone Toxin and a Modulator of the Cancer-Relevant Potassium Channel K V10.1. Mar Drugs 2017; 15:md15090287. [PMID: 28902151 PMCID: PMC5618426 DOI: 10.3390/md15090287] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/31/2022] Open
Abstract
The human ether-à-go-go channel (hEag1 or KV10.1) is a cancer-relevant voltage-gated potassium channel that is overexpressed in a majority of human tumors. Peptides that are able to selectively inhibit this channel can be lead compounds in the search for new anticancer drugs. Here, we report the activity-guided purification and electrophysiological characterization of a novel KV10.1 inhibitor from the sea anemone Anthopleura elegantissima. Purified sea anemone fractions were screened for inhibitory activity on KV10.1 by measuring whole-cell currents as expressed in Xenopus laevis oocytes using the two-microelectrode voltage clamp technique. Fractions that showed activity on Kv10.1 were further purified by RP-HPLC. The amino acid sequence of the peptide was determined by a combination of MALDI- LIFT-TOF/TOF MS/MS and CID-ESI-FT-ICR MS/MS and showed a high similarity with APETx1 and APETx3 and was therefore named APETx4. Subsequently, the peptide was electrophysiologically characterized on KV10.1. The selectivity of the toxin was investigated on an array of voltage-gated ion channels, including the cardiac human ether-à-go-go-related gene potassium channel (hERG or Kv11.1). The toxin inhibits KV10.1 with an IC50 value of 1.1 μM. In the presence of a similar toxin concentration, a shift of the activation curve towards more positive potentials was observed. Similar to the effect of the gating modifier toxin APETx1 on hERG, the inhibition of Kv10.1 by the isolated toxin is reduced at more positive voltages and the peptide seems to keep the channel in a closed state. Although the peptide also induces inhibitory effects on other KV and NaV channels, it exhibits no significant effect on hERG. Moreover, APETx4 induces a concentration-dependent cytotoxic and proapoptotic effect in various cancerous and noncancerous cell lines. This newly identified KV10.1 inhibitor can be used as a tool to further characterize the oncogenic channel KV10.1 or as a scaffold for the design and synthesis of more potent and safer anticancer drugs.
Collapse
Affiliation(s)
- Lien Moreels
- Toxicology and Pharmacology, KU Leuven, Leuven 3000, Belgium.
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, Leuven 3000, Belgium.
| | - Diogo T Galan
- Toxicology and Pharmacology, KU Leuven, Leuven 3000, Belgium.
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry-MolSys, University of Liege, Liege 4000, Belgium.
| | - Lászlo Béress
- Immunology and Rheumatology, Section of Peptide Chemistry, Hannover Medical School (MHH), Hannover 30625, Germany.
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven 3000, Belgium.
| | - Luis A Pardo
- Oncophysiology Group, Max Planck Institute for Experimental Medicine; Göttingen 37075, Germany.
| | - Loïc Quinton
- Laboratory of Mass Spectrometry-MolSys, University of Liege, Liege 4000, Belgium.
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Leuven 3000, Belgium.
| |
Collapse
|