1
|
Chesnokov MS, Mamedova AR, Zhivotovsky B, Kopeina GS. A matter of new life and cell death: programmed cell death in the mammalian ovary. J Biomed Sci 2024; 31:31. [PMID: 38509545 PMCID: PMC10956231 DOI: 10.1186/s12929-024-01017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The mammalian ovary is a unique organ that displays a distinctive feature of cyclic changes throughout the entire reproductive period. The estrous/menstrual cycles are associated with drastic functional and morphological rearrangements of ovarian tissue, including follicular development and degeneration, and the formation and subsequent atrophy of the corpus luteum. The flawless execution of these reiterative processes is impossible without the involvement of programmed cell death (PCD). MAIN TEXT PCD is crucial for efficient and careful clearance of excessive, depleted, or obsolete ovarian structures for ovarian cycling. Moreover, PCD facilitates selection of high-quality oocytes and formation of the ovarian reserve during embryonic and juvenile development. Disruption of PCD regulation can heavily impact the ovarian functions and is associated with various pathologies, from a moderate decrease in fertility to severe hormonal disturbance, complete loss of reproductive function, and tumorigenesis. This comprehensive review aims to provide updated information on the role of PCD in various processes occurring in normal and pathologic ovaries. Three major events of PCD in the ovary-progenitor germ cell depletion, follicular atresia, and corpus luteum degradation-are described, alongside the detailed information on molecular regulation of these processes, highlighting the contribution of apoptosis, autophagy, necroptosis, and ferroptosis. Ultimately, the current knowledge of PCD aberrations associated with pathologies, such as polycystic ovarian syndrome, premature ovarian insufficiency, and tumors of ovarian origin, is outlined. CONCLUSION PCD is an essential element in ovarian development, functions and pathologies. A thorough understanding of molecular mechanisms regulating PCD events is required for future advances in the diagnosis and management of various disorders of the ovary and the female reproductive system in general.
Collapse
Affiliation(s)
- Mikhail S Chesnokov
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Aygun R Mamedova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
2
|
Lazzaretti C, Simoni M, Casarini L, Paradiso E. Allosteric modulation of gonadotropin receptors. Front Endocrinol (Lausanne) 2023; 14:1179079. [PMID: 37305033 PMCID: PMC10248450 DOI: 10.3389/fendo.2023.1179079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Gonadotropins regulate reproductive functions by binding to G protein-coupled receptors (FSHR and LHCGR) expressed in the gonads. They activate multiple, cell-specific signalling pathways, consisting of ligand-dependent intracellular events. Signalling cascades may be modulated by synthetic compounds which bind allosteric sites of FSHR and LHCGR or by membrane receptor interactions. Despite the hormone binding to the orthosteric site, allosteric ligands, and receptor heteromerizations may reshape intracellular signalling pattern. These molecules act as positive, negative, or neutral allosteric modulators, as well as non-competitive or inverse agonist ligands, providing a set of new compounds of a different nature and with unique pharmacological characteristics. Gonadotropin receptor allosteric modulation is gathering increasing interest from the scientific community and may be potentially exploited for clinical purposes. This review summarizes the current knowledge on gonadotropin receptor allosteric modulation and their potential, clinical use.
Collapse
Affiliation(s)
- Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Baggiovara Hospital, Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
3
|
Bugatti K, Sartori A, Battistini L, Coppa C, Vanhulle E, Noppen S, Provinciael B, Naesens L, Stevaert A, Contini A, Vermeire K, Zanardi F. Novel Polymyxin-Inspired Peptidomimetics Targeting the SARS-CoV-2 Spike:hACE2 Interface. Int J Mol Sci 2023; 24:8765. [PMID: 37240111 PMCID: PMC10218303 DOI: 10.3390/ijms24108765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Though the bulk of the COVID-19 pandemic is behind, the search for effective and safe anti-SARS-CoV-2 drugs continues to be relevant. A highly pursued approach for antiviral drug development involves targeting the viral spike (S) protein of SARS-CoV-2 to prevent its attachment to the cellular receptor ACE2. Here, we exploited the core structure of polymyxin B, a naturally occurring antibiotic, to design and synthesize unprecedented peptidomimetics (PMs), intended to target contemporarily two defined, non-overlapping regions of the S receptor-binding domain (RBD). Monomers 1, 2, and 8, and heterodimers 7 and 10 bound to the S-RBD with micromolar affinity in cell-free surface plasmon resonance assays (KD ranging from 2.31 μM to 2.78 μM for dimers and 8.56 μM to 10.12 μM for monomers). Although the PMs were not able to fully protect cell cultures from infection with authentic live SARS-CoV-2, dimer 10 exerted a minimal but detectable inhibition of SARS-CoV-2 entry in U87.ACE2+ and A549.ACE2.TMPRSS2+ cells. These results validated a previous modeling study and provided the first proof-of-feasibility of using medium-sized heterodimeric PMs for targeting the S-RBD. Thus, heterodimers 7 and 10 may serve as a lead for the development of optimized compounds, which are structurally related to polymyxin, with improved S-RBD affinity and anti-SARS-CoV-2 potential.
Collapse
Affiliation(s)
- Kelly Bugatti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (K.B.); (A.S.); (L.B.)
| | - Andrea Sartori
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (K.B.); (A.S.); (L.B.)
| | - Lucia Battistini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (K.B.); (A.S.); (L.B.)
| | - Crescenzo Coppa
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy;
| | - Emiel Vanhulle
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Sam Noppen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Becky Provinciael
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Lieve Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Annelies Stevaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy;
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Franca Zanardi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (K.B.); (A.S.); (L.B.)
| |
Collapse
|
4
|
Chen L, Cao Y, Li G, Tian Y, Zeng T, Gu T, Xu W, Konoval O, Lu L. Population Structure and Selection Signatures of Domestication in Geese. BIOLOGY 2023; 12:532. [PMID: 37106733 PMCID: PMC10136318 DOI: 10.3390/biology12040532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
The goose is an economically important poultry species and was one of the first to be domesticated. However, studies on population genetic structures and domestication in goose are very limited. Here, we performed whole genome resequencing of geese from two wild ancestral populations, five Chinese domestic breeds, and four European domestic breeds. We found that Chinese domestic geese except Yili geese originated from a common ancestor and exhibited strong geographical distribution patterns and trait differentiation patterns, while the origin of European domestic geese was more complex, with two modern breeds having Chinese admixture. In both Chinese and European domestic geese, the identified selection signatures during domestication primarily involved the nervous system, immunity, and metabolism. Interestingly, genes related to vision, skeleton, and blood-O2 transport were also found to be under selection, indicating genetic adaptation to the captive environment. A forehead knob characterized by thickened skin and protruding bone is a unique trait of Chinese domestic geese. Interestingly, our population differentiation analysis followed by an extended genotype analysis in an additional population suggested that two intronic SNPs in EXT1, an osteochondroma-related gene, may plausibly be sites responsible for knob. Moreover, CSMD1 and LHCGR genes were found to be significantly associated with broodiness in Chinese domestic geese and European domestic geese, respectively. Our results have important implications for understanding the population structure and domestication of geese, and the selection signatures and variants identified in this study might be useful in genetic breeding for forehead knob and reproduction traits.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.)
- China-Ukraine Joint Research Center for Protection, Exploitation and Utilization of Poultry Germplasm Resources, Hangzhou 310021, China
| | - Yongqing Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.)
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.)
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.)
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.)
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.)
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.)
| | - Oksana Konoval
- China-Ukraine Joint Research Center for Protection, Exploitation and Utilization of Poultry Germplasm Resources, Hangzhou 310021, China
- Department of Information Technology, National University of Life and Environmental Sciences of Ukraine, 03041 Kiev, Ukraine
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.)
| |
Collapse
|
5
|
Identification of a novel off-target of paroxetine: Possible role in sexual dysfunction induced by this SSRI antidepressant drug. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Santa-Coloma TA. Overlapping synthetic peptides as a tool to map protein-protein interactions ̶ FSH as a model system of nonadditive interactions. Biochim Biophys Acta Gen Subj 2022; 1866:130153. [DOI: 10.1016/j.bbagen.2022.130153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
|
7
|
Waghu FH, Desai K, Srinivasan S, Prabhudesai KS, Dighe V, Venkatesh KV, Idicula-Thomas S. FSHR antagonists can trigger a PCOS-like state. Syst Biol Reprod Med 2021; 68:129-137. [PMID: 34967272 DOI: 10.1080/19396368.2021.2010837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Over the recent years, FSHR has become an important target for development of fertility regulating agents, as impairment of FSH-FSHR interaction can lead to subfertility or infertility. In our previous study, we identified a 9-mer peptide (FSHβ (89-97)) that exhibited FSHR antagonist activity. The histopathological and biochemical observations indicated, in addition to FSHR antagonism, a striking resemblance to a PCOS-like state. These observations led us to hypothesize that use of FSHR antagonists can trigger a PCOS-like state. In the present study, to validate this hypothesis, we performed qRT-PCR validation using ovarian tissue samples from our previous study. Expression of three genes known to be differentially expressed in PCOS was evaluated and found to be similar to the PCOS state. To further test the hypothesis, theoretical simulations were carried out by using the human menstrual cycle model available in the literature. Model simulations for FSHR antagonism were indicative of increased testosterone levels, increased ratio of luteinizing hormone/follicle stimulating hormone, and stockpiling of secondary follicles, which are typical characteristics of PCOS. The findings of this study will be relevant while reviewing the utility of FSHR antagonists for fertility regulation and reproductive medicine.Abbreviations: FSH: Follicle-stimulating hormone; FSHR: Follicle-stimulating hormone receptor; cAMP: Cyclic adenosine 3'5' monophosphate; PKA: Protein kinase A; PI3K: Phosphoinositide 3-kinase; PKB: protein kinase B; ERK1/2: Extracellular signal-regulated protein kinase 1/2; MAPK: Mitogen-activated protein kinases; T: testosterone; E2: estradiol; PCOS: Polycystic ovarian syndrome; LH: luteinizing hormone; Lhcgr: luteinizing hormone/choriogonadotropin receptor; CYP17A1: cytochrome P450 family 17 subfamily A member 1; Inhba: inhibin subunit beta A; qRT-PCR: Real-Time quantitative reverse transcription polymerase chain reaction; FSHβ: Follicle-stimulating hormone β subunit; Ct: Cycle threshold; Rn18s: Rattus norvegicus 18S ribosomal RNA.
Collapse
Affiliation(s)
- Faiza Hanif Waghu
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Karishma Desai
- Biomedical Informatics Centre, ICMR- National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Sumana Srinivasan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Kaushiki S Prabhudesai
- Biomedical Informatics Centre, ICMR- National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Vikas Dighe
- National Center for Preclinical Reproductive and Genetic Toxicology, ICMR- National Institute for Research in Reproductive and Child Health, Mumbai, India
| | | | - Susan Idicula-Thomas
- Biomedical Informatics Centre, ICMR- National Institute for Research in Reproductive and Child Health, Mumbai, India
| |
Collapse
|
8
|
Prabhudesai KS, Raje S, Desai K, Modi D, Dighe V, Contini A, Idicula-Thomas S. Central residues of FSHβ (89-97) peptide are not critical for FSHR binding: Implications for peptidomimetic design. Bioorg Med Chem Lett 2021; 44:128132. [PMID: 34022413 DOI: 10.1016/j.bmcl.2021.128132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
In our previous study, we had identified a 9-mer peptide (FSHβ (89-97)) derived from seat belt loop of human FSHβ and demonstrated its ability to function as FSHR antagonist in vivo. Structure analysis revealed that the four central residues 91STDC94 within this peptide may not be critical for receptor binding. In the present study, 91STDC94 residues were substituted with alanine to generate ΔFSHβ 89-97(91STDC94/AAAA) peptide. Analogous to the parent peptide, ΔFSHβ 89-97(91STDC94/AAAA) peptide inhibited binding of iodinated FSH to rat FSHR and reduced FSH-induced cAMP production. The peptide could impede granulosa cell proliferation leading to reduction in FSH-mediated ovarian weight gain in immature female rats. In these rats, peptide administration further downregulated androgen receptor and estrogen receptor-alpha expression and upregulated estrogen receptor-beta expression. The results indicate that substitution of 91STDC94 with alanine did not significantly alter FSHR antagonist activity of FSHβ (89-97) peptide implying that these residues are not critical for FSH-FSHR interaction and can be replaced with non-peptidic moieties for development of more potent peptidomimetics.
Collapse
Affiliation(s)
- Kaushiki S Prabhudesai
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai 400012, Maharashtra, India
| | - Sahil Raje
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai 400012, Maharashtra, India
| | - Karishma Desai
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai 400012, Maharashtra, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai 400012, Maharashtra, India
| | - Vikas Dighe
- National Center for Preclinical Reproductive and Genetic Toxicology, ICMR-National Institute for Research in Reproductive Health, Mumbai 400012, Maharashtra, India
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale e Organica "Alessandro Marchesini", Università degli Studi di Milano, Via Venezian, 21, 20133 Milano, Italy
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai 400012, Maharashtra, India.
| |
Collapse
|
9
|
Giatti S, Di Domizio A, Diviccaro S, Falvo E, Caruso D, Contini A, Melcangi RC. Three-Dimensional Proteome-Wide Scale Screening for the 5-Alpha Reductase Inhibitor Finasteride: Identification of a Novel Off-Target. J Med Chem 2021; 64:4553-4566. [PMID: 33843213 PMCID: PMC8154553 DOI: 10.1021/acs.jmedchem.0c02039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Finasteride, a 5-alpha reductase (5α-R) inhibitor, is a widely used drug for treating androgen-dependent conditions. However, its use is associated with sexual, psychological, and physical complaints, suggesting that other mechanisms, in addition to 5α-R inhibition, may be involved. Here, a multidisciplinary approach has been used to identify potential finasteride off-target proteins. SPILLO-PBSS software suggests an additional inhibitory activity of finasteride on phenylethanolamine N-methyltransferase (PNMT), the limiting enzyme in formation of the stress hormone epinephrine. The interaction of finasteride with PNMT was supported by docking and molecular dynamics analysis and by in vitro assay, confirming the inhibitory nature of the binding. Finally, this inhibition was also confirmed in an in vivo rat model. Literature data indicate that PNMT activity perturbation may be correlated with sexual and psychological side effects. Therefore, results here obtained suggest that the binding of finasteride to PNMT might have a role in producing the side effects exerted by finasteride treatment.
Collapse
Affiliation(s)
- Silvia Giatti
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Alessandro Di Domizio
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
- SPILLOproject, via Stradivari
17, Paderno Dugnano, 20037 Milano, Italy
| | - Silvia Diviccaro
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Eva Falvo
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Donatella Caruso
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Alessandro Contini
- Dipartimento
Di Scienze Farmaceutiche, Università
degli Studi di Milano, 20133 Milano, Italy
| | - Roberto Cosimo Melcangi
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|