1
|
Tang N, Li Y, Li Y, Xu S, Wang M, Wang B, Liu Y, Zhang S, Wu H, Zhang X, Zhou B, Li Z. Motilin, a Novel Orexigenic Factor, Involved in Feeding Regulation in Yangtze Sturgeon ( Acipenser dabryanus). Biomolecules 2024; 14:433. [PMID: 38672450 PMCID: PMC11048545 DOI: 10.3390/biom14040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Motilin is a gastrointestinal hormone that is mainly produced in the duodenum of mammals, and it is responsible for regulating appetite. However, the role and expression of motilin are poorly understood during starvation and the weaning stage, which is of great importance in the seeding cultivation of fish. In this study, the sequences of Yangtze sturgeon (Acipenser dabryanus Motilin (AdMotilin)) motilin receptor (AdMotilinR) were cloned and characterized. The results of tissue expression showed that by contrast with mammals, AdMotilin mRNA was richly expressed in the brain, whereas AdMotilinR was highly expressed in the stomach, duodenum, and brain. Weaning from a natural diet of T. Limnodrilus to commercial feed significantly promoted the expression of AdMotilin in the brain during the period from day 1 to day 10, and after re-feeding with T. Limnodrilus the change in expression of AdMotilin was partially reversed. Similarly, it was revealed that fasting increased the expression of AdMotilin in the brain (3 h, 6 h) and duodenum (3 h), and the expression of AdMotilinR in the brain (1 h) in a time-dependent manner. Furthermore, it was observed that peripheral injection of motilin-NH2 increased food intake and the filling index of the digestive tract in the Yangtze sturgeon, which was accompanied by the changes of AdMotilinR and appetite factors expression in the brain (POMC, CART, AGRP, NPY and CCK) and stomach (CCK). These results indicate that motilin acts as an indicator of nutritional status, and also serves as a novel orexigenic factor that stimulates food intake in Acipenser dabryanus. This study lays a strong foundation for the application of motilin as a biomarker in the estimation of hunger in juvenile Acipenser dabryanu during the weaning phase, and enhances the understanding of the role of motilin as a novel regulator of feeding in fish.
Collapse
Affiliation(s)
- Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Ya Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Yingzi Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Shaoqi Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Mei Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Bin Wang
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Yanling Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Shupeng Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Hongwei Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| | - Bo Zhou
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (N.T.); (Y.L.); (Y.L.); (S.X.); (M.W.); (Y.L.); (S.Z.); (H.W.); (X.Z.)
| |
Collapse
|
2
|
Li H, Yang L, Jin Y, Jin C. Roles of Endothelial Motilin Receptor and Its Signal Transduction Pathway in Motilin-Induced Left Gastric Artery Relaxation in Dogs. Front Physiol 2021; 12:770430. [PMID: 34777026 PMCID: PMC8581264 DOI: 10.3389/fphys.2021.770430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 12/04/2022] Open
Abstract
Background: Motilin increases left gastric artery (LGA) blood flow in dogs via the endothelial motilin receptor (MLNR). This article investigates the signaling pathways of endothelial MLNR. Methods: Motilin-induced relaxation of LGA rings was assessed using wire myography. Nitric oxide (NO), and cyclic guanosine monophosphate (cGMP) levels were measured using an NO assay kit and cGMP ELISA kit, respectively. Results: Motilin concentration-dependently (EC50=9.1±1.2×10−8M) relaxed LGA rings precontracted with U46619 (thromboxane A2 receptor agonist). GM-109 (MLNR antagonist) significantly inhibited motilin-induced LGA relaxation and the production of NO and cGMP. N-ethylmaleimide (NEM; G-protein antagonist), U73122 [phospholipase C (PLC) inhibitor], and 2-aminoethyl diphenylborinate [2-APB; inositol trisphosphate (IP3) blocker] partially or completely blocked vasorelaxation. In contrast, chelerythrine [protein kinase C (PKC) inhibitor] and H89 [protein kinase A (PKA) inhibitor] had no such effect. Low-calcium or calcium-free Krebs solutions also reduced vasorelaxation. N-nitro-L-arginine methyl ester [L-NAME; nitric oxide synthase (NOS) inhibitor] and ODQ [soluble guanylyl cyclase (sGC) inhibitor] completely abolished vasodilation and synthesis of NO and cGMP. Indomethacin (cyclooxygenase inhibitor), 18α-glycyrrhetinic acid [18α-GA; myoendothelial gap junction (MEGJ) inhibitor], and K+ channel inhibition through high K+ concentrations or tetraethylammonium (TEA-Cl; KCa channel blocker) partially decreased vasorelaxation, whereas glibenclamide (KATP channel blocker) had no such effect. Conclusion: The current study suggests that motilin-induced LGA relaxation is dependent on endothelial MLNR through the G protein-PLC-IP3 pathway and Ca2+ influx. The NOS-NO-sGC-cGMP pathway, prostacyclin, MEGJ, and K+ channels (especially KCa) are involved in endothelial-dependent relaxation of vascular smooth muscle (VSM) cells.
Collapse
Affiliation(s)
- HongYu Li
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China.,Department of Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - LanLan Yang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China.,Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - ChunXiang Jin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|