1
|
Gerdol M, Pallavicini A. Exploring the immune resilience of Mediterranean mussels: Recent advances and future directions. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110147. [PMID: 39837400 DOI: 10.1016/j.fsi.2025.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
The Mediterranean mussel (Mytilus galloprovincialis) is a key species in European aquaculture, known for its economic and societal importance, particularly as a primary source of income for local fisheries in European coastal areas. While historically resilient to the mass mortality events that have affected other bivalve species, M. galloprovincialis may face increasing threats from emerging pathogens, including bacteria, viruses, and eukaryotic parasites. These microorganisms, often opportunistic, pose heightened risks in the current climate change scenario, where heatwaves are becoming increasingly frequent and the persistent presence of pollutants is suspected to impair the functional response of hemocytes. Over the past decade, significant advancements in immunological research have provided deeper insights into the cellular and molecular mechanisms underlying the robust defense system of M. galloprovincialis, which allows this species to efficiently cope with a broad range of infections. By analyzing the scientific literature published on mussel immunology over the past ten years, this review consolidates current knowledge on the immune system of the Mediterranean mussel. We place a particular focus on the cellular and molecular components involved in the recognition and elimination of microbial pathogens and discuss how the most recent discoveries may inform improved management and disease mitigation strategies for Mediterranean mussel farming in the in the years to come.
Collapse
Affiliation(s)
- Marco Gerdol
- University of Trieste, Department of Life Sciences, Italy.
| | | |
Collapse
|
2
|
Rodrigues T, Guardiola FA, Almeida D, Antunes A. Aquatic Invertebrate Antimicrobial Peptides in the Fight Against Aquaculture Pathogens. Microorganisms 2025; 13:156. [PMID: 39858924 PMCID: PMC11767717 DOI: 10.3390/microorganisms13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments. This study compiles and analyzes data from AMP databases and over 200 scientific sources, identifying approximately 350 AMPs derived from aquatic invertebrates, mostly cationic and α-helical, across 65 protein families. While in vitro assays highlight their potential, limited in vivo studies hinder practical application. These AMPs could serve as feed additives, therapeutic agents, or in genetic engineering approaches like CRISPR/Cas9-mediated transgenesis to enhance resilience of farmed species. Despite challenges such as stability, ecological impacts, and regulatory hurdles, advancements in peptidomimetics and genetic engineering hold significant promise. Future research should emphasize refining AMP enhancement techniques, expanding their diversity and bioactivity profiles, and prioritizing comprehensive in vivo evaluations. Harnessing the potential of AMPs represents a significant step forward on the path to aquaculture sustainability, reducing antibiotic dependency, and combating AMR, ultimately safeguarding public health and ecosystem resilience.
Collapse
Affiliation(s)
- Tomás Rodrigues
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Francisco Antonio Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Daniela Almeida
- Department of Zoology and Physical Anthropology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Agostinho Antunes
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Stączek S, Kunat-Budzyńska M, Cytryńska M, Zdybicka-Barabas A. Proline-Rich Antimicrobial Peptides from Invertebrates. Molecules 2024; 29:5864. [PMID: 39769953 PMCID: PMC11678341 DOI: 10.3390/molecules29245864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Antimicrobial peptides (AMPs) constitute a large and diverse group of molecules with antibacterial, antifungal, antiviral, antiprotozoan, and anticancer activity. In animals, they are key components of innate immunity involved in fighting against various pathogens. Proline-rich (Pr) AMPs are characterized by a high content of proline (and arginine) residues that can be organized into Pro-Arg-Pro motifs. Such peptides have been described in many invertebrates (annelids, crustaceans, insects, mollusks) and some vertebrates (mammals). The main objective of this review is to present the diversity of invertebrate PrAMPs, which are associated with the presence of cysteine-rich domains or whey acidic protein domains in the molecular structure, in addition to the presence of characteristic proline-rich regions. Moreover, PrAMPs can target intracellular structures in bacteria, e.g., 70S ribosomes and/or heat shock protein DnaK, leading to the inhibition of protein synthesis and accumulation of misfolded polypeptides in the cell. This unique mechanism of action makes it difficult for pathogens to acquire resistance to this type of molecule. Invertebrate PrAMPs have become the basis for the development of new synthetic analogues effective in combating pathogens. Due to their great diversity, new highly active molecules are still being searched for among PrAMPs from invertebrates.
Collapse
Affiliation(s)
| | | | | | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (S.S.); (M.K.-B.); (M.C.)
| |
Collapse
|
4
|
Di Stasi A, Bozzer S, Pacor S, de Pascale L, Morici M, Favero L, Spazzapan M, Pegoraro S, Bulla R, Wilson DN, Macor P, Scocchi M, Mardirossian M. The proline-rich antimicrobial peptide B7-005: low bacterial resistance, safe for human cells and effective in zebrafish embryo bacteraemia model. Open Biol 2024; 14:240286. [PMID: 39626774 PMCID: PMC11614538 DOI: 10.1098/rsob.240286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/10/2024] [Indexed: 12/08/2024] Open
Abstract
Proline-rich antimicrobial peptides (PrAMPs) have gained attention due to their antimicrobial properties and low cytotoxicity. B7-005, a small optimized PrAMP, exhibits a broader spectrum of activity than native PrAMPs, due to an antimicrobial mechanism based on inhibiting prokaryotic protein synthesis and destabilizing bacterial membranes. However, the toxicity and the in vivo efficacy of B7-005 remain poorly understood, so in vitro and in vivo microbiology and toxicology experiments were used to assess its suitability as an anti-infective agent. The incidence of resistance towards B7-005 by E. coli was lower than for other PrAMPs and antibiotics; moreover, it maintained antimicrobial activity in the presence of human serum. B7-005 exerted its antimicrobial effect at a much lower concentration than those causing harmful effects on four different cell types, such as membrane permeabilization or non-lytic depolarization of mitochondria. The latter effect may be related to the inhibition of eukaryotic protein synthesis by B7-005 observed in vitro. In a zebrafish embryo model, B7-005 was well tolerated and reduced mortality from pre-existing E. coli bacteraemia. Overall, B7-005 was safe for human cells and effective against systemic infection in vivo, making it a promising lead for developing new antibiotics.
Collapse
Affiliation(s)
- Adriana Di Stasi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sara Bozzer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pacor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Luigi de Pascale
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Lara Favero
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Department of Medicine, University of Padova, 35122 Padova, Italy
| | | | - Silvia Pegoraro
- Institute for Maternal and Child Health Irccs Burlo Garofolo, 34137 Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Mario Mardirossian
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
5
|
Thomas AM, Antony SP. Marine Antimicrobial Peptides: An Emerging Nightmare to the Life-Threatening Pathogens. Probiotics Antimicrob Proteins 2024; 16:552-578. [PMID: 37022565 DOI: 10.1007/s12602-023-10061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
The emergence of multidrug-resistant pathogens due to improper usage of conventional antibiotics has created a global health crisis. Alternatives to antibiotics being an urgent need, the scientific community is forced to search for new antimicrobials. This exploration has led to the discovery of antimicrobial peptides, a group of small peptides occurring in different phyla such as Porifera, Cnidaria, Annelida, Arthropoda, Mollusca, Echinodermata, and Chordata, as a component of their innate immune system. The marine environment, possessing immense diversity of organisms, is undoubtedly one of the richest sources of unique potential antimicrobial peptides. The distinctiveness of marine antimicrobial peptides lies in their broad-spectrum activity, mechanism of action, less cytotoxicity, and high stability, which form the benchmark for developing a potential therapeutic. This review aims to (1) synthesise the available information on the distinctive antimicrobial peptides discovered from marine organisms, particularly over the last decade, and (2) discuss the distinctiveness of marine antimicrobial peptides and their prospects.
Collapse
Affiliation(s)
- Anne Maria Thomas
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Swapna P Antony
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India.
| |
Collapse
|
6
|
Peng Z, Wei C, Cai J, Zou Z, Chen J. Characterization of an antimicrobial peptide family from the venom gland of Heteropoda venatoria. Toxicon 2024; 241:107657. [PMID: 38428753 DOI: 10.1016/j.toxicon.2024.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Spider venom boasts extensive peptide diversity, constituting a natural biochemical arsenal for defense and predation. The new family HvAMPs, including 9 homologous members, were identified from the unnormalized cDNA library of Heteropoda venatoria venom gland by Sanger sequencing. The putative mature peptide is composed of 22 aliphatic amino acid residues. The mature peptides of HvAMP1 and HvAMP5, with 3 different amino acids, were synthesized and both were shown to adopt an amphipathic α-helical structure and amphipathicity in SDS buffer by CD spectroscopy. In comparison to HvAMP1, HvAMP5 exhibits higher antibacterial activity, particularly against Gram-positive bacteria, coupled with reduced hemolytic activity and cytotoxicity. Results from SYTO 9/PI staining indicate that HvAMP5 acts by disrupting bacterial cell membranes. Analysis of the relationships between structures and functions suggests that HvAMP5 enhances antibacterial activity and reduces mammalian cell toxicity by increasing positive charge and proline substitution. The three residues variation can augment the electrostatic attraction of antibacterial peptides to the bacterial phospholipid bilayer. The present study suggests that the HvAMPs may exert lytic action against cells of different origins to increase cellular and tissue barrier permeability to facilitate spider's defense or predation. Moreover, HvAMP5 holds promise as a novel antibacterial agent for treating Gram-positive bacterial infections. Simultaneously, the numerous diverse amino acid residue substitutions within the HvAMP family offer a template for future study.
Collapse
Affiliation(s)
- Zhihao Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Chao Wei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Jisen Cai
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Zhaoxia Zou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China; School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, 418000, China.
| | - Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China; Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha, 418000, China.
| |
Collapse
|
7
|
Canesi L, Auguste M, Balbi T, Prochazkova P. Soluble mediators of innate immunity in annelids and bivalve mollusks: A mini-review. Front Immunol 2022; 13:1051155. [PMID: 36532070 PMCID: PMC9756803 DOI: 10.3389/fimmu.2022.1051155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Annelids and mollusks, both in the superphylum of Lophotrochozoa (Bilateria), are important ecological groups, widespread in soil, freshwater, estuarine, and marine ecosystems. Like all invertebrates, they lack adaptive immunity; however, they are endowed with an effective and complex innate immune system (humoral and cellular defenses) similar to vertebrates. The lack of acquired immunity and the capacity to form antibodies does not mean a lack of specificity: invertebrates have evolved genetic mechanisms capable of producing thousands of different proteins from a small number of genes, providing high variability and diversity of immune effector molecules just like their vertebrate counterparts. This diversity allows annelids and mollusks to recognize and eliminate a wide range of pathogens and respond to environmental stressors. Effector molecules can kill invading microbes, reduce their pathogenicity, or regulate the immune response at cellular and systemic levels. Annelids and mollusks are "typical" lophotrochozoan protostome since both groups include aquatic species with trochophore larvae, which unite both taxa in a common ancestry. Moreover, despite their extensive utilization in immunological research, no model systems are available as there are with other invertebrate groups, such as Caenorhabditis elegans or Drosophila melanogaster, and thus, their immune potential is largely unexplored. In this work, we focus on two classes of key soluble mediators of immunity, i.e., antimicrobial peptides (AMPs) and cytokines, in annelids and bivalves, which are the most studied mollusks. The mediators have been of interest from their first identification to recent advances in molecular studies that clarified their role in the immune response.
Collapse
Affiliation(s)
- Laura Canesi
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | - Manon Auguste
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | - Teresa Balbi
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia,*Correspondence: Petra Prochazkova,
| |
Collapse
|
8
|
Mendes RJ, Sario S, Luz JP, Tassi N, Teixeira C, Gomes P, Tavares F, Santos C. Evaluation of Three Antimicrobial Peptides Mixtures to Control the Phytopathogen Responsible for Fire Blight Disease. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122637. [PMID: 34961108 PMCID: PMC8705937 DOI: 10.3390/plants10122637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 05/09/2023]
Abstract
Fire blight is a severe bacterial plant disease that affects important chain-of-value fruit trees such as pear and apple trees. This disease is caused by Erwinia amylovora, a quarantine phytopathogenic bacterium, which, although highly distributed worldwide, still lacks efficient control measures. The green revolution paradigm demands sustainable agriculture practices, for which antimicrobial peptides (AMPs) have recently caught much attention. The goal of this work was to disclose the bioactivity of three peptides mixtures (BP100:RW-BP100, BP100:CA-M, and RW-BP100:CA-M), against three strains of E. amylovora representing distinct genotypes and virulence (LMG 2024, Ea 630 and Ea 680). The three AMPs' mixtures were assayed at eight different equimolar concentrations ranging from 0.25 to 6 μM (1:1). Results showed MIC and MBC values between 2.5 and 4 μM for every AMP mixture and strain. Regarding cell viability, flow cytometry and alamarBlue reduction, showed high reduction (>25%) of viable cells after 30 min of AMP exposure, depending on the peptide mixture and strain assayed. Hypersensitive response in tobacco plants showed that the most efficient AMPs mixtures and concentrations caused low to no reaction of the plant. Altogether, the AMPs mixtures studied are better treatment solutions to control fire blight disease than the same AMPs applied individually.
Collapse
Affiliation(s)
- Rafael J. Mendes
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CIBIO—Research Centre in Biodiversity and Genetic Resources, InBIO, Associated Laboratory, Campus Agrário de Vairão, University of Porto, 4485-661 Vairão, Portugal
- Correspondence:
| | - Sara Sario
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - João Pedro Luz
- QRural, Polytechnic Institute of Castelo Branco, School of Agriculture, 6000-909 Castelo Branco, Portugal;
| | - Natália Tassi
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Cátia Teixeira
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Paula Gomes
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Fernando Tavares
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- CIBIO—Research Centre in Biodiversity and Genetic Resources, InBIO, Associated Laboratory, Campus Agrário de Vairão, University of Porto, 4485-661 Vairão, Portugal
| | - Conceição Santos
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|