1
|
He C, Wang Q, Gao J, Chen H, Tong P. Neuro-immune regulation in allergic Diseases: Role of neuropeptides. Int Immunopharmacol 2025; 145:113771. [PMID: 39667047 DOI: 10.1016/j.intimp.2024.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/30/2024] [Indexed: 12/14/2024]
Abstract
The role of neuro-immune interaction in allergic diseases, a group of common immune system diseases, has garnered increasing attention. Neuropeptides, as a crucial component of neuro-immune crosstalk with local neuroendocrine and signaling functions, play a significant role that must not be overlooked. Neuropeptides are released by neurons and even some immune cells, and mediate neuro-immune crosstalk by activating relevant specific receptors on immune cells. Recent studies have found that neuropeptides have a certain regulatory effect on allergic diseases, which could be beneficial or detrimental for the development of allergic diseases. Nevertheless, the precise mechanism of neuropeptides in allergic diseases remains unclear, particularly in the context of food allergy where their role is poorly understood. This review summarized the interplay between neuropeptides and different immune cells, as well as their current research progress in several common allergic diseases: atopic dermatitis, allergic asthma, and food allergy. It is evident that neuropeptides such as substance P, calcitonin gene-related peptide, vasoactive intestinal peptide, and neuromedin U, exert important regulatory effects on allergic diseases, yet further investigation is required to fully elucidate their mechanisms of action, which may contribute to better understanding of the onset and progression of allergic diseases and finding better immunomodulatory strategies.
Collapse
Affiliation(s)
- Cuiying He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science & Technology, Nanchang University, Nanchang 330047, China
| | - Qian Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science & Technology, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science & Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, China
| |
Collapse
|
2
|
Zou Y, Liu C, Wang Z, Li G, Xiao J. Neural and immune roles in osteoarthritis pain: Mechanisms and intervention strategies. J Orthop Translat 2024; 48:123-132. [PMID: 39220678 PMCID: PMC11363721 DOI: 10.1016/j.jot.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Pain is the leading symptom for most individuals with osteoarthritis (OA), a complex condition marked by joint discomfort. Recently, the dynamic interplay between the nervous and immune systems has become a focal point for understanding pain regulation. Despite this, there is still a substantial gap in our comprehensive understanding of the neuroimmune interactions and their effects on pain in OA. This review examines the bidirectional influences between immune cells and nerves in OA progression. It explores current approaches that target neuroimmune pathways, including promoting M2 macrophage polarization and specific neuronal receptor targeting, for effective pain reduction. Translational potential statement This review provides a comprehensive overview of the mechanisms underlying the interplay between the immune system and nervous system during the progression of OA, as well as their contributions to pain. Additionally, it compiles existing intervention strategies targeting neuroimmunity for the treatment of OA pain. This information offers valuable insights for researchers seeking to address the challenge of OA pain.
Collapse
Affiliation(s)
- Yi Zou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Changyu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Zhenggang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Guanghui Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| |
Collapse
|
3
|
Xie Y, Hu X, Li X, Tong P, Zhang Y, Zheng S, Zhang J, Liu X, Chen H. The macrophage polarization in allergic responses induced by tropomyosin of Macrobrachium nipponense in cell and murine models. Int Immunopharmacol 2024; 135:112333. [PMID: 38805907 DOI: 10.1016/j.intimp.2024.112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Macrophages are one of the important immune cells, which play important roles in innate and adaptive immune. However, the roles of macrophages in food allergy are not thoroughly understood. To investigate the roles of macrophages during food allergy, we focused on the relationship between macrophage polarization and allergic responses induced by tropomyosin (TM) in the present study. Arg 1 and CD206 expressions in the TM group were significantly higher than those of the PBS group, while iNOS and TNF-α expressions were no obvious difference, moreover, the morphology of macrophages stimulated by TM was similar to that of M2 macrophages. These results indicated macrophages were mainly polarized toward M2 phenotypes in vitro. The antibodies, mMCP-1, histamine and cytokines, revealed that macrophages could participate in food allergy, and macrophage polarization was associated with changes in allergic-related factors. The cytokine levels of M2 phenotypes were significantly higher than those of M1 phenotypes in peripheral blood. The mRNA expressions and protein levels of Arg1 and iNOS in the jejunum and peritoneal cells indicated that M2 phenotypes were the major macrophage in these tissues compared with M1 phenotypes. Hence, macrophage polarization plays an important role in food allergy.
Collapse
Affiliation(s)
- Yanhai Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China.
| | - Xin Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330009, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330009, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China
| | - Yingxue Zhang
- Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | - Shuangyan Zheng
- Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China
| | - Jiasen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330009, China
| | - Xin Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330009, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
4
|
Kang JWM, Davanzo OI, Emvalomenos GM, Mychasiuk R, Henderson LA, Keay KA. Infraorbital nerve injury triggers sex-specific neuroimmune responses in the peripheral trigeminal pathway and common pain behaviours. Brain Behav Immun 2024; 118:480-498. [PMID: 38499209 DOI: 10.1016/j.bbi.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024] Open
Abstract
Trigeminal neuropathic pain is emotionally distressing and disabling. It presents with allodynia, hyperalgesia and dysaesthesia. In preclinical models it has been assumed that cephalic nerve constriction injury shows identical molecular, cellular, and sex dependent neuroimmune changes as observed in extra-cephalic injury models. This study sought empirical evidence for such assumptions using the infraorbital nerve chronic constriction model (ION-CCI). We compared the behavioural consequences of nerve constriction with: (i) the temporal patterns of recruitment of macrophages and T-lymphocytes at the site of nerve injury and in the trigeminal ganglion; and (ii) the degree of demyelination and axonal reorganisation in the injured nerve. Our data demonstrated that simply testing for allodynia and hyperalgesia as is done in extra-cephalic neuropathic pain models does not provide access to the range of injury-specific nociceptive responses and behaviours reflective of the experience of trigeminal neuropathic pain. Similarly, trigeminal neuroimmune changes evoked by nerve injury are not the same as those identified in models of extra-cephalic neuropathy. Specifically, the timing, magnitude, and pattern of ION-CCI evoked macrophage and T-lymphocyte activity differs between the sexes.
Collapse
Affiliation(s)
- James W M Kang
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Olivia I Davanzo
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gaelle M Emvalomenos
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Luke A Henderson
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kevin A Keay
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|