1
|
Liao HX, Yang J, Wen JR, Nie HY, Zhao J, Xu FR, Liu XY, Dong X. β-Caryophyllene oxide inhibits lysine acetylation of histones in Fusarium proliferatum to block ribosomal biosynthesis and function. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106213. [PMID: 39672623 DOI: 10.1016/j.pestbp.2024.106213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024]
Abstract
The natural bicyclic sesquiterpene, β-Caryophyllene oxide (BCPO), has demonstrated inhibitory activity against Fusarium species. While previous studies have documented its antifungal properties through various biochemical mechanisms, the role of BCPO in modulating epigenetic modifications of DNA via histone deacetylases (HDACs) has received comparatively less attention. The study aims to elucidate how BCPO inhibits Fusarium proliferatum by affecting histone acetylation. Our results indicate that BCPO enhances FPRO_01165 (FpSIR2) enzyme activity to 6.01 ng/min/mg, representing a 55.30 % increase. Molecular docking analysis and molecular dynamics simulation confirmed the interaction between BCPO and FpSIR2. Furthermore, high concentrations (HC) of BCPO significantly inhibited the growth of F. proliferatum, resulting in marked reductions in H3K9ac and H3K27ac modification levels. We conducted chromatin immunoprecipitation sequencing (ChIP-seq) to identify enrichments of H3K9ac and H3K27ac, while also obtaining transcriptomic data from the HC treatment group. Combined analyses revealed that decreased levels of H3K9ac and H3K27ac primarily affected ribosomal pathways in F. proliferatum, leading to downregulation of several ribosomal genes and their corresponding proteins, such as RPL4, RPS19, and RPS16. Our findings suggest that BCPO stimulates both the production and activity of FpSIR2, which subsequently inhibits histone lysine acetylation in F. proliferatum. This inhibition suppresses ribosome biosynthesis and function as well as overall growth in this pathogen. The property of BCPO to reduce acetylation provides new insights for developing highly efficient yet low-toxicity antifungal agents.
Collapse
Affiliation(s)
- Hong-Xin Liao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China; College of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan 430056, People's Republic of China
| | - Jing Yang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China; College of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan 430056, People's Republic of China
| | - Jin-Rui Wen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Hong-Yan Nie
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Jun Zhao
- School of Geography, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Fu-Rong Xu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Xiao-Yun Liu
- College of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan 430056, People's Republic of China.
| | - Xian Dong
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China.
| |
Collapse
|
2
|
Liu F, Cao X, Zhang T, Xing L, Sun Z, Zeng W, Xin H, Xue W. Synthesis and Biological Activity of Myricetin Derivatives Containing Pyrazole Piperazine Amide. Int J Mol Sci 2023; 24:10442. [PMID: 37445627 DOI: 10.3390/ijms241310442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
In this paper, a series of derivatives were synthesized by introducing the pharmacophore pyrazole ring and piperazine ring into the structure of the natural product myricetin through an amide bond. The structures were determined using carbon spectrum and hydrogen spectrum high-resolution mass spectrometry. Biological activities of those compounds against bacteria, including Xac (Xanthomonas axonopodis pv. Citri), Psa (Pseudomonas syringae pv. Actinidiae) and Xoo (Xanthomonas oryzae pv. Oryzae) were tested. Notably, D6 exhibited significant bioactivity against Xoo with an EC50 value of 18.8 μg/mL, which was higher than the control drugs thiadiazole-copper (EC50 = 52.9 μg/mL) and bismerthiazol (EC50 = 69.1 μg/mL). Furthermore, the target compounds were assessed for their antifungal activity against ten plant pathogenic fungi. Among them, D1 displayed excellent inhibitory activity against Phomopsis sp. with an EC50 value of 16.9 μg/mL, outperforming the control agents azoxystrobin (EC50 = 50.7 μg/mL) and fluopyram (EC50 = 71.8 μg/mL). In vitro tests demonstrated that D1 possessed curative (60.6%) and protective (74.9%) effects on postharvest kiwifruit. To investigate the active mechanism of D1, its impact on SDH activity was evaluated based on its structural features and further confirmed through molecular docking. Subsequently, the malondialdehyde content of D1-treated fungi was measured, revealing that D1 could increase malondialdehyde levels, thereby causing damage to the cell membrane. Additionally, the EC50 value of D16 on P. capsici was 11.3 μg/mL, which was superior to the control drug azoxystrobin (EC50 = 35.1 μg/mL), and the scanning electron microscopy results indicated that the surface of drug-treated mycelium was ruffled, and growth was significantly affected.
Collapse
Affiliation(s)
- Fang Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiao Cao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tao Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li Xing
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhiling Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hui Xin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Zhou Q, Tang X, Chen S, Zhan W, Hu D, Zhou R, Sun N, Wu Y, Xue W. Design, Synthesis, and Antifungal Activity of Novel Chalcone Derivatives Containing a Piperazine Fragment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1029-1036. [PMID: 35072471 DOI: 10.1021/acs.jafc.1c05933] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In an attempt to find the biorational pesticides, 20 novel chalcone derivatives containing a piperazine fragment were designed and synthesized. Their fungicidal activities and preliminarily action mechanism against Rhizoctonia solani were evaluated. Strikingly, the biological activity of compound D2 was obtained by optimizing the structure of the system. Subsequently, the practical value of compound D2 was ascertained by the relative surveys on in vivo anti-R. solani and anti-Colletotrichum gloeosporioides. The results revealed by scanning electron microscopy demonstrated that compound D2 could induce irregular and shrivelled growth of mycelium and rupture of the mycelium surface. This study indicates that chalcone derivatives containing a piperazine skeleton had better inhibitory effect on plant fungi, providing further complementary research on new pesticides.
Collapse
Affiliation(s)
- Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xuemei Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Shuai Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Wenliang Zhan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Die Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Ran Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Nan Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - YongJun Wu
- Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
4
|
Jiang L, Wen C, He Q, Sun Y, Wang J, Lan X, Rohondia S, Dou QP, Shi X, Liu J. Pseudolaric acid B induces mitotic arrest and apoptosis in both imatinib-sensitive and -resistant chronic myeloid leukaemia cells. Eur J Pharmacol 2020; 876:173064. [PMID: 32179085 DOI: 10.1016/j.ejphar.2020.173064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/29/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
The selective BCR-ABL tyrosine kinase inhibitor imatinib is one of the first-line therapies in the management of chronic myeloid leukaemia (CML). However, acquired resistance to this inhibitor, which is especially conferred by the T315I point mutation in BCR-ABL, impedes the efficacy of imatinib therapy. Therefore, the discovery and development of novel agents to overcome imatinib resistance is urgently needed. Pseudolaric acid B (PAB), a small molecule isolated from the traditional Chinese medicine Cortex pseudolaricis, has been reported to be a potential candidate for immune disorders and cancer treatment. However, its effects on CML and the involved molecular mechanism have not been reported. In the current study, by performing both in vitro and in vivo experiments in CML cells, we showed that PAB blocked the cell cycle at G2/M phase and subsequently activated the caspase pathway, cleaved the BCR-ABL protein and inhibited the BCR-ABL downstream pathways, ultimately leading to cell proliferation inhibition, cytotoxicity and apoptosis. These events were observed in both imatinib-sensitive and imatinib-insensitive CML cell lines. Moreover, PAB decreased the viability of primary blood mononuclear cells from CML patients and induced apoptosis in these cells. Our findings suggest that PAB could be used as a novel agent to sensitize imatinib-resistant CML.
Collapse
Affiliation(s)
- Liling Jiang
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chuangyu Wen
- Department of Obstetrics and Gynaecology, Dongguan Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, China
| | - Qingyan He
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuening Sun
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinxiang Wang
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoying Lan
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sagar Rohondia
- The Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Q Ping Dou
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; The Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Xianping Shi
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jinbao Liu
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Song B. Preface to the special issue: Fungicide toxicology in China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 147:1-2. [PMID: 29933977 DOI: 10.1016/j.pestbp.2018.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|