1
|
Pradeep S, Y S JTE, Angappan S, Murugaiyan S, Ramasamy SV, Boopathi NM. Lactic Acid Bacteria: A Probiotic to Mitigate Pesticide Stress in Honey Bee. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10507-4. [PMID: 40095223 DOI: 10.1007/s12602-025-10507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Using probiotics, especially those containing lactic acid bacteria (LAB), to support honey bee health and alleviate the negative effects of pesticides represents a promising approach for sustainable beekeeping. Probiotics have shown their ability to boost honey bee immune systems, counteract pesticide impacts, and lower disease rates. Bacteria like Lactobacillus and Bifidobacterium have demonstrated their ability to degrade organophosphorus pesticides using phosphatase enzymes. Additionally, these bacteria are resistant to the harmful effects of pesticides and aid in detoxification. Furthermore, supplementing with LAB positively affects colony growth, resulting in increased honey production, improved pollen storage, and higher brood counts. Various methods of delivering probiotics, such as powdered supplements, sucrose syrup, and pollen patties, have been explored, each with its own set of challenges and considerations. Despite making significant progress, further study is still required to fully comprehend the precise interactions between probiotics and the physiology of honey bees, to improve delivery strategies, and to evaluate the wider ecological effects on hive microbiomes. By implementing probiotic strategies in beekeeping practices, we can create stronger and more resilient honey bee colonies that can thrive amidst environmental challenges, thus promoting the sustainability of pollination services.
Collapse
Affiliation(s)
- Subramanian Pradeep
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Suganthi Angappan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Senthilkumar Murugaiyan
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | | |
Collapse
|
2
|
Bhatia A, Sharma D, Mehta J, Kumarasamy V, Begum MY, Siddiqua A, Sekar M, Subramaniyan V, Wong LS, Mat Rani NNI. Probiotics and Synbiotics: Applications, Benefits, and Mechanisms for the Improvement of Human and Ecological Health. J Multidiscip Healthc 2025; 18:1493-1510. [PMID: 40092220 PMCID: PMC11910042 DOI: 10.2147/jmdh.s501056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
This review explores the multifaceted roles and applications of probiotics, emphasizing their significance in maintaining and enhancing host health through microbial interactions. It includes the concept of holobionts and the symbiotic relationships between hosts and their microbiomes, illustrating how various microbiota can enhance immunity, support growth, and prevent diseases. It delves into the customization of probiotics using molecular and genomic techniques, focusing Enterococcus, Bifidobacterium, and Lactobacillus species. Furthermore, it discusses the symbiotic effects of symbiotics which aids in enhancing the survivability and beneficial effects of probiotics. The role beneficial microbes in gut is emphasized, noting its impact on preventing diseases and maintaining a stable microbial community. The potential therapeutic value of probiotics includes the ability to treat gastrointestinal diseases, as well as to strengthen the immune system and reduce the number of free radicals that are present in the body. Additionally, it explores secondary metabolites produced by bacteria in the gut, such as bacteriocins and exopolysaccharides, and their effect on the health of human, particularly in the gastrointestinal tract. The review concludes by addressing the use of probiotics in traditional medicine and their potential in novel therapeutic applications, including the treatment of endangered wildlife species and various human ailments.
Collapse
Affiliation(s)
- Ankita Bhatia
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Deeksha Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Vinoth Kumarasamy
- Department of Parasitology & Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| |
Collapse
|
3
|
Kiruthika K, Suganthi A, Johnson Thangaraj Edward YS, Anandham R, Renukadevi P, Murugan M, Bimal Kumar Sahoo, Mohammad Ikram, Kavitha PG, Jayakanthan M. Role of Lactic Acid Bacteria in Insecticide Residue Degradation. Probiotics Antimicrob Proteins 2025; 17:81-102. [PMID: 38819541 DOI: 10.1007/s12602-024-10298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Lactic acid bacteria are gaining global attention, especially due to their role as a probiotic. They are increasingly being used as a flavoring agent and food preservative. Besides their role in food processing, lactic acid bacteria also have a significant role in degrading insecticide residues in the environment. This review paper highlights the importance of lactic acid bacteria in degrading insecticide residues of various types, such as organochlorines, organophosphorus, synthetic pyrethroids, neonicotinoids, and diamides. The paper discusses the mechanisms employed by lactic acid bacteria to degrade these insecticides, as well as their potential applications in bioremediation. The key enzymes produced by lactic acid bacteria, such as phosphatase and esterase, play a vital role in breaking down insecticide molecules. Furthermore, the paper discusses the challenges and future directions in this field. However, more research is needed to optimize the utilization of lactic acid bacteria in insecticide residue degradation and to develop practical strategies for their implementation in real-world scenarios.
Collapse
Affiliation(s)
- K Kiruthika
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - A Suganthi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | | | - R Anandham
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P Renukadevi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Bimal Kumar Sahoo
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Mohammad Ikram
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P G Kavitha
- Department of Nematology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M Jayakanthan
- Department of Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
4
|
Qi Y, Wang C, Lang H, Wang Y, Wang X, Zheng H, Lu Y. Liposome-based RNAi delivery in honeybee for inhibiting parasite Nosema ceranae. Synth Syst Biotechnol 2024; 9:853-860. [PMID: 39139857 PMCID: PMC11320372 DOI: 10.1016/j.synbio.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Nosema ceranae, a parasite that parasitizes and reproduces in the gut of honeybees, has become a serious threat to the global apiculture industry. RNA interference (RNAi) technology can be used to inhibit N. ceranae growth by targeting silencing the thioredoxin reductase (TrxR) in N. ceranae. However, suitable carriers are one of the reasons limiting the application of RNAi due to the easy degradation of dsRNA in honeybees. As a vesicle composed of a lipid bilayer, liposomes are a good carrier for nucleic acid delivery, but studies in honeybees are lacking. In this study, liposomes were used for double-stranded RNA (dsRNA) dsTrxR delivery triggering RNAi to inhibit the N. ceranae growth in honeybees. Compared to naked dsTrxR, liposome-dsTrxR reduced N. ceranae numbers in the midgut and partially restored midgut morphology without affecting bee survival and gut microbial composition. The results of this study confirmed that liposomes could effectively protect dsRNA from entering the honeybee gut and provide a reference for using RNAi technology to suppress honeybee pests and diseases.
Collapse
Affiliation(s)
- Yue Qi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Chen Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yueyi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Garcias-Bonet N, Roik A, Tierney B, García FC, Villela HDM, Dungan AM, Quigley KM, Sweet M, Berg G, Gram L, Bourne DG, Ushijima B, Sogin M, Hoj L, Duarte G, Hirt H, Smalla K, Rosado AS, Carvalho S, Thurber RV, Ziegler M, Mason CE, van Oppen MJH, Voolstra CR, Peixoto RS. Horizon scanning the application of probiotics for wildlife. Trends Microbiol 2024; 32:252-269. [PMID: 37758552 DOI: 10.1016/j.tim.2023.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
The provision of probiotics benefits the health of a wide range of organisms, from humans to animals and plants. Probiotics can enhance stress resilience of endangered organisms, many of which are critically threatened by anthropogenic impacts. The use of so-called 'probiotics for wildlife' is a nascent application, and the field needs to reflect on standards for its development, testing, validation, risk assessment, and deployment. Here, we identify the main challenges of this emerging intervention and provide a roadmap to validate the effectiveness of wildlife probiotics. We cover the essential use of inert negative controls in trials and the investigation of the probiotic mechanisms of action. We also suggest alternative microbial therapies that could be tested in parallel with the probiotic application. Our recommendations align approaches used for humans, aquaculture, and plants to the emerging concept and use of probiotics for wildlife.
Collapse
Affiliation(s)
- Neus Garcias-Bonet
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Braden Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Francisca C García
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Helena D M Villela
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ashley M Dungan
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Kate M Quigley
- Minderoo Foundation, Perth, WA, Australia; James Cook University, Townsville, Australia
| | - Michael Sweet
- Aquatic Research Facility, Nature-based Solutions Research Centre, University of Derby, Derby, UK
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria; University of Potsdam and Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Maggie Sogin
- Molecular Cell Biology, University of California, Merced, CA, USA
| | - Lone Hoj
- Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | - Gustavo Duarte
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; IMPG, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heribert Hirt
- Center for Desert Agriculture (CDA), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Alexandre S Rosado
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; WorldQuant Initiative on Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia; Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | | | - Raquel S Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
6
|
Sbaghdi T, Garneau JR, Yersin S, Chaucheyras-Durand F, Bocquet M, Moné A, El Alaoui H, Bulet P, Blot N, Delbac F. The Response of the Honey Bee Gut Microbiota to Nosema ceranae Is Modulated by the Probiotic Pediococcus acidilactici and the Neonicotinoid Thiamethoxam. Microorganisms 2024; 12:192. [PMID: 38258019 PMCID: PMC10819737 DOI: 10.3390/microorganisms12010192] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/30/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The honey bee Apis mellifera is exposed to a variety of biotic and abiotic stressors, such as the highly prevalent microsporidian parasite Nosema (Vairimorpha) ceranae and neonicotinoid insecticides. Both can affect honey bee physiology and microbial gut communities, eventually reducing its lifespan. They can also have a combined effect on the insect's survival. The use of bacterial probiotics has been proposed to improve honey bee health, but their beneficial effect remains an open question. In the present study, western honey bees were experimentally infected with N. ceranae spores, chronically exposed to the neonicotinoid thiamethoxam, and/or supplied daily with the homofermentative bacterium Pediococcus acidilactici MA18/5M thought to improve the honey bees' tolerance to the parasite. Deep shotgun metagenomic sequencing allowed the response of the gut microbiota to be investigated with a taxonomic resolution at the species level. All treatments induced significant changes in honey bee gut bacterial communities. Nosema ceranae infection increased the abundance of Proteus mirabilis, Frischella perrara, and Gilliamella apicola and reduced the abundance of Bifidobacterium asteroides, Fructobacillus fructosus, and Lactobacillus spp. Supplementation with P. acidilactici overturned some of these alterations, bringing back the abundance of some altered species close to the relative abundance found in the controls. Surprisingly, the exposure to thiamethoxam also restored the relative abundance of some species modulated by N. ceranae. This study shows that stressors and probiotics may have an antagonistic impact on honey bee gut bacterial communities and that P. acidilactici may have a protective effect against the dysbiosis induced by an infection with N. ceranae.
Collapse
Affiliation(s)
- Thania Sbaghdi
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Julian R. Garneau
- Department of Fundamental Microbiology, University of Lausanne, Campus UNIL-Sorge, 1015 Lausanne, Switzerland; (J.R.G.); (S.Y.)
| | - Simon Yersin
- Department of Fundamental Microbiology, University of Lausanne, Campus UNIL-Sorge, 1015 Lausanne, Switzerland; (J.R.G.); (S.Y.)
| | - Frédérique Chaucheyras-Durand
- Lallemand SAS, 19 Rue des Briquetiers, BP 59, CEDEX, F-31702 Blagnac, France;
- Microbiologie Environnement Digestif et Santé, INRAE, Université Clermont Auvergne, F-63122 Saint-Genès Champanelle, France
| | | | - Anne Moné
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Hicham El Alaoui
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Philippe Bulet
- Institute for Advanced Biosciences, CR Université Grenoble Alpes, Inserm U1209, CNRS UMR 5309, F-38000 Grenoble, France;
- Platform BioPark Archamps, ArchParc, F-74160 Archamps, France
| | - Nicolas Blot
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Frédéric Delbac
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| |
Collapse
|
7
|
Zhang G, Dilday S, Kuesel RW, Hopkins B. Phytochemicals, Probiotics, Recombinant Proteins: Enzymatic Remedies to Pesticide Poisonings in Bees. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:54-62. [PMID: 38127782 PMCID: PMC10785755 DOI: 10.1021/acs.est.3c07581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The ongoing global decline of bees threatens biodiversity and food safety as both wild plants and crops rely on bee pollination to produce viable progeny or high-quality products in high yields. Pesticide exposure is a major driving force for the decline, yet pesticide use remains unreconciled with bee conservation since studies demonstrate that bees continue to be heavily exposed to and threatened by pesticides in crops and natural habitats. Pharmaceutical methods, including the administration of phytochemicals, probiotics (beneficial bacteria), and recombinant proteins (enzymes) with detoxification functions, show promise as potential solutions to mitigate pesticide poisonings. We discuss how these new methods can be appropriately developed and applied in agriculture from bee biology and ecotoxicology perspectives. As countless phytochemicals, probiotics, and recombinant proteins exist, this Perspective will provide suggestive guidance to accelerate the development of new techniques by directing research and resources toward promising candidates. Furthermore, we discuss practical limitations of the new methods mentioned above in realistic field applications and propose recommendations to overcome these limitations. This Perspective builds a framework to allow researchers to use new detoxification techniques more efficiently in order to mitigate the harmful impacts of pesticides on bees.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Sam Dilday
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Ryan William Kuesel
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Brandon Hopkins
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
8
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Durjava M, Dusemund B, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Villa RE, Woutersen R, Dierick N, Martelli G, Anguita M, Brozzi R, Galobart J, Casanova JO, Vettori MV, Innocenti M. Safety and efficacy of a feed additive consisting of Pediococcus acidilactici CNCM I-4622 for all insect species (Danstar Ferment AG). EFSA J 2023; 21:e8468. [PMID: 38099055 PMCID: PMC10719750 DOI: 10.2903/j.efsa.2023.8468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of Pediococcus acidilactici CNCM I-4622 as a zootechnical additive (functional group: physiological condition stabilisers) for all insects. The active agent used in the additive is already authorised for use in all animal species as a technological additive, and as a zootechnical additive in all Suidae species for fattening and for breeding, other than sows, all avian species, all fish species and all crustaceans. The active agent has been identified as a strain of P. acidilactici and consequently meets the qualifications required by the qualified presumption of safety (QPS) approach. The use of the additive is considered safe for all insect species, consumers and the environment. The additive is considered non-irritant to skin and eyes but a respiratory sensitiser. No conclusions can be drawn regarding its skin sensitisation potential. In the absence of adequate data, the FEEDAP Panel is not in the position to conclude on the efficacy of the additive as a physiological condition stabiliser for honeybees nor for all insect species.
Collapse
|
9
|
Zioga E, White B, Stout JC. Honey bees and bumble bees may be exposed to pesticides differently when foraging on agricultural areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166214. [PMID: 37567302 DOI: 10.1016/j.scitotenv.2023.166214] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
In an agricultural environment, where crops are treated with pesticides, bees are likely to be exposed to a range of chemical compounds in a variety of ways. The extent to which different bee species are affected by these chemicals, largely depends on the concentrations and type of exposure. We quantified the presence of selected pesticide compounds in the pollen of two different entomophilous crops; oilseed rape (Brassica napus) and broad bean (Vicia faba). Sampling was performed in 12 sites in Ireland and our results were compared with the pollen loads of honey bees and bumble bees actively foraging on those crops in those same sites. Detections were compound specific, and the timing of pesticide application in relation to sampling likely influenced the final residue contamination levels. Most detections originated from compounds that were not recently applied on the fields, and samples from B. napus fields were more contaminated compared to those from V. faba fields. Crop pollen was contaminated only with fungicides, honey bee pollen loads contained mainly fungicides, while more insecticides were detected in bumble bee pollen loads. The highest number of compounds and most detections were observed in bumble bee pollen loads, where notably, all five neonicotinoids assessed (acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam) were detected despite the no recent application of these compounds on the fields where samples were collected. The concentrations of neonicotinoid insecticides were positively correlated with the number of wild plant species present in the bumble bee-collected pollen samples, but this relationship could not be verified for honey bees. The compounds azoxystrobin, boscalid and thiamethoxam formed the most common pesticide combination in pollen. Our results raise concerns about potential long-term bee exposure to multiple residues and question whether honey bees are suitable surrogates for pesticide risk assessments for all bee species.
Collapse
Affiliation(s)
- Elena Zioga
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Blánaid White
- School of Chemical Sciences, DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Jane C Stout
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
10
|
Shu Q, Guo X, Tian C, Wang Y, Zhang X, Cheng J, Li F, Li B. Homeostatic Regulation of the Duox-ROS Defense System: Revelations Based on the Diversity of Gut Bacteria in Silkworms ( Bombyx mori). Int J Mol Sci 2023; 24:12731. [PMID: 37628915 PMCID: PMC10454487 DOI: 10.3390/ijms241612731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The Duox-ROS defense system plays an important role in insect intestinal immunity. To investigate the role of intestinal microbiota in Duox-ROS regulation herein, 16S rRNA sequencing technology was utilized to compare the characteristics of bacterial populations in the midgut of silkworm after different time-periods of treatment with three feeding methods: 1-4 instars artificial diet (AD), 1-4 instars mulberry leaf (ML) and 1-3 instars artificial diet + 4 instar mulberry leaf (TM). The results revealed simple intestinal microbiota in the AD group whilst microbiota were abundant and variable in the ML and TM silkworms. By analyzing the relationship among intestinal pH, reactive oxygen species (ROS) content and microorganism composition, it was identified that an acidic intestinal environment inhibited the growth of intestinal microbiota of silkworms, observed concurrently with low ROS content and a high activity of antioxidant enzymes (SOD, TPX, CAT). Gene expression associated with the Duox-ROS defense system was detected using RT-qPCR and identified to be low in the AD group and significantly higher in the TM group of silkworms. This study provides a new reference for the future improvement of the artificial diet feeding of silkworm and a systematic indicator for the further study of the relationship between changes in the intestinal environment and intestinal microbiota balance caused by dietary alterations.
Collapse
Affiliation(s)
- Qilong Shu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Xiqian Guo
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Chao Tian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Yuanfei Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Xiaoxia Zhang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Jialu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
- Sericulture Institute, Soochow University, Suzhou 215123, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
- Sericulture Institute, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Zioga E, White B, Stout JC. Pesticide mixtures detected in crop and non-target wild plant pollen and nectar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162971. [PMID: 36958551 DOI: 10.1016/j.scitotenv.2023.162971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 05/17/2023]
Abstract
Cultivation of mass flowering entomophilous crops benefits from the presence of managed and wild pollinators, who visit flowers to forage on pollen and nectar. However, management of these crops typically includes application of pesticides, the presence of which may pose a hazard for pollinators foraging in an agricultural environment. To determine the levels of potential exposure to pesticides, their presence and concentration in pollen and nectar need assessing, both within and beyond the target crop plants. We selected ten pesticide compounds and one metabolite and analysed their occurrence in a crop (Brassica napus) and a wild plant (Rubus fruticosus agg.), which was flowering in field edges. Nectar and pollen from both plants were collected from five spring and five winter sown B. napus fields in Ireland, and were tested for pesticide residues, using QuEChERS and Liquid Chromatography tandem mass spectrometry (LC-MS/MS). Pesticide residues were detected in plant pollen and nectar of both plants. Most detections were from fields with no recorded application of the respective compounds in that year, but higher concentrations were observed in recently treated fields. Overall, more residues were detected in B. napus pollen and nectar than in the wild plant, and B. napus pollen had the highest mean concentration of residues. All matrices were contaminated with at least three compounds, and the most frequently detected compounds were fungicides. The most common compound mixture was comprised of the fungicides azoxystrobin, boscalid, and the neonicotinoid insecticide clothianidin, which was not recently applied on the fields. Our results indicate that persistent compounds like the neonicotinoids, should be continuously monitored for their presence and fate in the field environment. The toxicological evaluation of the compound mixtures identified in the present study should be performed, to determine their impacts on foraging insects that may be exposed to them.
Collapse
Affiliation(s)
- Elena Zioga
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Blánaid White
- School of Chemical Sciences, DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Jane C Stout
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
12
|
Leska A, Nowak A, Rosicka-Kaczmarek J, Ryngajłło M, Czarnecka-Chrebelska KH. Characterization and Protective Properties of Lactic Acid Bacteria Intended to Be Used in Probiotic Preparation for Honeybees (Apis mellifera L.)—An In Vitro Study. Animals (Basel) 2023; 13:ani13061059. [PMID: 36978601 PMCID: PMC10044574 DOI: 10.3390/ani13061059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Lactic acid bacteria (LAB) are widely used probiotics and offer promising prospects for increasing the viability of honeybees. Thus, the probiotic potential of 10 LAB strains was determined, which in our previous studies showed the most potent protective abilities. In the current study, we investigated various properties of probiotic candidates. The tested LAB strains varied in susceptibility to tested antibiotics. Isolates showed high viability in sugar syrups and gastrointestinal conditions. None of the LAB strains exhibited β-hemolytic activity, mutual antagonism, mucin degradation, hydrogen peroxide production capacity, or bile salt hydrolase (BSH) activity. Additionally, the cytotoxicity of LAB cell-free supernatants (CFS) was assessed, as well as the effect of CFS from P. pentosaceus 14/1 on the cytotoxicity of coumaphos and chlorpyrifos in the Caco-2 cell line. The viability of Caco-2 cells reached up to 89.81% in the presence of the highest concentration of CFS. Furthermore, LAB metabolites decreased the cytotoxicity of insecticides (up to 19.32%) thus demonstrating cytoprotective activity. All tested LAB strains produced lactic, acetic, and malonic acids. This research allowed the selection of the most effective LAB strains, in terms of probiosis, for future in vivo studies aimed at developing an ecologically protective biopreparation for honeybees.
Collapse
Affiliation(s)
- Aleksandra Leska
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (A.L.); (A.N.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (A.L.); (A.N.)
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Małgorzata Ryngajłło
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Karolina Henryka Czarnecka-Chrebelska
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz, 5 Mazowiecka Str. (A-6 Building), 92-215 Lodz, Poland
| |
Collapse
|
13
|
Liu P, Niu J, Zhu Y, Li Z, Ye L, Cao H, Shi T, Yu L. Apilactobacillus kunkeei Alleviated Toxicity of Acetamiprid in Honeybee. INSECTS 2022; 13:1167. [PMID: 36555077 PMCID: PMC9784809 DOI: 10.3390/insects13121167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, colony collapse disorder extensively affects honeybees. Insecticides, including acetamiprid, are considered as critical factors. As prevalent probiotics, we speculated that supplementation with lactic acid bacteria (LAB) could alleviate acetamiprid-induced health injuries in honeybees. Apilactobacillus kunkeei was isolated from beebread; it significantly increased the survival of honeybees under acetamiprid exportation (from 84% to 92%). Based on 16S rRNA pyrosequencing, information on the intestinal bacteria of honeybees was acquired. The results showed that supplementation with A. kunkeei significantly increased survival and decreased pollen consumption by honeybees under acetamiprid exportation. Under acetamiprid exportation, some opportunistic and pathogenic bacteria invaded the intestinal regions. Subsequently, the community richness and diversity of symbiotic microbiota were decreased. The community structure of intestinal bacteria was changed and differentiated. However, with the supplementation of A. kunkeei, the community richness and community diversity of symbiotic microbiota showed an upward trend, and the community structure was stabilized. Our results showed that A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees. This demonstrates the importance of symbiotic microbiota in honeybees and supports the application of Apilactobacillus kunkeei as probiotics in beekeeping.
Collapse
Affiliation(s)
- Peng Liu
- School of Plant Protection, Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China
| | - Jingheng Niu
- School of Plant Protection, Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China
| | - Yejia Zhu
- School of Plant Protection, Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China
| | - Zhuang Li
- School of Plant Protection, Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China
- School of Plant Protection, Biotechnology Center of Anhui Agriculture University, Hefei 230031, China
| | - Liang Ye
- School of Plant Protection, Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China
| | - Haiqun Cao
- School of Plant Protection, Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China
| | - Tengfei Shi
- School of Plant Protection, Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China
| | - Linsheng Yu
- School of Plant Protection, Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China
| |
Collapse
|
14
|
El-Seedi HR, El-Wahed AAA, Naggar YA, Saeed A, Xiao J, Ullah H, Musharraf SG, Boskabady MH, Cao W, Guo Z, Daglia M, El Wakil A, Wang K, Khalifa SAM. Insights into the Role of Natural Products in the Control of the Honey Bee Gut Parasite ( Nosema spp.). Animals (Basel) 2022; 12:3062. [PMID: 36359186 PMCID: PMC9656094 DOI: 10.3390/ani12213062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 08/05/2023] Open
Abstract
The honey bee is an important economic insect due to its role in pollinating many agricultural plants. Unfortunately, bees are susceptible to many pathogens, including pests, parasites, bacteria, and viruses, most of which exert a destructive impact on thousands of colonies. The occurrence of resistance to the therapeutic substances used against these organisms is rising, and the residue from these chemicals may accumulate in honey bee products, subsequently affecting the human health. There is current advice to avoid the use of antibiotics, antifungals, antivirals, and other drugs in bees, and therefore, it is necessary to develop alternative strategies for the treatment of bee diseases. In this context, the impact of nosema diseases (nosemosis) on bee health and the negative insults of existing drugs are discussed. Moreover, attempts to combat nosema through the use of alternative compounds, including essential oils, plant extracts, and microbes in vitro and in vivo, are documented.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Nanjing 210024, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, 36310 Vigo, Spain
| | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, 80131 Naples, Italy
| | - Syed G. Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mohammad H. Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi’an 710065, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Maria Daglia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Pharmacy, University of Napoli Federico II, 80131 Naples, Italy
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria 215260, Egypt
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
15
|
Human supplementation with Pediococcus acidilactici GR-1 decreases heavy metals levels through modifying the gut microbiota and metabolome. NPJ Biofilms Microbiomes 2022; 8:63. [PMID: 35974020 PMCID: PMC9381558 DOI: 10.1038/s41522-022-00326-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Exposure to heavy metals (HMs) is a threat to human health. Although probiotics can detoxify HMs in animals, their effectiveness and mechanism of action in humans have not been studied well. Therefore, we conducted this randomized, double-blind, controlled trial on 152 occupational workers from the metal industry, an at-risk human population, to explore the effectiveness of probiotic yogurt in reducing HM levels. Participants were randomly assigned to two groups: one consumed probiotic yogurt containing the HM-resistant strain Pediococcus acidilactici GR-1 and the other consumed conventional yogurt for 12 weeks. Analysis of metal contents in the blood revealed that the consumption of probiotic yogurt resulted in a higher and faster decrease in copper (34.45%) and nickel (38.34%) levels in the blood than the consumption of conventional yogurt (16.41% and 27.57%, respectively). Metagenomic and metabolomic studies identified a close correlation between gut microbiota (GM) and host metabolism. Significantly enriched members of Blautia and Bifidobacterium correlated positively with the antioxidant capacities of GM and host. Further murine experiments confirmed the essential role of GM and protective effect of GR-1 on the antioxidative role of the intestine against copper. Thus, the use of probiotic yogurt may be an effective and affordable approach for combating toxic metal exposure through the protection of indigenous GM in humans. ClinicalTrials.gov identifier: ChiCTR2100053222
Collapse
|
16
|
Recent Advances in the Biocontrol of Nosemosis in Honey Bees (Apis mellifera L.). J Fungi (Basel) 2022; 8:jof8050424. [PMID: 35628680 PMCID: PMC9145624 DOI: 10.3390/jof8050424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
Nosemosis is a disease triggered by the single-celled spore-forming fungi Nosema apis and Nosema ceranae, which can cause extensive colony losses in honey bees (Apis mellifera L.). Fumagillin is an effective antibiotic treatment to control nosemosis, but due to its toxicity, it is currently banned in many countries. Accordingly, in the beekeeping sector, there is a strong demand for alternative ecological methods that can be used for the prevention and therapeutic control of nosemosis in honey bee colonies. Numerous studies have shown that plant extracts, RNA interference (RNAi) and beneficial microbes could provide viable non-antibiotic alternatives. In this article, recent scientific advances in the biocontrol of nosemosis are summarized.
Collapse
|
17
|
Functional Properties and Antimicrobial Activity from Lactic Acid Bacteria as Resources to Improve the Health and Welfare of Honey Bees. INSECTS 2022; 13:insects13030308. [PMID: 35323606 PMCID: PMC8953987 DOI: 10.3390/insects13030308] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Honey bees play a pivotal role in the sustainability of ecosystems and biodiversity. Many factors including parasites, pathogens, pesticide residues, forage losses, and poor nutrition have been proposed to explain honey bee colony losses. Lactic acid bacteria (LAB) are normal inhabitants of the gastrointestinal tract of honey bees and their role has been consistently reported in the literature. In recent years, there have been numerous scientific evidence that the intestinal microbiota plays an essential role in honey bee health. Management strategies, based on supplementation of the gut microbiota with probiotics, may be important to increase stress tolerance and disease resistance. In this review, recent scientific advances on the use of LABs as microbial supplements in the diet of honey bees are summarized and discussed. Abstract Honey bees (Apis mellifera) are agriculturally important pollinators. Over the past decades, significant losses of wild and domestic bees have been reported in many parts of the world. Several biotic and abiotic factors, such as change in land use over time, intensive land management, use of pesticides, climate change, beekeeper’s management practices, lack of forage (nectar and pollen), and infection by parasites and pathogens, negatively affect the honey bee’s well-being and survival. The gut microbiota is important for honey bee growth and development, immune function, protection against pathogen invasion; moreover, a well-balanced microbiota is fundamental to support honey bee health and vigor. In fact, the structure of the bee’s intestinal bacterial community can become an indicator of the honey bee’s health status. Lactic acid bacteria are normal inhabitants of the gastrointestinal tract of many insects, and their presence in the honey bee intestinal tract has been consistently reported in the literature. In the first section of this review, recent scientific advances in the use of LABs as probiotic supplements in the diet of honey bees are summarized and discussed. The second section discusses some of the mechanisms by which LABs carry out their antimicrobial activity against pathogens. Afterward, individual paragraphs are dedicated to Chalkbrood, American foulbrood, European foulbrood, Nosemosis, and Varroosis as well as to the potentiality of LABs for their biological control.
Collapse
|
18
|
El Khoury S, Gauthier J, Bouslama S, Cheaib B, Giovenazzo P, Derome N. Dietary Contamination with a Neonicotinoid (Clothianidin) Gradient Triggers Specific Dysbiosis Signatures of Microbiota Activity along the Honeybee ( Apis mellifera) Digestive Tract. Microorganisms 2021; 9:microorganisms9112283. [PMID: 34835409 PMCID: PMC8619528 DOI: 10.3390/microorganisms9112283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Pesticides are increasing honeybee (Apis mellifera) death rates globally. Clothianidin neonicotinoid appears to impair the microbe–immunity axis. We conducted cage experiments on newly emerged bees that were 4–6 days old and used a 16S rRNA metataxonomic approach to measure the impact of three sublethal clothianidin concentrations (0.1, 1 and 10 ppb) on survival, sucrose syrup consumption and gut microbiota community structure. Exposure to clothianidin significantly increased mortality in the three concentrations compared to controls. Interestingly, the lowest clothianidin concentration was associated with the highest mortality, and the medium concentration with the highest food intake. Exposure to clothianidin induced significant variation in the taxonomic distribution of gut microbiota activity. Co-abundance network analysis revealed local dysbiosis signatures specific to each gut section (midgut, ileum and rectum) were driven by specific taxa. Our findings confirm that exposure to clothianidin triggers a reshuffling of beneficial strains and/or potentially pathogenic taxa within the gut, suggesting a honeybee’s symbiotic defense systems’ disruption, such as resistance to microbial colonization. This study highlights the role of weak transcriptional activity taxa in maintaining a stable honeybee gut microbiota. Finally, the early detection of gut dysbiosis in honeybees is a promising biomarker in hive management for assessing the impact exposure to sublethal xenobiotics.
Collapse
Affiliation(s)
- Sarah El Khoury
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, Québec, QC G1V 0A6, Canada
| | - Jeff Gauthier
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, Québec, QC G1V 0A6, Canada
| | - Sidki Bouslama
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, Québec, QC G1V 0A6, Canada
| | - Bachar Cheaib
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Pierre Giovenazzo
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
| | - Nicolas Derome
- Department of Biology, Laval University, Québec, QC G1V 0A6, Canada; (S.E.K.); (J.G.); (S.B.); (P.G.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, Québec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
19
|
Biosynthesis of 2-Heptanone, a Volatile Organic Compound with a Protective Role against Honey Bee Pathogens, by Hive Associated Bacteria. Microorganisms 2021; 9:microorganisms9112218. [PMID: 34835345 PMCID: PMC8624620 DOI: 10.3390/microorganisms9112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Beehives are populated by bacterial species with a protective role against honey bee pathogens thanks to the production of bioactive metabolites. These compounds are largely unexploited despite their high potential interest for pest management. This study evaluated the capability of bacterial species associated with honey bees to produce 2-heptanone, a volatile organic compound with anesthetic properties of the parasitic mite Varroa destructor. The production of this compound was quantified by SPME-GC-MS in a culture filtrate of nine bacterial strains isolated from the surface of honey bees, and the biosynthetic potential was evaluated in bacterial species associated with apiaries by searching for protein homologs putatively involved in its biosynthesis by using biocomputational tools. The findings pointed out that 2-heptanone was produced by Acetobacteraceae bacterium, Bacillus thuringiensis and Apilactobacillus kunkeei isolates in concentrations between 1.5 and 2.6 ng/mL and that its production was strain-specific. Putative methylketone synthase homologs were found in Bacillus, Gilliamella, Acetobacteraceae, Bartonella and Lactobacillaceae, and the protein sequence results were distributed in nine Sequence Similarity Network (SSN) clusters. These preliminary results support the hypothesis that 2-heptanone may act as a mediator of microbial relationships in hives and provide contributions to assess the role and biosynthetic potential of 2-heptanone in apiaries.
Collapse
|
20
|
Mogren CL, Shikano I. Microbiota, pathogens, and parasites as mediators of tritrophic interactions between insect herbivores, plants, and pollinators. J Invertebr Pathol 2021; 186:107589. [PMID: 33865846 DOI: 10.1016/j.jip.2021.107589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/09/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023]
Abstract
Insect-associated microbes, including pathogens, parasites, and symbionts, influence the interactions of herbivorous insects and pollinators with their host plants. Moreover, herbivory-induced changes in plant resource allocation and defensive chemistry can influence pollinator behavior. This suggests that the outcomes of interactions between herbivores, their microbes and host plants could have implications for pollinators. As epizootic diseases occur at high population densities, pathogen and parasite-mediated effects on plants could have landscape-level impacts on foraging pollinators. The goal of this minireview is to highlight the potential for an herbivore's multitrophic interactions to trigger plant-mediated effects on the immunity and health of pollinators. We highlight the importance of plant quality and gut microbiomes in bee health, and how caterpillars as model herbivores interact with pathogens, parasites, and symbionts to affect plant quality, which forms the centerpiece of multitrophic interactions between herbivores and pollinators. We also discuss the impacts of other herbivore-associated factors, such as agricultural inputs aimed at decreasing herbivorous pests, on pollinator microbiomes.
Collapse
Affiliation(s)
- Christina L Mogren
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, 3050 Maile Way, Gilmore Hall 310, Honolulu, HI 96822, USA
| | - Ikkei Shikano
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, 3050 Maile Way, Gilmore Hall 310, Honolulu, HI 96822, USA.
| |
Collapse
|
21
|
Nowak A, Szczuka D, Górczyńska A, Motyl I, Kręgiel D. Characterization of Apis mellifera Gastrointestinal Microbiota and Lactic Acid Bacteria for Honeybee Protection-A Review. Cells 2021; 10:cells10030701. [PMID: 33809924 PMCID: PMC8004194 DOI: 10.3390/cells10030701] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Numerous honeybee (Apis mellifera) products, such as honey, propolis, and bee venom, are used in traditional medicine to prevent illness and promote healing. Therefore, this insect has a huge impact on humans’ way of life and the environment. While the population of A. mellifera is large, there is concern that widespread commercialization of beekeeping, combined with environmental pollution and the action of bee pathogens, has caused significant problems for the health of honeybee populations. One of the strategies to preserve the welfare of honeybees is to better understand and protect their natural microbiota. This paper provides a unique overview of the latest research on the features and functioning of A. mellifera. Honeybee microbiome analysis focuses on both the function and numerous factors affecting it. In addition, we present the characteristics of lactic acid bacteria (LAB) as an important part of the gut community and their special beneficial activities for honeybee health. The idea of probiotics for honeybees as a promising tool to improve their health is widely discussed. Knowledge of the natural gut microbiota provides an opportunity to create a broad strategy for honeybee vitality, including the development of modern probiotic preparations to use instead of conventional antibiotics, environmentally friendly biocides, and biological control agents.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
- Correspondence:
| | - Daria Szczuka
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Anna Górczyńska
- Faculty of Law and Administration, University of Lodz, Kopcińskiego 8/12, 90-232 Łódź, Poland;
| | - Ilona Motyl
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| |
Collapse
|
22
|
Daisley BA, Chmiel JA, Pitek AP, Thompson GJ, Reid G. Missing Microbes in Bees: How Systematic Depletion of Key Symbionts Erodes Immunity. Trends Microbiol 2020; 28:1010-1021. [PMID: 32680791 DOI: 10.1016/j.tim.2020.06.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Pesticide exposure, infectious disease, and nutritional stress contribute to honey bee mortality and a high rate of colony loss. This realization has fueled a decades-long investigation into the single and combined effects of each stressor and their overall bearing on insect physiology. However, one element largely missing from this research effort has been the evaluation of underlying microbial communities in resisting environmental stressors and their influence on host immunity and disease tolerance. In humans, multigenerational bombardment by antibiotics is linked with many contemporary diseases. Here, we draw a parallel conclusion for the case in honey bees and suggest that chronic exposure to antimicrobial xenobiotics can systematically deplete honey bees of their microbes and hamper cross-generational preservation of host-adapted symbionts that are crucial to health.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON, N6C 2R5, Canada
| | - John A Chmiel
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON, N6C 2R5, Canada
| | - Andrew P Pitek
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Graham J Thompson
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gregor Reid
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON, N6C 2R5, Canada; Department of Surgery, Schulich School of Medicine, London, ON, N6A 5C1, Canada.
| |
Collapse
|