1
|
Villafañe DL, Maldonado RA, Bianchi JS, Kurth D, Gramajo H, Chiesa MA, Rodríguez E. Streptomyces N2A, an endophytic actinobacteria that promotes soybean growth and increases yield and seed quality under field conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112073. [PMID: 38522657 DOI: 10.1016/j.plantsci.2024.112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Sustainable agriculture based on the use of soil-beneficial microbes such as plant growth-promoting rhizobacteria (PGPR) and biocontrol agents (BCA) is gaining great consideration to reduce the use of agrochemicals for crop production. With this aim, in this study, a total of 78 actinobacteria were isolated from the rhizosphere and endosphere of soybean roots. Based on in vitro compatibility with Bradyrhizobium japonicum, the ability to produce phytohormones, siderophores, exo-enzymes, antifungal compounds and phosphate solubilization (PGPR traits), two endophytic strains, named N2A and N9, were selected to evaluate their effects on plant growth and development at greenhouse and field conditions. Greenhouse trials showed significantly promoted seedling emergence compared to control and the conventional fungicide treatment. Analysis of growth and development associated parameters at reproductive stages and maturity at greenhouse, but also and most importantly, in field experiments showed significant improvements. Plant biomass, node number, pod number, and consequently yield, were higher in plants previously treated with N2A and co-inoculated with B. japonicum compared to the conventional seed treatment. Furthermore, a significant increase in health status and vigor was observed for seeds harvested from the N2A-treated plants in relation to seeds obtained from the conventional treatment. Thus, we demonstrated that Streptomyces sp. N2A can replace traditional chemical fungicides to protect the seed during germination, allowing good implantation, but also, stimulating the growth and development of soybean crop increasing yield and seed quality at field conditions. Altogether, this supports the potential use of Streptomyces N2A as a PGPR for soybean crop production more efficiently and sustainably.
Collapse
Affiliation(s)
- David L Villafañe
- Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Rodrigo A Maldonado
- Laboratorio de EcoFisiología Vegetal (LEFIVE), Instituto de Investigaciones en Ciencias Agrarias de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IICAR-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (UNR), Parque Villarino S/N, Zavalla 2125, Santa Fe, Argentina
| | - Julieta S Bianchi
- Laboratorio de EcoFisiología Vegetal (LEFIVE), Instituto de Investigaciones en Ciencias Agrarias de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IICAR-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (UNR), Parque Villarino S/N, Zavalla 2125, Santa Fe, Argentina
| | - Daniel Kurth
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán, Argentina
| | - Hugo Gramajo
- Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - María Amalia Chiesa
- Laboratorio de EcoFisiología Vegetal (LEFIVE), Instituto de Investigaciones en Ciencias Agrarias de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IICAR-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (UNR), Parque Villarino S/N, Zavalla 2125, Santa Fe, Argentina.
| | - Eduardo Rodríguez
- Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina.
| |
Collapse
|
2
|
Zhu F, Cao MY, Zhang QP, Mohan R, Schar J, Mitchell M, Chen H, Liu F, Wang D, Fu ZQ. Join the green team: Inducers of plant immunity in the plant disease sustainable control toolbox. J Adv Res 2024; 57:15-42. [PMID: 37142184 PMCID: PMC10918366 DOI: 10.1016/j.jare.2023.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Crops are constantly attacked by various pathogens. These pathogenic microorganisms, such as fungi, oomycetes, bacteria, viruses, and nematodes, threaten global food security by causing detrimental crop diseases that generate tremendous quality and yield losses worldwide. Chemical pesticides have undoubtedly reduced crop damage; however, in addition to increasing the cost of agricultural production, the extensive use of chemical pesticides comes with environmental and social costs. Therefore, it is necessary to vigorously develop sustainable disease prevention and control strategies to promote the transition from traditional chemical control to modern green technologies. Plants possess sophisticated and efficient defense mechanisms against a wide range of pathogens naturally. Immune induction technology based on plant immunity inducers can prime plant defense mechanisms and greatly decrease the occurrence and severity of plant diseases. Reducing the use of agrochemicals is an effective way to minimize environmental pollution and promote agricultural safety. AIM OF REVIEW The purpose of this workis to offer valuable insights into the current understanding and future research perspectives of plant immunity inducers and their uses in plant disease control, ecological and environmental protection, and sustainable development of agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we have introduced the concepts of sustainable and environment-friendly concepts of green disease prevention and control technologies based on plant immunity inducers. This article comprehensively summarizes these recent advances, emphasizes the importance of sustainable disease prevention and control technologies for food security, and highlights the diverse functions of plant immunity inducers-mediated disease resistance. The challenges encountered in the potential applications of plant immunity inducers and future research orientation are also discussed.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Meng-Yao Cao
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi-Ping Zhang
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | | | - Jacob Schar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | - Huan Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
3
|
Sun W, Shahrajabian MH, Soleymani A. The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:613. [PMID: 38475460 DOI: 10.3390/plants13050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The application of biostimulants has been proven to be an advantageous tool and an appropriate form of management towards the effective use of natural resources, food security, and the beneficial effects on plant growth and yield. Plant-growth-promoting rhizobacteria (PGPR) are microbes connected with plant roots that can increase plant growth by different methods such as producing plant hormones and molecules to improve plant growth or providing increased mineral nutrition. They can colonize all ecological niches of roots to all stages of crop development, and they can affect plant growth and development directly by modulating plant hormone levels and enhancing nutrient acquisition such as of potassium, phosphorus, nitrogen, and essential minerals, or indirectly via reducing the inhibitory impacts of different pathogens in the forms of biocontrol parameters. Many plant-associated species such as Pseudomonas, Acinetobacter, Streptomyces, Serratia, Arthrobacter, and Rhodococcus can increase plant growth by improving plant disease resistance, synthesizing growth-stimulating plant hormones, and suppressing pathogenic microorganisms. The application of biostimulants is both an environmentally friendly practice and a promising method that can enhance the sustainability of horticultural and agricultural production systems as well as promote the quantity and quality of foods. They can also reduce the global dependence on hazardous agricultural chemicals. Science Direct, Google Scholar, Springer Link, CAB Direct, Scopus, Springer Link, Taylor and Francis, Web of Science, and Wiley Online Library were checked, and the search was conducted on all manuscript sections in accordance with the terms Acinetobacter, Arthrobacter, Enterobacter, Ochrobactrum, Pseudomonas, Rhodococcus, Serratia, Streptomyces, Biostimulants, Plant growth promoting rhizobactera, and Stenotrophomonas. The aim of this manuscript is to survey the effects of plant-growth-promoting rhizobacteria by presenting case studies and successful paradigms in various agricultural and horticultural crops.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ali Soleymani
- Department of Agronomy and Plant Breeding, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Plant Improvement and Seed Production Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| |
Collapse
|
4
|
Xia Y, Liu J, Chen C, Mo X, Tan Q, He Y, Wang Z, Yin J, Zhou G. The Multifunctions and Future Prospects of Endophytes and Their Metabolites in Plant Disease Management. Microorganisms 2022; 10:microorganisms10051072. [PMID: 35630514 PMCID: PMC9146654 DOI: 10.3390/microorganisms10051072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 01/27/2023] Open
Abstract
Endophytes represent a ubiquitous and magical world in plants. Almost all plant species studied by different researchers have been found to harbor one or more endophytes, which protect host plants from pathogen invasion and from adverse environmental conditions. They produce various metabolites that can directly inhibit the growth of pathogens and even promote the growth and development of the host plants. In this review, we focus on the biological control of plant diseases, aiming to elucidate the contribution and key roles of endophytes and their metabolites in this field with the latest research information. Metabolites synthesized by endophytes are part of plant disease management, and the application of endophyte metabolites to induce plant resistance is very promising. Furthermore, multi-omics should be more fully utilized in plant–microbe research, especially in mining novel bioactive metabolites. We believe that the utilization of endophytes and their metabolites for plant disease management is a meaningful and promising research direction that can lead to new breakthroughs in the development of more effective and ecosystem-friendly insecticides and fungicides in modern agriculture.
Collapse
Affiliation(s)
- Yandong Xia
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Junang Liu
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Cang Chen
- College of Life Science, Hunan Normal University, Changsha 410081, China;
| | - Xiuli Mo
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Qian Tan
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Yuan He
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Zhikai Wang
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Jia Yin
- College of Life Science, Hunan Normal University, Changsha 410081, China;
- Correspondence: (J.Y.); (G.Z.)
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
- Correspondence: (J.Y.); (G.Z.)
| |
Collapse
|
5
|
A Novel Sulfated Glycoprotein Elicitor Extracted from the Moroccan Green Seaweed Codium decorticatum Induces Natural Defenses in Tomato. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sulfated glycoproteins extracted for the first time from the Moroccan green seaweed Codium decorticatum were investigated for their ability to induce a natural defense metabolism in the roots and the upper leaves of tomato seedlings. The crude (AGB) and the purified fractions (AGP) were characterized chemically (Colorimetric assays) and structurally (SEC-MALS, GC-EI/MS, ATR-FTIR). The elicitor aqueous solutions (1 g/L) were applied by foliar spray and syringe infiltration into the internodal middle of 45-day-old tomato seedlings. Phenylalanine ammonia-lyase (PAL) activity, polyphenols, and lignin contents were measured in the roots and the leaves after 0 h, 12, 24, 48, and 72 h of treatment. The AGB and AGP extracts contained 37.67% and 48.38% of the total carbohydrates, respectively, and were mainly composed of galactose, glucose, arabinose, and a minor amount of xylose and rhamnose. They were characterized by an important molecular weight (Mw) > of 2000 × 103 g·mol−1 and a high degree of sulfation and protein (12–23% (w/w)), indicating that the extracted polysaccharides could be an arabinogalactan-rich protein present in the cell wall of the green seaweed C. decorticatum. Both crude and purified fractions exhibited an elicitor effect by inducing the PAL activity, the accumulation of phenolic compounds and lignin contents in the roots and the leaves of tomato seedlings. These responses were systemic in both the methods used (injection and foliar spray) and were mobilized throughout tissues that are not directly treated (roots and/or leaves). Regarding the elicitor activities, AGB and AGP presented globally similar patterns, which revealed the importance of crude extracts in the stimulation of plant immunity. These results suggest the new application of sulfated glycoprotein isolated from green seaweed in agriculture as inducers of natural defenses of plants.
Collapse
|
6
|
Han X, Zhang Y, Zhang Z, Xiao H, Wu L, Wu L. Antiviral agent fTDP stimulates the SA signaling pathway and enhances tobacco defense against tobacco mosaic virus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:105002. [PMID: 34955185 DOI: 10.1016/j.pestbp.2021.105002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/14/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
TEER-decreasing protein (TDP) from Flammulina velutipes was antiviral resource against tobacco mosaic virus (TMV). However, the resistance mechanisms have not been clarified. In this study, the fTDP (fusion teer-decreasing protein), obtained by prokaryotic fusion expression system, exhibited obvious protective efficacy against TMV and significantly suppressed the reproduction of TMV in tobacco. Transcriptomics and proteomics analysis showed that fTDP may interact with a receptor, activate the mitogen-activated protein kinase (MAPK) pathway and NB-ARC and increase the content of reactive oxygen species (ROS) and salicylic acid (SA), which promoted the hypersensitive response (HR) and system acquired resistance (SAR). SAR caused increased expression of catalase (CAT), pathogenesis-related protein 1 (PR1), phenylalanine ammonia lyase (PAL) and other proteins involved in pathogen defense, such as chalcone-dihydroflavone isomerase (CHI) and cytochrome P450. In conclusion, SAR was induced by fTDP to protect tobacco from TMV infection and alleviate the symptoms caused by the virus. The study provided a theoretical basis for the application of the TDP protein, which may represent a potential biopesticide.
Collapse
Affiliation(s)
- Xiaoxiao Han
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yahong Zhang
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zhiyun Zhang
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Hua Xiao
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Liping Wu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Lan Wu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
7
|
Wu Y, Zhang L, Zhou J, Zhang X, Feng Z, Wei F, Zhao L, Zhang Y, Feng H, Zhu H. Calcium-Dependent Protein Kinase GhCDPK28 Was Dentified and Involved in Verticillium Wilt Resistance in Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:772649. [PMID: 34975954 PMCID: PMC8715758 DOI: 10.3389/fpls.2021.772649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/17/2021] [Indexed: 05/12/2023]
Abstract
Verticillium dahliae is a soil-borne fungus that causes vascular wilt through the roots of plants. Verticillium wilt caused by V. dahliae is one of the main diseases in cotton producing areas of the world, resulting in huge economic losses. Breeding resistant varieties is the most economical and effective method to control Verticillium wilt. Calcium-dependent protein kinases (CDPKs) play a pivotal role in plant innate immunity, including regulation of oxidative burst, gene expression as well as hormone signal transduction. However, the function of cotton CDPKs in response to V. dahliae stress remains unexplored. In this study, 96, 44 and 57 CDPKs were identified from Gossypium hirsutum, Gossypium raimondii and Gossypium arboretum, respectively. Phylogenetic analysis showed that these CDPKs could be divided into four branches. All GhCDPKs of the same clade are generally similar in gene structure and conserved domain arrangement. Cis-acting elements related to hormones, stress response, cell cycle and development were predicted in the promoter region. The expression of GhCDPKs could be regulated by various stresses. Gh_D11G188500.1 and Gh_A11G186100.1 was up-regulated under Vd0738 and Vd991 stress. Further phosphoproteomics analysis showed that Gh_A11G186100.1 (named as GhCDPK28-6) was phosphorylated under the stress of V. dahliae. Knockdown of GhCDPK28-6 expression, the content of reactive oxygen species was increased, a series of defense responses were enhanced, and the sensitivity of cotton to V. dahliae was reduced. Moreover, overexpression of GhCDPK28-6 in Arabidopsis thaliana weakened the resistance of plants to this pathogen. Subcellular localization revealed that GhCDPK28-6 was localized in the cell membrane. We also found that GhPBL9 and GhRPL12C may interact with GhCDPK28-6. These results indicate that GhCDPK28-6 is a potential molecular target for improving resistance to Verticillium wilt in cotton. This lays a foundation for breeding disease-resistant varieties.
Collapse
Affiliation(s)
- Yajie Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Jinglong Zhou
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Xiaojian Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Feng Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- *Correspondence: Hongjie Feng,
| | - Heqin Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Heqin Zhu,
| |
Collapse
|