1
|
Jiang YH, Shi XC, Wu T, Du H, Pang YB, Zhou R, Yin HP, Herrera-Balandrano DD, Yang DJ, Lu AM, Laborda P, Polo V, Wang SY. Synthesis and antifungal activity of novel amide derivatives from quinic acid against the sweet potato pathogen Ceratocystis fimbriata. PEST MANAGEMENT SCIENCE 2025; 81:1286-1298. [PMID: 39501798 DOI: 10.1002/ps.8527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Ceratocystis fimbriata is a fungal pathogen that infects sweet potato roots, producing enormous economic losses. Cyclic polyhydroxy compound quinic acid is a common metabolite synthesized in plant tissues, including sweet potato tubers, showing weak antifungal properties. Although several O-acylated quinic acid derivatives have been synthesized and found in nature and their antifungal properties have been explored, derivatives based on modification of the carboxylic acid have never been evaluated. RESULTS In this study, amide derivatives were synthesized via linkage of amines with the carboxylic acid moiety of quinic acid. Derivatives with high dipolar moments and a low number of rotatable bonds showed greater antifungal activities toward C. fimbriata in vitro than quinic and chlorogenic acids. Derivative 5b, which was synthesized by coupling p-aminobenzoic acid (pABA) with quinic acid, had the greatest antifungal activity. 5b showed iron(II)-chelating properties and reduced ergosterol content in C. fimbriata cells, causing irregularities in the fungal cell wall and inhibiting conidia agglutination. Application of 3 mm 5b reduced black rot symptoms in sweet potatoes by 70.1%. CONCLUSIONS Collectively, derivatization of the carboxylic acid from quinic acid was demonstrated to be a suitable strategy to improve the antifungal properties of this compound. This study reveals a new efficient strategy for management of the sweet potato pathogen C. fimbriata. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, P. R. China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, P. R. China
| | - Ting Wu
- School of Life Sciences, Nantong University, Nantong, P. R. China
| | - Hao Du
- School of Life Sciences, Nantong University, Nantong, P. R. China
| | - Yi-Bo Pang
- School of Life Sciences, Nantong University, Nantong, P. R. China
| | - Rong Zhou
- School of Life Sciences, Nantong University, Nantong, P. R. China
| | - Hong-Ping Yin
- School of Life Sciences & Technology, China Pharmaceutical University, Nanjing, P. R. China
| | | | - Dong-Jing Yang
- Xuzhou Institute of Agricultural Sciences in Xuhuai District, Sweet Potato Research Institute, Xuzhou, P. R. China
| | - Ai-Min Lu
- College of Sciences, Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, P. R. China
| | - Victor Polo
- Departamento de Química Física, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, P. R. China
| |
Collapse
|
2
|
Hou LL, Kong WL, Wu XQ. Biocontrol activity and action mechanism of Pseudomonas aurantiaca ST-TJ4 against Verticillium dahliae, the causal agent of Acer truncatum wilt. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 207:106224. [PMID: 39672651 DOI: 10.1016/j.pestbp.2024.106224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/15/2024]
Abstract
Acer truncatum wilt caused by Verticillium dahliae is a severe soilborne disease that poses a threat to the cultivation of this plant in China. The present study explored the biocontrol efficiency and underlying antagonistic mechanism of Pseudomonas aurantiaca ST-TJ4 against V. dahliae. In vitro, strain ST-TJ4 exhibited excellent inhibitory effects on V. dahliae, causing mycelial deformation. This strain significantly suppressed the production of V. dahliae conidia and microsclerotia. Moreover, the application of ST-TJ4 reduced the incidence of Verticillium wilt in A. truncatum saplings in both the prevention group and the cure group. Comparative transcriptomic analyses revealed that ST-TJ4 induced differential expression of numerous genes in V. dahliae, most of which were downregulated. These differentially expressed genes were associated with cell wall-degrading enzyme activity, sterol biosynthetic processes, glutathione S-transferase activity, iron ion and sugar metabolism, and oxidoreductase activity. Further transcriptomic analyses of physiological indices indicated that ST-TJ4 significantly inhibited the synthesis of pectin lyase, endo-β-1,4-glucanase, melanin and soluble sugars of V. dahliae and had a stronger inhibitory effect under iron deficiency. Taken together, these data highlight P. aurantiaca ST-TJ4 as a promising biocontrol agent against A. truncatum Verticillium wilt.
Collapse
Affiliation(s)
- Liang-Liang Hou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Acharyya S, Kumar SH, Chouksey A, Soni N, Nazeer N, Mishra PK. The enigma of mitochondrial epigenetic alterations in air pollution-induced neurodegenerative diseases. Neurotoxicology 2024; 105:158-183. [PMID: 39374796 DOI: 10.1016/j.neuro.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The incidence of neurodegenerative diseases is a growing concern worldwide, affecting individuals from diverse backgrounds. Although these pathologies are primarily associated with aging and genetic susceptibility, their severity varies among the affected population. Numerous studies have indicated air pollution as a significant contributor to the increasing prevalence of neurodegeneration. Cohort studies have provided compelling evidence of the association between prolonged exposure to different air toxicants and cognitive decline, behavioural deficits, memory impairment, and overall neuronal health deterioration. Furthermore, molecular research has revealed that air pollutants can disrupt the body's protective mechanisms, participate in neuroinflammatory pathways, and cause neuronal epigenetic modifications. The mitochondrial epigenome is particularly interesting to the scientific community due to its potential to significantly impact our understanding of neurodegenerative diseases' pathogenesis and their release in the peripheral circulation. While protein hallmarks have been extensively studied, the possibility of using circulating epigenetic signatures, such as methylated DNA fragments, miRNAs, and genome-associated factors, as diagnostic tools and therapeutic targets requires further groundwork. The utilization of circulating epigenetic signatures holds promise for developing novel prognostic strategies, creating paramount point-of-care devices for disease diagnosis, identifying therapeutic targets, and developing clinical data-based disease models utilizing multi-omics technologies and artificial intelligence, ultimately mitigating the threat and prevalence of neurodegeneration.
Collapse
Affiliation(s)
- Sayanti Acharyya
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Sruthy Hari Kumar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Apoorva Chouksey
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India; Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
4
|
Gao F, Zhou X, Yang D, Chen J, Kgosi VT, Zhang C, Ma J, Tang W, Liang Z, Sun H. Potential Utility of Bacillus amyloliquefaciens SFB-1 as a Biocontrol Agent for Sweetpotato Black Rot Caused by Ceratocystis fimbriata. Genes (Basel) 2024; 15:1540. [PMID: 39766807 PMCID: PMC11675987 DOI: 10.3390/genes15121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Sweetpotato black rot, caused by Ceratocystis fimbriata, is a severe fungal disease in sweetpotato production. Biological control strategies represent a promising, environmentally sustainable approach to managing this disease. This study investigates the biocontrol potential of Bacillus amyloliquefaciens SFB-1 against C. fimbriata. Methods: The antagonistic activities of strain SFB-1 on C. fimbriata were assessed through in vitro assays, including evaluations of mycelial inhibition, spore germination, and mycelial morphology. Pathogenicity assays on harvested sweetpotato roots assessed lesion diameter and depth. A transcriptomic analysis of C. fimbriata exposed to strain SFB-1 was performed to explore the underlying antifungal mechanism of SFB-1 on C. fimbriata. The qRT-PCR was employed to validate the RNA-seq results. Results: In vitro assays demonstrated that strain SFB-1 inhibited C. fimbriata mycelial growth by up to 81.01%, caused mycelial swelling, and completely suppressed spore germination at 108 CFU/mL. The cell-free supernatant of strain SFB-1 also suppressed C. fimbriata growth. Pathogenicity assays revealed that strain SFB-1 treatments reduced lesion diameter and depth on harvested sweetpotato roots by over 50% compared to untreated controls. Transcriptomic analysis of C. fimbriata treated with strain SFB-1 identified 1164 differentially expressed genes, with significant alterations in genes associated with cell wall integrity, cell membrane stability, spore germination, detoxification, and antioxidant responses. The qRT-PCR validation of 16 genes confirmed the consistency with the RNA-seq results. Conclusions: B. amyloliquefaciens SFB-1 demonstrates significant biocontrol efficacy against C. fimbriata through multiple mechanisms, positioning it as a promising solution for the sustainable management of sweetpotato black rot.
Collapse
Affiliation(s)
- Fangyuan Gao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China
| | - Xiaosi Zhou
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, China
| | - Dongjing Yang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China
| | - Jingwei Chen
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China
| | - Veronica Tshegofatso Kgosi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengling Zhang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China
| | - Jukui Ma
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China
| | - Wei Tang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China
| | - Zhao Liang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China
| | - Houjun Sun
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China
| |
Collapse
|
5
|
Zhang Y, Cao X, Liu Q, Chen Y, Wang Y, Cong H, Li C, Li Y, Wang Y, Jiang J, Li L. Multi-omics analysis of Streptomyces djakartensis strain MEPS155 reveal a molecular response strategy combating Ceratocystis fimbriata causing sweet potato black rot. Food Microbiol 2024; 122:104557. [PMID: 38839221 DOI: 10.1016/j.fm.2024.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024]
Abstract
To investigate the potential antifungal mechanisms of rhizosphere Actinobacteria against Ceratocystis fimbriata in sweet potato, a comprehensive approach combining biochemical analyses and multi-omics techniques was employed in this study. A total of 163 bacterial strains were isolated from the rhizosphere soil of sweet potato. Among them, strain MEPS155, identified as Streptomyces djakartensis, exhibited robust and consistent inhibition of C. fimbriata mycelial growth in in vitro dual culture assays, attributed to both cell-free supernatant and volatile organic compounds. Moreover, strain MEPS155 demonstrated diverse plant growth-promoting attributes, including the production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, phosphorus solubilization, nitrogen fixation, and enzymatic activities such as cellulase, chitinase, and protease. Notably, strain MEPS155 exhibited efficacy against various sweet potato pathogenic fungi. Following the inoculation of strain MEPS155, a significant reduction (P < 0.05) in malondialdehyde content was observed in sweet potato slices, indicating a potential protective effect. The whole genome of MEPS155 was characterized by a size of 8,030,375 bp, encompassing 7234 coding DNA sequences and 32 secondary metabolite biosynthetic gene clusters. Transcriptomic analysis revealed 1869 differentially expressed genes in the treated group that cultured with C. fimbriata, notably influencing pathways associated with porphyrin metabolism, fatty acid biosynthesis, and biosynthesis of type II polyketide products. These alterations in gene expression are hypothesized to be linked to the production of secondary metabolites contributing to the inhibition of C. fimbriata. Metabolomic analysis identified 1469 potential differently accumulated metabolites (PDAMs) when comparing MEPS155 and the control group. The up-regulated PDAMs were predominantly associated with the biosynthesis of various secondary metabolites, including vanillin, myristic acid, and protocatechuic acid, suggesting potential inhibitory effects on plant pathogenic fungi. Our study underscores the ability of strain S. djakartensis MEPS155 to inhibit C. fimbriata growth through the production of secretory enzymes or secondary metabolites. The findings contribute to a theoretical foundation for future investigations into the role of MEPS155 in postharvest black rot prevention in sweet potato.
Collapse
Affiliation(s)
- Yongjing Zhang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Qiao Liu
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yujie Chen
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yiming Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Hao Cong
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Changgen Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yanting Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yixuan Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China.
| | - Ludan Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China.
| |
Collapse
|
6
|
Ma W, Ji J, Zhang B, Sun W, Zhao J, Zhang J, Zhang G. Antifungal Activity of Sesamol on Pestalotiopsis neglecta: Interfering with Cell Membrane and Energy Metabolism. J Fungi (Basel) 2024; 10:488. [PMID: 39057373 PMCID: PMC11278199 DOI: 10.3390/jof10070488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This paper investigated the inhibitory effect of Sesamol (Ses) on Pestalotiopsis neglecta. The potential inhibitory mechanisms were explored by observing changes in cell morphology, measuring alterations in cell membrane-related indices, as well as energy metabolism-related indices and changes in enzyme activities related to virulence. The results show that Ses completely inhibited the growth of P. neglecta at 600 μg/mL (minimum inhibitory concentration and minimum fungicidal concentration), with an EC50 of 142 ± 13.22 μg/mL. As observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), Ses treatment resulted in the breakage and crumpling of P. neglecta cell membrane and organelle lysis. Ergosterol content and the total lipid in P. neglecta treated with 300 μg/mL Ses was 91.52% and 54% of that in the control groups, respectively. In addition, spores were stained, increased leakage of intracellular constituents at 260 nm, and decreased extracellular pH. This suggests damage to the cell membrane integrity and permeability. Furthermore, Ses decreased the ATP levels and key enzymes in the tricarboxylic acid (TCA) cycle, indicating interference with the fungal energy metabolism. Moreover, the activities of polygalacturonase (PG) and endoglucanase (EG) of P. neglecta treated with 300 μg/mL of Ses were only 28.20% and 29.13% of that in the control groups, respectively, indicating that Ses can reduce the virulence of P. neglecta. In conclusion, our results show that Ses should be considered as a potential plant-derived fungicide due to its ability to disrupt the morphology of P. neglecta, damage cell membrane integrity and permeability in P. neglecta, interfere with energy metabolism, and reduce its virulence, ultimately affecting the fungal growth.
Collapse
Affiliation(s)
- Weihu Ma
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China; (W.M.); (J.J.); (W.S.); (J.Z.)
| | - Jingyu Ji
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China; (W.M.); (J.J.); (W.S.); (J.Z.)
| | - Bowen Zhang
- School of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China;
| | - Wenzhuo Sun
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China; (W.M.); (J.J.); (W.S.); (J.Z.)
| | - Jinyan Zhao
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China; (W.M.); (J.J.); (W.S.); (J.Z.)
| | - Jie Zhang
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Guocai Zhang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China; (W.M.); (J.J.); (W.S.); (J.Z.)
| |
Collapse
|
7
|
Hu X, Shi H, Zhang Z, Bai C. Antifungal effects of volatile organic compounds produced by Trichoderma hamatum against Neocosmospora solani. Lett Appl Microbiol 2024; 77:ovae063. [PMID: 38942473 DOI: 10.1093/lambio/ovae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/28/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024]
Abstract
Neocosmospora solani causes Fusarium wilt disease and root rot, which are serious problems worldwide. To determine the growth inhibition of Neocosmospora solani by Trichoderma hamatum volatile organic compounds (VOCs), the major chemical components of Trichoderma hamatum VOCs and the differences in their contents at different times were analysed, and the activity of these components was evaluated. The antifungal activity of Trichoderma hamatum was measured by a screening test, as Trichoderma hamatum exhibited strong antagonism against Neocosmospora solani in vitro. The double plate technique was used to verify the activity of Trichoderma hamatum VOCs, and the inhibition rate was 63.77%. Neocosmospora solani mycelia were uneven and expanded, the contents of the cells leaked, and the mycelia shrank and presented a diaphragm in the hyphae upon Trichoderma hamatum VOCs treatment. Trichoderma hamatum VOCs and their contents at different times were analysed by using gas chromatography-mass spectrometry. 6-Pentyl-2H-pyran-2-one clearly presented in greater amounts than the other components on day 3, 4, 5, and 6. VOCs from Trichoderma hamatum exhibited evident effects on the percentage of healthy fruit after day 3. Moreover, Trichoderma hamatum can improve the biological control of diseases caused by soilborne pathogens, and can be applied in biocontrol fields.
Collapse
Affiliation(s)
- Xian Hu
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, P.R. China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Hongan Shi
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, P.R. China
| | - Zhilin Zhang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, P.R. China
| | - Cuihua Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P.R. China
| |
Collapse
|
8
|
Tang T, Wang F, Huang H, Xie N, Guo J, Guo X, Duan Y, Wang X, Wang Q, You J. Antipathogenic Activities of Volatile Organic Compounds Produced by Bacillus velezensis LT1 against Sclerotium rolfsii LC1, the Pathogen of Southern Blight in Coptis chinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10282-10294. [PMID: 38657235 DOI: 10.1021/acs.jafc.4c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This study explores the antipathogenic properties of volatile organic compounds (VOCs) produced by Bacillus velezensis LT1, isolated from the rhizosphere soil of Coptis chinensis. The impact of these VOCs on the mycelial growth of Sclerotium rolfsii LC1, the causative agent of southern blight in C. chinensis, was evaluated using a double Petri-dish assay. The biocontrol efficacy of these VOCs was further assessed through leaf inoculation and pot experiments. Antifungal VOCs were collected using headspace solid-phase microextraction (SPME), and their components were identified via gas chromatography-mass spectrometry (GC-MS). The results revealed that the VOCs significantly inhibited the mycelial growth and sclerotia germination of S. rolfsii LC1 and disrupted the morphological integrity of fungal mycelia. Under the influence of these VOCs, genes associated with chitin synthesis were upregulated, while those related to cell wall degrading enzymes were downregulated. Notably, 2-dodecanone and 2-undecanone exhibited inhibition rates of 81.67% and 80.08%, respectively. This research provides a novel approach for the prevention and management of southern blight in C. chinensis, highlighting the potential of microbial VOCs in biocontrol strategies.
Collapse
Affiliation(s)
- Tao Tang
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Fanfan Wang
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Houyun Huang
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Nengneng Xie
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Jie Guo
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Xiaoliang Guo
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Yuanyuan Duan
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Xiaoyue Wang
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Qingfang Wang
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Jingmao You
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| |
Collapse
|
9
|
Cong H, Sun Y, Li C, Zhang Y, Wang Y, Ma D, Jiang J, Li L, Li L. The APSES transcription factor CfSwi6 is required for growth, cell wall integrity, and pathogenicity of Ceratocystis fimbriata. Microbiol Res 2024; 281:127624. [PMID: 38295680 DOI: 10.1016/j.micres.2024.127624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Cell wall integrity (CWI) is crucial for the growth, development, and host invasion of pathogenic fungi. The APSES transcription factor Swi6 in fungi plays a role in mediating cell wall integrity through the mitogen-activated protein kinase (MAPK) signaling pathway. Ceratocystis fimbriata is a notorious pathogenic fungus responsible for causing black rot in sweet potatoes. In this study, an orthologous APSES transcription factor Swi6 (CfSwi6) downstream of the CWI regulatory pathway in C. fimbriata was characterized. Deletion of CfSWI6 leads to impaired hyphal development, conidiation, and compromised cell wall integrity, resulting in a significant reduction in virulence. Transcriptome analysis revealed the involvement of CfSWI6 in various pathways, including the MAPK pathway, DNA synthesis and stress response. ChIP-seq data provided predictions of potential target genes regulated by CfSwi6. Through yeast one-hybrid, we confirmed the direct binding of CfSwi6 to the promoter of the chitin synthetase gene. In summary, these findings indicated that CfSwi6 plays an important role in the growth, development, and pathogenicity of C. fimbriata. This study provides new insights into the pathogenic mechanism of C. fimbriata in sweet potato and inspires potential strategies to control sweet potato black rot.
Collapse
Affiliation(s)
- Hao Cong
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yong Sun
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Changgen Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yongjing Zhang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yiming Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Daifu Ma
- Chinese Academy of Agricultural Sciences Sweet Potato Research Institute, Xuzhou, Jiangsu 221131, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Ludan Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
10
|
Deng H, Wang F, Wu Q, Sun H, Ma J, Ni R, Li Z, Zhang L, Zhang J, Liu M. Novel Multiresistant Osmotin-like Protein from Sweetpotato as a Promising Biofungicide to Control Ceratocystis fimbriata by Destroying Spores through Accumulation of Reactive Oxygen Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1487-1499. [PMID: 38215405 DOI: 10.1021/acs.jafc.3c07663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Osmotin-like proteins (OLPs) play an important role in host-plant defense. In this study, a novel multiresistant OLP (IbOLP1) was screened from sweetpotato (Ipomoea batatas) with a molecular weight of 26.3 kDa. The expression level of IbOLP1 was significantly higher in resistant cultivars than susceptible ones after inoculation with Ceratocystis fimbriata, which causes black rot disease in sweetpotato. The expression of IbOLP1 in Pichia pastoris led to the lysis of yeast cells themselves. The recombinant IbOLP1 displayed antifungal, antibacterial, and antinematode activity and stability. IbOLP1 could restrain the mycelial growth and lyse spores of C. fimbriata, distinctly reducing the incidence of black rot in sweetpotato. The IbOLP1 can trigger the apoptosis of black rot spores by elevating the intracellular levels of reactive oxygen species. Collectively, these findings suggest that IbOLP1 can be used to develop natural antimicrobial resources instead of chemical agents and generate new, disease-resistant germplasm.
Collapse
Affiliation(s)
- Huangyue Deng
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Fangrui Wang
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Qian Wu
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Houjun Sun
- Xuzhou Institute of Agricultural Sciences in Jiangsu, Xuhuai District, Xuzhou, Jiangsu Province 221131, China
| | - Jukui Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu, Xuhuai District, Xuzhou, Jiangsu Province 221131, China
| | - Rui Ni
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Zongyun Li
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Liming Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province 250100, China
| | - Jian Zhang
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Meiyan Liu
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| |
Collapse
|
11
|
Chen X, Zhang M, Tang L, Huang S, Guo T, Li Q. Screening and characterization of biocontrol bacteria isolated from Ageratum conyzoides against Collectotrichum fructicola causing Chinese plum ( Prunus salicina Lindl.) anthracnose. Front Microbiol 2023; 14:1296755. [PMID: 38130944 PMCID: PMC10734640 DOI: 10.3389/fmicb.2023.1296755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Chinese plum (Prunus salicina Lindl.) is a nutritionally and economically important stone fruit widely grown around the world. Anthracnose, caused by Collectotrichum spp., is one of the primary biotic stress factors limiting plum production. Medicinal plants may harbor rhizospheric or endophytic microorganisms that produce bioactive metabolites that can be used as anthracnose biocontrol agents. Here, 27 bacterial isolates from the medicinal plant A. conyzoides with diverse antagonistic activities against C. fructicola were screened. Based on morphological, physiological, biochemical, and molecular characterization, 25 of these isolates belong to different species of genus Bacillus, one to Pseudomonas monsensis, and one more to Microbacterium phyllosphaerae. Eight representative strains showed high biocontrol efficacy against plum anthracnose in a pot experiment. In addition, several Bacillus isolates showed a broad spectrum of inhibitory activity against a variety of fungal phytopathogens. Analysis of the volatile organic compound profile of these eight representative strains revealed a total of 47 compounds, most of which were ketones, while the others included alkanes, alkenes, alcohols, pyrazines, and phenols. Overall, this study confirmed the potential value of eight bacterial isolates for development as anthracnose biocontrol agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Qili Li
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
12
|
Zhu Z, Yang C, Keyhani NO, Liu S, Pu H, Jia P, Wu D, Stevenson PC, Fernández-Grandon GM, Pan J, Chen Y, Guan X, Qiu J. Characterization of Terpenoids from the Ambrosia Beetle Symbiont and Laurel Wilt Pathogen Harringtonia lauricola. J Fungi (Basel) 2023; 9:1175. [PMID: 38132776 PMCID: PMC10744799 DOI: 10.3390/jof9121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Little is known concerning terpenoids produced by members of the fungal order Ophiostomales, with the member Harringtonia lauricola having the unique lifestyle of being a beetle symbiont but potentially devastating tree pathogen. Nine known terpenoids, including six labdane diterpenoids (1-6) and three hopane triterpenes (7-9), were isolated from H. lauricola ethyl acetate (EtOAc) extracts for the first time. All compounds were tested for various in vitro bioactivities. Six compounds, 2, 4, 5, 6, 7, and 9, are described functionally. Compounds 2, 4, 5, and 9 expressed potent antiproliferative activity against the MCF-7, HepG2 and A549 cancer cell lines, with half-maximal inhibitory concentrations (IC50s) ~12.54-26.06 μM. Antimicrobial activity bioassays revealed that compounds 4, 5, and 9 exhibited substantial effects against Gram-negative bacteria (Escherichia coli and Ralstonia solanacearum) with minimum inhibitory concentration (MIC) values between 3.13 and 12.50 μg/mL. Little activity was seen towards Gram-positive bacteria for any of the compounds, whereas compounds 2, 4, 7, and 9 expressed antifungal activities (Fusarium oxysporum) with MIC values ranging from 6.25 to 25.00 μg/mL. Compounds 4, 5, and 9 also displayed free radical scavenging abilities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide (O2-), with IC50 values of compounds 2, 4, and 6 ~3.45-14.04 μg/mL and 22.87-53.31 μg/mL towards DPPH and O2-, respectively. These data provide an insight into the biopharmaceutical potential of terpenoids from this group of fungal insect symbionts and plant pathogens.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Chenjie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA;
| | - Sen Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Huili Pu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Peisong Jia
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Dongmei Wu
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China;
| | - Philip C. Stevenson
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (P.C.S.); (G.M.F.-G.)
| | | | - Jieming Pan
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China;
| | - Yuxi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Xiayu Guan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junzhi Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| |
Collapse
|
13
|
Yang D, Bian X, Kim HS, Jin R, Gao F, Chen J, Ma J, Tang W, Zhang C, Sun H, Xie Y, Li Z, Kwak SS, Ma D. IbINV Positively Regulates Resistance to Black Rot Disease Caused by Ceratocystis fimbriata in Sweet Potato. Int J Mol Sci 2023; 24:16454. [PMID: 38003642 PMCID: PMC10671118 DOI: 10.3390/ijms242216454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Black rot disease, caused by Ceratocystis fimbriata Ellis & Halsted, severely affects both plant growth and post-harvest storage of sweet potatoes. Invertase (INV) enzymes play essential roles in hydrolyzing sucrose into glucose and fructose and participate in the regulation of plant defense responses. However, little is known about the functions of INV in the growth and responses to black rot disease in sweet potato. In this study, we identified and characterized an INV-like gene, named IbINV, from sweet potato. IbINV contained a pectin methylesterase-conserved domain. IbINV transcripts were most abundant in the stem and were significantly induced in response to C. fimbriata, salicylic acid, and jasmonic acid treatments. Overexpressing IbINV in sweet potato (OEV plants) led to vigorous growth and high resistance to black rot disease, while the down-regulation of IbINV by RNA interference (RiV plants) resulted in reduced plant growth and high sensitivity to black rot disease. Furthermore, OEV plants contained a decreased sucrose content and increased hexoses content, which might be responsible for the increased INV activities; not surprisingly, RiV plants showed the opposite effects. Taken together, these results indicate that IbINV positively regulates plant growth and black rot disease resistance in sweet potato, mainly by modulating sugar metabolism.
Collapse
Affiliation(s)
- Dongjing Yang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Xiaofeng Bian
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea;
| | - Rong Jin
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Fangyuan Gao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Jingwei Chen
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Jukui Ma
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Wei Tang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Chengling Zhang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Houjun Sun
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Yiping Xie
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Zongyun Li
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China;
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea;
| | - Daifu Ma
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| |
Collapse
|
14
|
Zhu X, Ma K, Sun M, Zhang J, Liu L, Niu S. Isolation and identification of pathogens of Morchella sextelata bacterial disease. Front Microbiol 2023; 14:1231353. [PMID: 38029130 PMCID: PMC10657878 DOI: 10.3389/fmicb.2023.1231353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Morel mushroom (Morchella spp.) is a rare edible and medicinal fungus distributed worldwide. It is highly desired by the majority of consumers. Bacterial diseases have been commonly observed during artificial cultivation of Morchella sextelata. Bacterial pathogens spread rapidly and cause a wide range of infections, severely affecting the yield and quality of M. sextelata. In this study, two strains of bacterial pathogens, named M-B and M-5, were isolated, cultured, and purified from the tissues of the infected M. sextelata. Koch's postulates were used to determine the pathogenicity of bacteria affecting M. sextelata, and the pathogens were identified through morphological observation, physiological and biochemical analyses, and 16S rRNA gene sequence analysis. Subsequently, the effect of temperature on the growth of pathogenic bacteria, the inhibitory effect of the bacteria on M. sextelata on plates, and the changes in mycelial morphology of M. sextelata mycelium were analyzed when M. sextelata mycelium was double-cultured with pathogenic bacteria on plates. The results revealed that M-B was Pseudomonas chlororaphis subsp. aureofaciens and M-5 was Bacillus subtilis. Strain M-B started to multiply at 10-15°C, and strain M-5 started at 15-20°C. On the plates, the pathogenic bacteria also produced significant inhibition of M. sextelata mycelium, and the observation of mycelial morphology under the scanning electron microscopy revealed that the inhibited mycelium underwent obvious drying and crumpling, and the healthy mycelium were more plump. Thus, this study clarified the pathogens, optimal growth environment, and characteristics of M. sextelata bacterial diseases, thereby providing valuable basic data for the disease prevention and control of Morchella production.
Collapse
|
15
|
Nguyen TP, Meng DR, Chang CH, Su PY, Ou CA, Hou PF, Sung HM, Chou CH, Ohme-Takagi M, Huang HJ. Antifungal mechanism of volatile compounds emitted by Actinomycetota Paenarthrobacter ureafaciens from a disease-suppressive soil on Saccharomyces cerevisiae. mSphere 2023; 8:e0032423. [PMID: 37750721 PMCID: PMC10597458 DOI: 10.1128/msphere.00324-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023] Open
Abstract
Increasing evidence suggests that in disease-suppressive soils, microbial volatile compounds (mVCs) released from bacteria may inhibit the growth of plant-pathogenic fungi. However, the antifungal activities and molecular responses of fungi to different mVCs remain largely undescribed. In this study, we first evaluated the responses of pathogenic fungi to treatment with mVCs from Paenarthrobacter ureafaciens. Then, we utilized the well-characterized fungal model organism Saccharomyces cerevisiae to study the potential mechanistic effects of the mVCs. Our data showed that exposure to P. ureafaciens mVCs leads to reduced growth of several pathogenic fungi, and in yeast cells, mVC exposure prompts the accumulation of reactive oxygen species. Further experiments with S. cerevisiae deletion mutants indicated that Slt2/Mpk1 and Hog1 MAPKs play major roles in the yeast response to P. ureafaciens mVCs. Transcriptomic analysis revealed that exposure to mVCs was associated with 1,030 differentially expressed genes (DEGs) in yeast. According to gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses, many of these DEGs are involved in mitochondrial dysfunction, cell integrity, mitophagy, cellular metabolism, and iron uptake. Genes encoding antimicrobial proteins were also significantly altered in the yeast after exposure to mVCs. These findings suggest that oxidative damage and mitochondrial dysfunction are major contributors to the fungal toxicity of mVCs. Furthermore, our data showed that cell wall, antioxidant, and antimicrobial defenses are induced in yeast exposed to mVCs. Thus, our findings expand upon previous research by delineating the transcriptional responses of the fungal model. IMPORTANCE Since the use of bacteria-emitted volatile compounds in phytopathogen control is of considerable interest, it is important to understand the molecular mechanisms by which fungi may adapt to microbial volatile compounds (mVCs). Paenarthrobacter ureafaciens is an isolated bacterium from disease-suppressive soil that belongs to the Actinomycetota phylum. P. ureafaciens mVCs showed a potent antifungal effect on phytopathogens, which may contribute to disease suppression in soil. However, our knowledge about the antifungal mechanism of mVCs is limited. This study has proven that mVCs are toxic to fungi due to oxidative stress and mitochondrial dysfunction. To deal with mVC toxicity, antioxidants and physical defenses are required. Furthermore, iron uptake and CAP proteins are required for antimicrobial defense, which is necessary for fungi to deal with the thread from mVCs. This study provides essential foundational knowledge regarding the molecular responses of fungi to inhibitory mVCs.
Collapse
Affiliation(s)
- Tri-Phuong Nguyen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - De-Rui Meng
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Han Chang
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
| | - Pei-Yu Su
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chieh-An Ou
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Fu Hou
- Kaohsiung District Agricultural Research and Extension Station, Pingtung, Taiwan
| | - Huang-Mo Sung
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chang-Hung Chou
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Masaru Ohme-Takagi
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
| |
Collapse
|
16
|
Xu R, Huang QY, Shen WH, Li XP, Zheng LP, Wang JW. Volatiles of Shiraia fruiting body-associated Pseudomonas putida No.24 stimulate fungal hypocrellin production. Synth Syst Biotechnol 2023; 8:427-436. [PMID: 37409170 PMCID: PMC10319174 DOI: 10.1016/j.synbio.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023] Open
Abstract
Hypocrellins are major bioactive perylenequinones from Shiraia fruiting bodies and have been developed as efficient photosensitizers for photodynamic therapy. Pseudomonas is the second dominant genus inside Shiraia fruiting bodies, but with less known actions on the host fungus. In this work, the effects of bacterial volatiles from the Shiraia-associated Pseudomonas on fungal hypocrellin production were investigated. Pseudomonas putida No.24 was the most active to promote significantly accumulation of Shiraia perylenequinones including hypocrellin A (HA), HC, elsinochrome A (EA) and EC. Headspace analysis of the emitted volatiles revealed dimethyl disulfide as one of active compounds to promote fungal hypocrellin production. The bacterial volatiles induced an apoptosis in Shiraia hyphal cell, which was associated with the generation of reactive oxygen species (ROS). ROS generation was proved to mediate the volatile-induced membrane permeability and up-regulation of gene expressions for hypocrellin biosynthesis. In the submerged volatile co-culture, the bacterial volatiles stimulated not only HA content in mycelia, but also HA secretion into the medium, leading to the enhanced HA production to 249.85 mg/L, about 2.07-fold over the control. This is the first report on the regulation of Pseudomonas volatiles on fungal perylenequinone production. These findings could be helpful to understand the roles of bacterial volatiles in fruiting bodies and also provide new elicitation method using bacterial volatiles to stimulate fungal secondary metabolite production.
Collapse
Affiliation(s)
- Rui Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Qun Yan Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Li Ping Zheng
- Department of Horticultural Sciences, Soochow University, Suzhou, 215123, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| |
Collapse
|
17
|
Liu Q, Li L, Chen Y, Wang S, Xue L, Meng W, Jiang J, Cao X. Diversity of Endophytic Microbes in Taxus yunnanensis and Their Potential for Plant Growth Promotion and Taxane Accumulation. Microorganisms 2023; 11:1645. [PMID: 37512818 PMCID: PMC10383522 DOI: 10.3390/microorganisms11071645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Taxus spp. are ancient tree species that have survived from the Quaternary glacier period, and their metabolites, such as taxol, have been used as anticancer drugs globally. Plant-endophytic microbial interaction plays a crucial role in exerting a profound impact on host growth and secondary metabolite synthesis. In this study, high-throughput sequencing was employed to explore endophytic microbial diversity in the roots, stems, and leaves of the Taxus yunnanensis (T. yunnanensis). The analysis revealed some dominant genera of endophytic bacteria, such as Pseudomonas, Neorhizobium, Acidovorax, and Flavobacterium, with Cladosporium, Phyllosticta, Fusarium, and Codinaeopsis as prominent endophytic fungi genera. We isolated 108 endophytic bacteria and 27 endophytic fungi from roots, stems, and leaves. In vitro assays were utilized to screen for endophytic bacteria with growth-promoting capabilities, including IAA production, cellulase, siderophore production, protease and ACC deaminase activity, inorganic phosphate solubilization, and nitrogen fixation. Three promising strains, Kocuria sp. TRI2-1, Micromonospora sp. TSI4-1, and Sphingomonas sp. MG-2, were selected based on their superior growth-promotion characteristics. These strains exhibited preferable plant growth promotion when applied to Arabidopsis thaliana growth. Fermentation broths of these three strains were also found to significantly promote the accumulation of taxanes in T. yunnanensis stem cells, among which strain TSI4-1 demonstrated outstanding increase potentials, with an effective induction of taxol, baccatin III, and 10-DAB contents. After six days of treatment, the contents of these metabolites were 3.28 times, 2.23 times, and 2.17 times the initial amounts, reaching 8720, 331, and 371 ng/g of dry weight of stem cells, respectively. These findings present new insight into the industrialization of taxol production through Taxus stem cell fermentation, thereby promoting the conservation of wild Taxus resources by maximizing their potential economic benefits.
Collapse
Affiliation(s)
- Qiao Liu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Ludan Li
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yujie Chen
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Sai Wang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Lina Xue
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Weiying Meng
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Jihong Jiang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiaoying Cao
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
18
|
Yun T, Jing T, Zang X, Zhou D, Li K, Zhao Y, Wang W, Xie J. Antimicrobial mechanisms and secondary metabolite profiles of Streptomyces hygroscopicus subsp. hygroscopicus 5-4 against banana fusarium wilt disease using metabolomics. Front Microbiol 2023; 14:1159534. [PMID: 37362932 PMCID: PMC10289025 DOI: 10.3389/fmicb.2023.1159534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Fusarium wilt of bananas (FWB) is seriously affecting the sustainable development of the banana industry and is caused by the devastating soil-borne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Biological control is a promising strategy for controlling Fusarium wilt in bananas. We previously identified Streptomyces hygroscopicus subsp. hygroscopicus 5-4 with strong antifungal activity against the FWB. The most possible antimicrobial mechanism of strain 5-4 was explored using the metabolomics approach, light microscopy imaging, and transmission electron microscopy (TEM). The membrane integrity and ultrastructure of Foc TR4 was damaged after extract treatment, which was supported by the degradation of mycelium, soluble protein content, extracellular reducing sugar content, NADH oxidase activity, malondialdehyde content, mitochondrial membrane potential, and mitochondrial respiratory chain complex enzyme activity. The extracts of strain 5-4 cultivated at different times were characterized by a liquid chromatography-mass spectrometer (LC-MS). 647 known metabolites were detected in the extracts of strains 5-4. Hygromycin B, gluten exorphin B4, torvoside G, (z)-8-tetradecenal, piperitoside, sarmentosin, pubescenol, and other compounds were the main differential metabolites on fermentation culture for 7 days. Compared with strain 5-4 extracts, hygromycin B inhibited the mycelial growth of Foc TR4, and the EC50 concentration was 7.4 μg/mL. These results showed that strain 5-4 could destroy the cell membrane of Foc TR4 to inhibit the mycelial growth, and hygromycin B may be the key antimicrobial active metabolite. Streptomyces hygroscopicus subsp. hygroscopicus 5-4 might be a promising candidate strain to control the FWB and provide a scientific basis for the practical application of hygromycin B as a biological control agent.
Collapse
Affiliation(s)
- Tianyan Yun
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Tao Jing
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Xiaoping Zang
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Dengbo Zhou
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Kai Li
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Yankun Zhao
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Wei Wang
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Jianghui Xie
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| |
Collapse
|
19
|
Liu M, Meng Q, Wang S, Yang K, Tian J. Research progress on postharvest sweet potato spoilage fungi Ceratocystis fimbriata and control measures. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
20
|
Gur’eva YA, Zalevskaya OA, Nikolaeva NS, Aleksandrova YR, Yandulova EY, Neganova ME, Slepukhin PA, Kutchin AV. Chiral zinc complexes with terpene derivatives of ethylenediamine: synthesis and biological activity. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
21
|
El-Saadony MT, Saad AM, Soliman SM, Salem HM, Ahmed AI, Mahmood M, El-Tahan AM, Ebrahim AAM, Abd El-Mageed TA, Negm SH, Selim S, Babalghith AO, Elrys AS, El-Tarabily KA, AbuQamar SF. Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:923880. [PMID: 36275556 PMCID: PMC9583655 DOI: 10.3389/fpls.2022.923880] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/24/2022] [Indexed: 05/14/2023]
Abstract
Plant diseases and pests are risk factors that threaten global food security. Excessive chemical pesticide applications are commonly used to reduce the effects of plant diseases caused by bacterial and fungal pathogens. A major concern, as we strive toward more sustainable agriculture, is to increase crop yields for the increasing population. Microbial biological control agents (MBCAs) have proved their efficacy to be a green strategy to manage plant diseases, stimulate plant growth and performance, and increase yield. Besides their role in growth enhancement, plant growth-promoting rhizobacteria/fungi (PGPR/PGPF) could suppress plant diseases by producing inhibitory chemicals and inducing immune responses in plants against phytopathogens. As biofertilizers and biopesticides, PGPR and PGPF are considered as feasible, attractive economic approach for sustainable agriculture; thus, resulting in a "win-win" situation. Several PGPR and PGPF strains have been identified as effective BCAs under environmentally controlled conditions. In general, any MBCA must overcome certain challenges before it can be registered or widely utilized to control diseases/pests. Successful MBCAs offer a practical solution to improve greenhouse crop performance with reduced fertilizer inputs and chemical pesticide applications. This current review aims to fill the gap in the current knowledge of plant growth-promoting microorganisms (PGPM), provide attention about the scientific basis for policy development, and recommend further research related to the applications of PGPM used for commercial purposes.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Soliman M. Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Alshaymaa I. Ahmed
- Department of Agricultural Microbiology, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, China
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Alia A. M. Ebrahim
- Jiangsu Key Laboratory for Microbes and Genomics, School, of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Shaimaa H. Negm
- Department of Home Economic, Specific Education Faculty, Port Said University, Port Said, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed S. Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
22
|
Effects of Volatile Organic Compounds Produced by Pseudomonas aurantiaca ST-TJ4 against Verticillium dahliae. J Fungi (Basel) 2022; 8:jof8070697. [PMID: 35887453 PMCID: PMC9315757 DOI: 10.3390/jof8070697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/26/2022] [Indexed: 02/04/2023] Open
Abstract
Verticillium dahliae is one of the most destructive fungal pathogens, causing substantial economic losses in agriculture and forestry. The use of plant growth-promoting rhizobacteria (PGPR) is an effective and environmentally friendly strategy for controlling diseases caused by V. dahliae. In this study, 90 mm in diameter Petri plates were used to test the effect of volatile organic compounds (VOCs) produced by different concentrations of Pseudomonasaurantiaca ST-TJ4 cells suspension on V. dahliae mycelia radial growth and biomass. The mycelial morphology was observed by using scanning electron microscopy. The conidia germination and microsclerotia formation of V. dahliae were evaluated. The VOCs with antifungal activity were collected by headspace solid-phase microextraction (SPME), and their components were analyzed by gas chromatography-mass spectrometry (GC-MS). The VOCs produced by strain ST-TJ4 significantly inhibited the growth of mycelium of V. dahliae. The morphology of the hyphae was rough and wrinkled when exposed to VOCs. The VOCs of strain ST-TJ4 have a significant inhibitory effect on V. dahliae conidia germination and microsclerotia formation. At the same time, the VOCs also reduce the expression of genes related to melanin synthesis in V. dahliae. In particular, the expression of the hydrophobin gene (VDAG-02273) was down-regulated the most, about 67-fold. The VOCs effectively alleviate the severity of cotton root disease. In the volatile profile of strain ST-TJ4, 2-undecanone and 1-nonanol assayed in the range 10–200 µL per plate revealed a significant inhibitory effect on V. dahliae mycelial radial growth. These compounds may be useful to devise new control strategies for control of Verticillium wilt disease caused by V. dahliae.
Collapse
|
23
|
Wu J, Pang L, Zhang X, Lu X, Yin L, Lu G, Cheng J. Early Discrimination and Prediction of C. fimbriata-Infected Sweetpotatoes during the Asymptomatic Period Using Electronic Nose. Foods 2022; 11:foods11131919. [PMID: 35804741 PMCID: PMC9265781 DOI: 10.3390/foods11131919] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Sweetpotato is prone to disease caused by C. fimbriata without obvious lesions on the surface in the early period of infection. Therefore, it is necessary to explore the possibility of developing an efficient early disease detection method for sweetpotatoes that can be used before symptoms are observed. In this study, sweetpotatoes were inoculated with C. fimbriata and stored for different lengths of time. The total colony count was detected every 8 h; HS-SPME/GC–MS and E-nose were used simultaneously to detect volatile compounds. The results indicated that the growth of C. fimbriata entered the exponential phase at 48 h, resulting in significant differences in concentrations of volatile compounds in infected sweetpotatoes at different times, especially toxic ipomeamarone in ketones. The contents of volatile compounds were related to the responses of the sensors. E-nose was combined with multiple chemometrics methods to discriminate and predict infected sweetpotatoes at 0 h, 48 h, 64 h, and 72 h. Among the methods used, linear discriminant analysis (LDA) had the best discriminant effect, with sensitivity, specificity, precision, and accuracy scores of 100%. E-nose combined with K-nearest neighbours (KNN) achieved the best predictions for ipomeamarone contents and total colony counts. This study illustrates that E-nose is a feasible and promising technology for the early detection of C. fimbriata infection in sweetpotatoes during the asymptomatic period.
Collapse
|
24
|
Kong WL, Wang WY, Zuo SH, Wu XQ. Genome Sequencing of Rahnella victoriana JZ-GX1 Provides New Insights Into Molecular and Genetic Mechanisms of Plant Growth Promotion. Front Microbiol 2022; 13:828990. [PMID: 35464970 PMCID: PMC9020876 DOI: 10.3389/fmicb.2022.828990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
Genomic information for bacteria within the genus Rahnella remains limited. Rahnella sp. JZ-GX1 was previously isolated from the Pinus massoniana rhizosphere in China and shows potential as a plant growth-promoting (PGP) bacterium. In the present work, we combined the GridION Nanopore ONT and Illumina sequencing platforms to obtain the complete genome sequence of strain JZ-GX1, and the application effects of the strain in natural field environment was assessed. The whole genome of Rahnella sp. JZ-GX1 comprised a single circular chromosome (5,472,828 bp, G + C content of 53.53%) with 4,483 protein-coding sequences, 22 rRNAs, and 77 tRNAs. Based on whole genome phylogenetic and average nucleotide identity (ANI) analysis, the JZ-GX1 strain was reidentified as R. victoriana. Genes related to indole-3-acetic acid (IAA), phosphorus solubilization, nitrogen fixation, siderophores, acetoin, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, gamma-aminobutyric acid (GABA) production, spermidine and volatile organic compounds (VOCs) biosynthesis were present in the genome of strain JZ-GX1. In addition, these functions were also confirmed by in vitro experiments. Importantly, compared to uninoculated control plants, Pyrus serotina, Malus spectabilis, Populus euramericana (Dode) Guinier cv. “San Martino” (I-72 poplar) and Pinus elliottii plants inoculated with strain JZ-GX1 showed increased heights and ground diameters. These findings improve our understanding of R. victoriana JZ-GX1 as a potential biofertilizer in agriculture.
Collapse
Affiliation(s)
- Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Wei-Yu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Sheng-Han Zuo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
25
|
Li Q, Zhao Y, Zhu X, Xie Y. Antifungal effect of
o
‐vanillin on mitochondria of
Aspergillus flavus
: ultrastructure and TCA cycle are destroyed. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qian Li
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Ying Zhao
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Xiaoman Zhu
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Yanli Xie
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| |
Collapse
|
26
|
Antifungal volatile organic compounds from Streptomyces setonii WY228 control black spot disease of sweet potato. Appl Environ Microbiol 2022; 88:e0231721. [PMID: 35108080 DOI: 10.1128/aem.02317-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Volatile organic compounds (VOCs) produced by microorganisms are considered as promising environmental-safety fumigants for controlling postharvest diseases. Ceratocystis fimbriata, the pathogen of black spot disease, seriously affects the quality and yield of sweet potato in the field and postharvest. This study tested the effects of VOCs produced by Streptomyces setonii WY228 on the control of C. fimbriata in vitro and in vivo. The VOCs exhibited strong antifungal activity and significantly inhibited the growth of C. fimbriata. During the 20-days storage, VOCs fumigation significantly controlled the occurrence of pathogen, increased the content of antioxidant and defense-related enzymes and flavonoids, and boosted the starch content so as to maintain the quality of sweet potato. Headspace analysis showed that volatiles 2-ethyl-5-methylpyrazine and dimethyl disulfide significantly inhibited the mycelial growth and spore germination of C. fimbriata in a dose dependent manner. Fumigation with 100 μL/L 2-ethyl-5-methylpyrazine completely controlled the pathogen in vivo after 10-days storage. Transcriptome analysis showed that volatiles mainly downregulated the ribosomal synthesis genes and activated the proteasome system of pathogen in response to VOCs stress, while the genes related to spore development, cell membrane synthesis, mitochondrial function, as well as hydrolase and toxin synthesis were also downregulated, indicating that WY228-produced VOCs act diverse modes of action for pathogen control. Our study demonstrates that fumigation of sweet potato tuberous roots with S. setonii WY228 or use of formulations based on the VOCs is a promising new strategy to control sweet potato and other food and fruit pathogens during storage and shipment. Importance Black spot disease caused by Ceratocystis fimbriata has caused huge economic losses to worldwide sweet potato production. At present, the control of C. fimbriata mainly depends on toxic fungicides, and there is a lack of effective alternative strategies. The research on biological control of sweet potato black spot disease is also very limited. The development of efficient biocontrol technique against pathogens using microbial volatile organic compounds could be an alternative method to control this disease. Our study revealed the significant biological control effect of volatile organic compounds of Streptomyces setonii WY228 on black spot disease of postharvest sweet potato and the complex antifungal mechanism against C. fimbriata. Our data demonstrated that Streptomyces setonii WY228 and its volatile 2-ethyl-5-methylpyrazine could be candidate strain and compound for the creation of fumigants, and showed the important potential of biotechnology application in the field of food and agriculture.
Collapse
|
27
|
Xu M, Guo J, Li T, Zhang C, Peng X, Xing K, Qin S. Antibiotic Effects of Volatiles Produced by Bacillus tequilensis XK29 against the Black Spot Disease Caused by Ceratocystis fimbriata in Postharvest Sweet Potato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13045-13054. [PMID: 34705454 DOI: 10.1021/acs.jafc.1c04585] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Black spot disease caused by Ceratocystis fimbriata is destructive to the production, transportation, and storage of sweet potato. The antifungal effects of Bacillus tequilensis XK29 against C. fimbriata through volatile organic compounds (VOCs) were evaluated in this study. The activated carbon assay proved that XK29 could exert antibiotic effects through volatiles. By optimizing the wheat seed weight, inoculation method, concentration, volume, and time, the antifungal activity of XK29 was significantly improved. XK29 fumigation inhibited spore formation and germination and changed the cell morphology of C. fimbriata. During the storage of sweet potato tuber roots, XK29 effectively controlled black spot disease and reduced the weight loss and malondialdehyde content. Metabolomic analysis revealed that 21 volatile compounds were released from XK29. Isovaleric acid, isobutyric acid, and 2-methylbutanoic acid effectively inhibited the growth of C. fimbriata. These results indicate that B. tequilensis XK29 has a good potential to be developed as a microbial fumigation agent.
Collapse
Affiliation(s)
- Mingjie Xu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Jianheng Guo
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Tengjie Li
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
- Wanbang Biopharmaceuticals Group Co., Ltd., Xuzhou 221001, Jiangsu, P.R. China
| | - Chunmei Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Xue Peng
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Ke Xing
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Sheng Qin
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| |
Collapse
|
28
|
Yan YF, Wu TL, Du SS, Wu ZR, Hu YM, Zhang ZJ, Zhao WB, Yang CJ, Liu YQ. The Antifungal Mechanism of Isoxanthohumol from Humulus lupulus Linn. Int J Mol Sci 2021; 22:ijms221910853. [PMID: 34639194 PMCID: PMC8509189 DOI: 10.3390/ijms221910853] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023] Open
Abstract
Humulus lupulus Linn. is a traditional medicinal and edible plant with several biological properties. The aims of this work were: (1) to evaluate the in vitro antifungal activity of H. lupulus ethanolic extract; (2) to study the in vitro and in vivo antifungal activity of isoxanthohumol, an isoprene flavonoid from H. lupulus, against Botrytis cinerea; and (3) to explore the antifungal mechanism of isoxanthohumol on B. cinerea. The present data revealed that the ethanolic extract of H. lupulus exhibited moderate antifungal activity against the five tested phytopathogenic fungi in vitro, and isoxanthohumol showed highly significant antifungal activity against B. cinerea, with an EC50 value of 4.32 µg/mL. Meanwhile, it exhibited moderate to excellent protective and curative efficacies in vivo. The results of morphologic observation, RNA-seq, and physiological indicators revealed that the antifungal mechanism of isoxanthohumol is mainly related to metabolism; it affected the carbohydrate metabolic process, destroyed the tricarboxylic acid (TCA) cycle, and hindered the generation of ATP by inhibiting respiration. Further studies indicated that isoxanthohumol caused membrane lipid peroxidation, thus accelerating the death of B. cinerea. This study demonstrates that isoxanthohumol can be used as a potential botanical fungicide for the management of phytopathogenic fungi.
Collapse
Affiliation(s)
- Yin-Fang Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| | - Tian-Lin Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Sha-Sha Du
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Yong-Mei Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
- Correspondence: (Z.-J.Z.); (Y.-Q.L.)
| | - Wen-Bin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
- Correspondence: (Z.-J.Z.); (Y.-Q.L.)
| |
Collapse
|
29
|
Zhang CM, Xu MJ, Li XW, Gong Y, Xing K, Qin S. Complete Genome Sequence of the Biocontrol Agent Pseudomonas chlororaphis subsp. aureofaciens SPS-41. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:839-841. [PMID: 33616420 DOI: 10.1094/mpmi-01-21-0005-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pseudomonas chlororaphis subsp. aureofaciens SPS-41 is a plant growth-promoting rhizobacterium with biocontrol potential that was isolated from the rhizosphere of sweet potato in Xuzhou, Jiangsu Province, China. Our previous study demonstrated that volatile organic compounds (VOCs) produced by SPS-41 inhibited black spot disease fungi Ceratocystis fimbriata in postharvest sweet potatoes and a variety of other plant pathogens, and the VOCs also displayed strong nematocidal activity. In order to further explore the application potential of this strain, we here report the complete genome sequence of strain SPS-41. The genome consists of one chromosome (6,757,898 bp) with a G+C content 63.10%, which contains 5,951 coding genes, 67 transfer RNA genes, 16 ribosome RNA genes, and 85 other non-coding RNA genes. No plasmid was detected. The information of the genome will provide resources for studying the biocontrol mechanism of this strain.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Chun-Mei Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Ming-Jie Xu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Xue-Wei Li
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yuan Gong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Ke Xing
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| |
Collapse
|