1
|
Liu X, Cao M, Mei W, Wang X, Wu Y. V1848I Mutation in the Voltage-Gated Sodium Channel Confers High-Level Resistance to Indoxacarb and Metaflumizone in Spodoptera exigua. INSECTS 2024; 15:777. [PMID: 39452352 PMCID: PMC11508211 DOI: 10.3390/insects15100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Spodoptera exigua is one of the most serious lepidopteran pests of global importance. With the intensive use of insecticides, S. exigua has evolved resistance to many insecticides, including the sodium channel blocker insecticides (SCBIs) indoxacarb and metaflumizone. In this study, we investigated the role of the V1848I mutation in the voltage-gated sodium channel (VGSC) in SCBI resistance and its inheritance patterns in S. exigua through the development and characterization of a near-isogenic resistant strain. The AQ-23 strain of S. exigua, collected in 2023 from Anqing, Anhui province of China, shows 165-fold resistance to indoxacarb compared with the susceptible WH-S strain. A frequency of 44.6% for the V1848I mutation was detected in the SeVGSC of the AQ-23 strain, while no F1845Y mutation was found. Through repeated backcrossing and marker-assisted selection, the V1848I mutation in the AQ-23 strain was introgressed into the susceptible WH-S strain, creating a near-isogenic strain named WH-1848I. This WH-1848I strain exhibits high levels of resistance to indoxacarb (146-fold) and metaflumizone (431-fold) but remains susceptible to broflanilide and spinosad compared with the WH-S strain. Inheritance analysis revealed that SCBI resistance in the WH-1848I strain is autosomal, nonrecessive, and genetically linked to the V1848I mutation. These findings establish a clear link between the V1848I mutation and SCBI resistance in S. exigua, offering valuable insights for developing molecular detection tools and resistance management strategies.
Collapse
Affiliation(s)
- Xiangjie Liu
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China; (X.L.); (M.C.); (X.W.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Minhui Cao
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China; (X.L.); (M.C.); (X.W.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Wenjuan Mei
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Xingliang Wang
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China; (X.L.); (M.C.); (X.W.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yidong Wu
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China; (X.L.); (M.C.); (X.W.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
2
|
Sun C, Liu Y, Bei K, Zheng W, Wang Q, Wang Q. Impact of biochar on the degradation rates of three pesticides by vegetables and its effects on soil bacterial communities under greenhouse conditions. Sci Rep 2024; 14:19986. [PMID: 39198523 PMCID: PMC11358384 DOI: 10.1038/s41598-024-70932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
A 28 days pesticide degradation experiment was conducted for broccoli (Brassica oleracea L. var. italica Planch) and pakchoi (Brassica chinensis L.) with three pesticides (chlorantraniliprole (CAP), haloxyfop-etotyl (HPM), and indoxacarb (IXB)) to explore the effects of biochar on pesticide environmental fate and rhizosphere soil diversity. Rice straw biochar (RB) was applied to soil at a 25.00 t ha-1 dosage under greenhouse conditions, and its effects on the degradation of three pesticides in vegetables and in soil were investigated individually. Overall, RB application effectively facilitated CAP and HPM degradation in broccoli by 13.51-39.42% and in broccoli soil by 23.80-74.10%, respectively. RB application slowed the degradation of CAP, HPM and IXB in pakchoi by 0.00-57.17% and slowed the degradation of CAP in pakchoi by 37.32-43.40%. The results showed that the effect of RB application on pesticide degradation in crops and soil was related to biochar properties, pesticide solubility, plant growth status, and soil characteristics. Rhizosphere soil microorganisms were also investigated, and the results showed that biochar application may be valuable for altering bacterial richness and diversity. The effect of biochar application on pesticide residues in crops and soil was influenced by the vegetable variety first, and the second was pesticide characteristics. RB applied to soil at a 25.00 t ha-1 dosage under greenhouse conditions is recommended for broccoli production to ensure food safety. Our results suggested that biochar application in soil could reduce pesticide non-point source pollution, especially for highly soluble pesticides, and could affect soil microorganisms.
Collapse
Affiliation(s)
- Caixia Sun
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China.
| | - Yuhong Liu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Ke Bei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Weiran Zheng
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Qinfei Wang
- Institute of Variety Resources, Chinese Academy of Thermal Sciences, Haikou, 270203, Hainan, People's Republic of China
| | - Qiang Wang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| |
Collapse
|
3
|
Zhang X, Zhang R, Yu M, Liu R, Liu N, Teng H, Pei Y, Hu Z, Zuo Y. Identification and detection of the V1848I indoxacarb resistance mutation in the beet armyworm, Spodoptera exigua. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105991. [PMID: 39084768 DOI: 10.1016/j.pestbp.2024.105991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024]
Abstract
Indoxacarb is a pivotal insecticide used worldwide to manage Spodoptera exigua, a devastating agricultural pest. This active compound plays a crucial role in resistance management strategies due to its distinctive mode of action. A field population of S. exigua (SH23) from Shanghai, China, exhibited significantly reduced susceptibility to indoxacarb, with a resistance ratio of 113.84-fold in biological assays. Following two rounds of laboratory screening with indoxacarb, the resistance of the new strain (SH23-S2) escalated steeply to 876.15-fold. Genetic analyses of both the SH23 and SH23-S2 strains demonstrated autosomal inheritance and incompletely dominant resistance patterns. Synergist assays indicated a minor role of detoxification enzymes (glutathione s-transferases and cytochrome P450) of SH23-S2 strain in this resistance, implicating target-site resistance as the primary mechanism. To explore the impact of target-site resistance, segment 1-6 of domain IV (IVS1-6) of the sodium channel in S. exigua was cloned, and the sequences from susceptible and indoxacarb-resistant S. exigua were compared. The V1848I mutation, linked to indoxacarb resistance in Plutella xylostella, Tuta absoluta and Liriomyza trifolii, was identified and strongly associated with the indoxacarb-resistant phenotype in the S. exigua SH23-S2 strain, whereas the F1845Y mutation was not detected. Furthermore, a molecular test for the V1848I mutation in field populations was created using an allele-specific PCR (AS-PCR). The discovery of indoxacarb resistance mutation and the creation of diagnostic tool will enable the early detection of indoxacarb resistance, which will facilitate the implementation of targeted resistance management strategies, ultimately delaying the proliferation of resistance.
Collapse
Affiliation(s)
- Xianxia Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Ruiming Zhang
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Mengqi Yu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Rui Liu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Naijing Liu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haiyuan Teng
- Institute of Eco-Environmental and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yakun Pei
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Zhaonong Hu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China.
| | - Yayun Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Gao R, Ma S, Geng J, Zhang K, Xian L, Liu K, Cao P, Yuchi Z, Wu S. Functional Characterization of Double Mutations T929I/K1774N in the Voltage-Gated Sodium Channel of Megalurothrips usitatus (Bagnall) Related to Pyrethroid Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11958-11967. [PMID: 38761134 DOI: 10.1021/acs.jafc.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Megalurothrips usitatus (Bagnall), the main pest on legume vegetables, is controlled by pyrethroids in the field. Field strains of M. usitatus resistant to pyrethroids were collected from three areas in Hainan Province (Haikou, Ledong, and Sanya City), and two mutations, T929I and K1774N, were detected in the voltage-gated sodium channel. In this study, the sodium channel in M. usitatus was first subcloned and successfully expressed in Xenopus oocytes. The single mutation (T929I or K1774N) and double mutation (T929I/K1774N) shifted the voltage dependence of activation in the hyperpolarization direction. The three mutants all reduced the amplitude of tail currents induced by type I (permethrin and bifenthrin) and type II (deltamethrin and λ-cyhalothrin) pyrethroids. Homology modeling analysis of these two mutations shows that they may change the local hydrophobicity and positive charge of the sodium channel. Our data can be used to reveal the causes of the resistance of M. usitatus to pyrethroids and provide guidance for the comprehensive control of M. usitatus in the future.
Collapse
Affiliation(s)
- Ruibo Gao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Shuyue Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Junjie Geng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571737, China
| | - Kun Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571737, China
| | - Limin Xian
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571737, China
| | - Kaiyang Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571737, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Shaoying Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571737, China
| |
Collapse
|
5
|
Chang YW, Wang YC, Yan YQ, Wu CD, Xie HF, Gong WR, Du YZ. Insect hormones affect the toxicity of the insecticidal growth regulator cyromazine in Liriomyza trifolii (Diptera: Agromyzidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105263. [PMID: 36464368 DOI: 10.1016/j.pestbp.2022.105263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 10/09/2022] [Indexed: 05/28/2023]
Abstract
The leafminer Liriomyza trifolii is an important insect pest of ornamental and vegetable crops worldwide. Cyromazine is an effective, commonly-used insecticide that functions as a growth regulator, but its effect on L. trifolii has not been previously reported. In this study, transcriptome analysis was undertaken in L. trifolii exposed to cyromazine. Clusters of orthologous groups analysis indicated that a large number of differentially expressed genes responding to cyromazine were categorized as "lipid transport and metabolism", "post-translational modification, protein turnover, chaperones", and "cell wall/membrane/envelope biogenesis". Gene ontology analysis indicated that pathways associated with insect hormones, growth and development, and cuticle synthesis were significantly enriched. In general, the transcriptome results showed that the genes related to insect hormones were significantly expressed after treatment with cyromazine. Furthermore, the combined exposure of L. trifolii to cyromazine and the hormone analogues 20-hydroxyecdysone (20E) or juvenile hormone (JH) indicated that hormone analogues can change the expression pattern of hormone-related genes (20EP and JHEH) and pupal length. The combined application of cyromazine with 20E improved the survival rate of L. trifolii, whereas the combination of JH and cyromazine reduced survival. The results of this study help elucidate the mechanistic basis for cyromazine toxicity and provide a foundation for understanding cyromazine resistance.
Collapse
Affiliation(s)
- Ya-Wen Chang
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Cheng Wang
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Qing Yan
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Cheng-Dong Wu
- Pukou Agricultural Technology Extension Center of Nanjing City, Nanjing, China
| | - Hong-Fang Xie
- Plant Protection and Quarantine Station of Nanjing City, Nanjing, China
| | - Wei-Rong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, China
| | - Yu-Zhou Du
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|