1
|
Mao J, Zhao R, Li Y, Qin W, Wu S, Xu W, Jin P, Zheng Z. Nitrogen removal capability and mechanism of a novel low-temperature-tolerant simultaneous nitrification-denitrification bacterium Acinetobacter kyonggiensis AKD4. Front Microbiol 2024; 15:1349152. [PMID: 39318430 PMCID: PMC11419981 DOI: 10.3389/fmicb.2024.1349152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
A low-temperature-tolerant simultaneous nitrification-denitrification bacterial strain of Acinetobacter kyonggiensis (AKD4) was identified. It showed high efficiency in total nitrogen (TN) removal (92.45% at 10°C and 87.51% at 30°C), indicating its excellent low-temperature tolerance. Transcriptomic analysis revealed possible metabolic mechanisms under low-temperature stress. Genes involved in cell growth, including ATP synthase (atpADGH), amino acid (glyA, dctA, and ilvE), and TCA cycle metabolism (gltA, fumC, and mdh) were remarkably upregulated from 1.05-3.44-fold at 10°C, suggesting that their actions enhance survivability at low temperatures. The expression levels of genes associated with nitrogen assimilation (glnAE, gltBD, and gdhA), nitrogen metabolism regulation (ntrC, glnB, and glnD), and denitrification processes (napA) were increased from 1.01-4.38-fold at 10°C, which might have contributed to the bacterium's highly efficient nitrogen removal performance at low temperatures. Overall, this study offers valuable insights into transcriptome, and enhances the comprehension of the low-temperature-tolerant mechanism of simultaneous nitrification and denitrification processes.
Collapse
Affiliation(s)
- Jiwei Mao
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
| | - Ruojin Zhao
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Yiyi Li
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Wenpan Qin
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Shengchun Wu
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Weiping Xu
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Peng Jin
- College of Food and Health, Zhejiang A & F University, Hangzhou, China
| | - Zhanwang Zheng
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| |
Collapse
|
2
|
Tanase DM, Valasciuc E, Costea CF, Scripcariu DV, Ouatu A, Hurjui LL, Tarniceriu CC, Floria DE, Ciocoiu M, Baroi LG, Floria M. Duality of Branched-Chain Amino Acids in Chronic Cardiovascular Disease: Potential Biomarkers versus Active Pathophysiological Promoters. Nutrients 2024; 16:1972. [PMID: 38931325 PMCID: PMC11206939 DOI: 10.3390/nu16121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Branched-chain amino acids (BCAAs), comprising leucine (Leu), isoleucine (Ile), and valine (Val), are essential nutrients vital for protein synthesis and metabolic regulation via specialized signaling networks. Their association with cardiovascular diseases (CVDs) has become a focal point of scientific debate, with emerging evidence suggesting both beneficial and detrimental roles. This review aims to dissect the multifaceted relationship between BCAAs and cardiovascular health, exploring the molecular mechanisms and clinical implications. Elevated BCAA levels have also been linked to insulin resistance (IR), type 2 diabetes mellitus (T2DM), inflammation, and dyslipidemia, which are well-established risk factors for CVD. Central to these processes are key pathways such as mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-light-chain-enhancer of activate B cells (NF-κB)-mediated inflammation, and oxidative stress. Additionally, the interplay between BCAA metabolism and gut microbiota, particularly the production of metabolites like trimethylamine-N-oxide (TMAO), adds another layer of complexity. Contrarily, some studies propose that BCAAs may have cardioprotective effects under certain conditions, contributing to muscle maintenance and metabolic health. This review critically evaluates the evidence, addressing the biological basis and signal transduction mechanism, and also discusses the potential for BCAAs to act as biomarkers versus active mediators of cardiovascular pathology. By presenting a balanced analysis, this review seeks to clarify the contentious roles of BCAAs in CVD, providing a foundation for future research and therapeutic strategies required because of the rising prevalence, incidence, and total burden of CVDs.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Dragos Viorel Scripcariu
- Department of General Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Regional Institute of Oncology, 700483 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Diana Elena Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Livia Genoveva Baroi
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Vascular Surgery, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| |
Collapse
|
3
|
Zhang X, Han L, Gui L, Raza SHA, Hou S, Yang B, Wang Z, Ma Y, Makhlof RTM, Alhuwaymil Z, Ibrahim SF. Metabolome and microbiome analysis revealed the effect mechanism of different feeding modes on the meat quality of Black Tibetan sheep. Front Microbiol 2023; 13:1076675. [PMID: 36687606 PMCID: PMC9854131 DOI: 10.3389/fmicb.2022.1076675] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Black Tibetan sheep is one of the primitive sheep breeds in China that is famous for its great eating quality and nutrient value but with little attention to the relationship between feeding regimes and rumen metabolome along with its impact on the muscle metabolism and meat quality. Methods This study applies metabolomics-based analyses of muscles and 16S rDNA-based sequencing of rumen fluid to examine how feeding regimes influence the composition of rumen microbiota, muscle metabolism and ultimately the quality of meat from Black Tibetan sheep. Twenty-seven rams were randomly assigned to either indoor feeding conditions (SG, n = 9), pasture grazing with indoor feeding conditions (BG, n = 9) or pasture grazing conditions (CG, n = 9) for 120 days. Results The results showed that, compared with BG and CG, SG improved the quality of Black Tibetan sheep mutton by preventing a decline in pH and increasing fat deposition to enhance the color, tenderness and water holding capacity (WHC) of the Longissimus lumborum (LL). Metabolomics and correlation analyses further indicated that the feeding regimes primarily altered amino acid, lipid and carbohydrate metabolism in muscles, thereby influencing the amino acid (AA) and fatty acid (FA) levels as well as the color, tenderness and WHC of the LL. Furthermore, SG increased the abundance of Christensenellaceae R-7 group, [Eubacterium] coprostanoligenes group, Methanobrevibacter, Ruminococcus 2 and Quinella, decreased the abundance of Lactobacillus, Prevotella 1 and Rikenellaceae RC9 gut group, and showed a tendency to decrease the abundance of Succinivibrio and Selenomonas 1. Interestingly, all of these microorganisms participated in the deposition of AAs and FAs and modified the levels of different metabolites involved in the regulation of meat quality (maltotriose, pyruvate, L-ascorbic acid, chenodeoxycholate, D-glucose 6-phosphate, glutathione, etc.). Discussion Overall, the results suggest that feeding Black Tibetan sheep indoors with composite forage diet was beneficial to improve the mouthfeel of meat, its color and its nutritional value by altering the abundance of rumen bacteria which influenced muscle metabolism.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Animal Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Lijuan Han
- Department of Animal Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China,*Correspondence: Lijuan Han, ✉
| | - Linsheng Gui
- Department of Animal Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China,Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shengzhen Hou
- Department of Animal Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Baochun Yang
- Department of Animal Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Zhiyou Wang
- Department of Animal Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Ying Ma
- Department of Animal Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Raafat T. M. Makhlof
- Department of Parasitology, Faculty of Medicine, Umm Al Qura University, Mecca, Saudi Arabia,Department of Parasitology, Faculty of Medicine, Minia University, Minya, Egypt
| | - Zamzam Alhuwaymil
- Organic Department, College of Science and Humanities at Al-Quway'iyah, Shaqra University, Shaqra, Saudi Arabia
| | - Samah F. Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Zakaria NF, Hamid M, Khayat ME. Amino Acid-Induced Impairment of Insulin Signaling and Involvement of G-Protein Coupling Receptor. Nutrients 2021; 13:nu13072229. [PMID: 34209599 PMCID: PMC8308393 DOI: 10.3390/nu13072229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Amino acids are needed for general bodily function and well-being. Despite their importance, augmentation in their serum concentration is closely related to metabolic disorder, insulin resistance (IR), or worse, diabetes mellitus. Essential amino acids such as the branched-chain amino acids (BCAAs) have been heavily studied as a plausible biomarker or even a cause of IR. Although there is a long list of benefits, in subjects with abnormal amino acids profiles, some amino acids are correlated with a higher risk of IR. Metabolic dysfunction, upregulation of the mammalian target of the rapamycin (mTOR) pathway, the gut microbiome, 3-hydroxyisobutyrate, inflammation, and the collusion of G-protein coupled receptors (GPCRs) are among the indicators and causes of metabolic disorders generating from amino acids that contribute to IR and the onset of type 2 diabetes mellitus (T2DM). This review summarizes the current understanding of the true involvement of amino acids with IR. Additionally, the involvement of GPCRs in IR will be further discussed in this review.
Collapse
Affiliation(s)
- Nur Fatini Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohd Ezuan Khayat
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
5
|
Zhang C, Zhang H, Liu M, Zhao X, Luo H. Effect of Breed on the Volatile Compound Precursors and Odor Profile Attributes of Lamb Meat. Foods 2020; 9:foods9091178. [PMID: 32858830 PMCID: PMC7555795 DOI: 10.3390/foods9091178] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022] Open
Abstract
The objective was to characterize the effect of breed on the volatile compound precursors and odor profile attributes and to provide an insight into improving the lamb production and meat flavor. Three-month-old Tan (n = 10), Hu (n = 10) and Dorper lambs (n = 10) were raised for 90 days in single barns. Longissimus thoracis et lumborum muscle of all lambs were collected for analysis of intramuscular fat, fatty acids, amino acids, and volatile compounds. The results showed Tan and Hu accumulated more intramuscular fat and saturated fatty acid than Dorper. However, Tan had lower linoleic acid, alpha linolenic acid and total polyunsaturated fatty acid proportion than Dorper. Amino acid in Dorper was significantly higher than Tan and Hu. Furthermore, (E)-2-hexenal was only found in Tan lambs, while (E)-2-nonenal and (E,E)-2,4-nonadienal were only found in Dorper lambs. Hu had the fewest volatile compounds. The results of this study demonstrated that Dorper had larger proportion of polyunsaturated fatty acids (PUFA), amino acid and volatile compounds than Tan and Hu. However, the specific PUFA derivates of Dorper had a negative impact on the odor profile. Hence, we suggest that further works should be focused on crossbreed lambs by Dorper and Tan, to enhance the lamb production and improve meat flavor.
Collapse
Affiliation(s)
- Can Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.Z.); (M.L.); (X.Z.)
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Ming Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.Z.); (M.L.); (X.Z.)
| | - Xin’gang Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.Z.); (M.L.); (X.Z.)
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.Z.); (M.L.); (X.Z.)
- Correspondence:
| |
Collapse
|
6
|
Li T, Tian Y, Sun F, Wang Z, Zhou N. Preparation of high Fischer’s ratio corn oligopeptides using directed enzymatic hydrolysis combined with adsorption of aromatic amino acids for efficient liver injury repair. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Ribeiro DM, Madeira MS, Kilminster T, Scanlon T, Oldham C, Greeff J, Freire JPB, Mourato MP, Prates JAM, Almeida AM. Amino acid profiles of muscle and liver tissues of Australian Merino, Damara and Dorper lambs under restricted feeding. J Anim Physiol Anim Nutr (Berl) 2019; 103:1295-1302. [PMID: 31250490 DOI: 10.1111/jpn.13148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/06/2019] [Indexed: 01/11/2023]
Abstract
Seasonal weight loss (SWL) is a major constraint in extensive animal production systems in the tropics and Mediterranean. The objective of this study was to characterize the amino acid profile of muscle and hepatic tissues of Australian Merino, Damara and Dorper lambs under restricted feeding to evaluate the impact of SWL at the metabolic and physiological levels. SWL induced generalized muscle protein breakdown among restricted groups of all breeds, with varying intensity. Dorper breed mobilized less muscle amino acids when under these conditions, with the Damara having frequent significant differences, namely by having lower amino acid concentrations in the muscle of restricted lambs. Damara lambs showed greater ability to catabolize branched-chain amino acids in the muscle tissue, which indicates yet another mechanism that provides the Damara with the necessary tools to endure harsh conditions. Overall, the Damara breed mobilized more muscle amino acids than the other breeds, with a better capacity to catabolize branched-chain amino acids in the muscle, while maintaining muscle structural integrity.
Collapse
Affiliation(s)
- David M Ribeiro
- LEAF Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Marta S Madeira
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, University of Lisbon, Lisbon, Portugal
| | - Tanya Kilminster
- Department of Agriculture and Food Western Australia, South Perth, Western Australia, Australia
| | - Tim Scanlon
- Department of Agriculture and Food Western Australia, South Perth, Western Australia, Australia
| | - Chris Oldham
- Department of Agriculture and Food Western Australia, South Perth, Western Australia, Australia
| | - Johan Greeff
- Department of Agriculture and Food Western Australia, South Perth, Western Australia, Australia
| | - João P B Freire
- LEAF Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Miguel P Mourato
- LEAF Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - José A M Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, University of Lisbon, Lisbon, Portugal
| | - André M Almeida
- LEAF Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| |
Collapse
|