1
|
Zhu Q, Li G, Ma L, Chen B, Zhang D, Gao J, Deng S, Chen Y. Virgin Camellia Seed Oil Improves Glycolipid Metabolism in the Kidney of High Fat-Fed Rats through AMPK-SREBP Pathway. Nutrients 2023; 15:4888. [PMID: 38068746 PMCID: PMC10708295 DOI: 10.3390/nu15234888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Camellia seed oil (CO) is used as edible oil in southern China because of its excellent fatty acid composition and abundant bioactive compounds. Chronic kidney disease (CKD) is one of the most common chronic degenerative diseases in China, and active compounds in vegetable oil, like virgin olive oil, have been demonstrated to be efficacious in the management of CKD. In this study, virgin CO was refined using a standard process. The refining had minimal impact on the fatty acid composition, but significantly reduced the presence of bioactive compounds like polyphenols in CO. Sprague-Dawley (SD) rats fed with high fat diet (Group G) were treated with either virgin (Group Z) or refined CO (Group R). The oral administration of CO alleviated lipid accumulation and decreased body and kidney weight gain. Furthermore, treatment with virgin CO increased the renal ATP content. The renal expression levels of AMPK and key enzymes involved in fatty acid oxidation (CPT-1 and ACOX1) and glycolysis (HK, PFK, PK and GAPDH) were up-regulated in Group Z, thereby enhancing the ATP production. Virgin CO treatment downregulated the expression level of SREBP2 and its downstream target genes, such as ACC, FAS, and HMGCR, which reduced lipid synthesis. These findings indicate that virgin CO improves glycolipid metabolism and restores energy homeostasis in the kidneys of rats fed with a high-fat diet by modulating the AMPK-SREBP-signaling pathway, suggesting the potential of active compounds in virgin CO for managing the renal failure associated with glycolipid dysmetabolism.
Collapse
Affiliation(s)
- Qinhe Zhu
- National Engineering Research Center of Oiltea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (Q.Z.); (G.L.); (L.M.); (D.Z.)
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Guihui Li
- National Engineering Research Center of Oiltea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (Q.Z.); (G.L.); (L.M.); (D.Z.)
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Li Ma
- National Engineering Research Center of Oiltea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (Q.Z.); (G.L.); (L.M.); (D.Z.)
| | - Bolin Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Dawei Zhang
- National Engineering Research Center of Oiltea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (Q.Z.); (G.L.); (L.M.); (D.Z.)
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jing Gao
- National Engineering Research Center of Oiltea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (Q.Z.); (G.L.); (L.M.); (D.Z.)
| | - Senwen Deng
- National Engineering Research Center of Oiltea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (Q.Z.); (G.L.); (L.M.); (D.Z.)
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yongzhong Chen
- National Engineering Research Center of Oiltea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (Q.Z.); (G.L.); (L.M.); (D.Z.)
| |
Collapse
|
2
|
Serdyuk O, Trubina V, Gorlova L. Breeding and chemical methods of brown mustard ( Brassica juncea L.) protection from Fusarium blight. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224302018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The article presents the research on breeding and chemical methods of brown mustard sowings from Fusarium blight in the conditions of the central zone of the Krasnodar region. We evaluated mustard variety samples affected by the disease on a natural infectious background during the growing season. As a result, for 4 years we selected mustard breeding material resistant to Fusarium blight, which exceeds the productivity and oil content of the standard variety Yunona by 0.20-0.26 t/ha and 2.0-2.7 %, respectively. We tested systemic chemical fungicides from the triazoles and strobilurins groups in a chemical method study. We determined the fungicide with the active ingredients azoxystrobin 120 g/l + tebuconazole 200 g/l, SC at the application rate of 1.0 l/ha which effectively decreases the spreading and development of Fusarium blight on mustard when treating plants at the stalking stage. The biological effectiveness of the preparation was 82.4 %, the seed yield significantly exceeded the control (by 0.36 t/ha). Thus, it is recommended to use both breeding and chemical methods of sowings protection against the disease to effectively decrease the harmfulness of Fusarium blight on mustard.
Collapse
|