1
|
Xu X, Yao L. Recent advances in the development of Rho kinase inhibitors (2015-2021). Med Res Rev 2024; 44:406-421. [PMID: 37265266 DOI: 10.1002/med.21980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Rho-associated coiled-coil kinases (ROCKs) are key downstream effectors of small GTPases. ROCK plays a central role in diverse cellular events with accumulating evidence supporting the concept that ROCK is important in tumor development and progression. Numerous ROCK inhibitors have been investigated for their therapeutic potential in the treatment of cancers. In this article, we review recent research progress on ROCK inhibitors, especially those with potential for the treatment of cancers, reported in the literature from 2015 to 2021. Most ROCK inhibitors show potent in vitro and in vivo antitumor activities and have potential in the treatment of cancers.
Collapse
Affiliation(s)
- Xiangrong Xu
- Yantai University Hospital, Yantai University, Yantai, China
| | - Lei Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
2
|
Hydrazonoyl chlorides possess promising antitumor properties. Life Sci 2022; 295:120380. [DOI: 10.1016/j.lfs.2022.120380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/23/2022]
|
3
|
Aboumanei MH, Mahmoud AF, Motaleb MA. Evaluation of radioiodinated ethopabate as a potential tumor targeting agent. Appl Radiat Isot 2021; 180:110063. [PMID: 34922310 DOI: 10.1016/j.apradiso.2021.110063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/16/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
Overexpression of folate synthesis and folate receptor in a wide variety of tumors was reported. As a result, folate derivatives have emerged as a potential candidate for tumor imaging and therapy. Ethopabate is a structural analogue of para-aminobenzoic acid (PABA), a precursor of folic acid. Ethopabate was radiolabeled with radioiodine-131 (131I) via direct electrophilic substitution reaction. Several factors that might affect the radiolabeling yield were studied. Paper chromatography was utilized for testing and evaluation of [131I]iodoethopabate, and HPLC was used as a co-chromatographic tool to confirm the radiochemical yield. The biodistribution of [131I]iodoethopabate in normal and tumor-bearing mice was investigated. The radioiodination of ethopabate resulted in a radiochemical yield of 93.70 ± 0.19%. The biodistribution data revealed that [131I]iodoethopabate was taken up by tumors with promising target/non-target (T/NT) ratios. Where, the tumor to-blood ratios were 3.30 ± 0.40 and 4.06 ± 0.10 at 1 and 4 h post injection, respectively. As a result of these findings, [131I]iodoethopabate appears to have excellent tumor uptake and adequate stability to be used for diagnostic purpose in the future.
Collapse
Affiliation(s)
- Mohamed H Aboumanei
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, P.O. Box 11371, Cairo, Egypt.
| | - Ashgan F Mahmoud
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, P.O. Box 11371, Cairo, Egypt
| | - Mohamed A Motaleb
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, P.O. Box 11371, Cairo, Egypt
| |
Collapse
|
4
|
Li B, Xu Y, Quan Y, Cai Q, Le Y, Ma T, Liu Z, Wu G, Wang F, Bao C, Li H. Inhibition of RhoA/ROCK Pathway in the Early Stage of Hypoxia Ameliorates Depression in Mice via Protecting Myelin Sheath. ACS Chem Neurosci 2020; 11:2705-2716. [PMID: 32667781 DOI: 10.1021/acschemneuro.0c00352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neuroplasticity and connectivity in the central nervous system (CNS) are easily damaged after hypoxia. Long-term exposure to an anoxic environment can lead to neuropsychiatric symptoms and increases the likelihood of depression. Demyelination is an important lesion of CNS injury that may occur in depression. Previous studies have found that the RhoA/ROCK pathway is upregulated in neuropsychiatric disorders such as multiple sclerosis, stroke, and neurodegenerative diseases. Therefore, the chief aim of this study is to explore the regulatory role of the RhoA/ROCK pathway in the development of depression after hypoxia by behavioral tests, Western blotting, immunostaining as well as electron microscopy. Results showed that HIF-1α, S100β, RhoA/ROCK, and immobility time in FST were increased, sucrose water preference ratio in SPT was decreased, and the aberrant activity of neurocyte and demyelination occurred after hypoxia. After the administration of Y-27632 and fluoxetine in hypoxia, these alterations were improved. Lingo1, a negative regulatory factor, was also overexpressed after hypoxia and its expression was decreased when the pathway blocked. However, fluoxetine had no effect on the expression of Lingo1. Then, we demonstrated that demyelination was associated with failures of oligodendrocyte precursor cell proliferation and differentiation and increased apoptosis of oligodendrocytes. Collectively, our data indicate that the RhoA/ROCK pathway plays a vital role in the initial depression during hypoxia. Blocking this pathway in the early stage of hypoxia can enhance the effectiveness of antidepressants, rescue myelin damage, and reduce the expression of the negative regulatory protein of myelination. The findings provide new insight into the prophylaxis and treatment of depression.
Collapse
Affiliation(s)
- Baichuan Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Yang Xu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Yong Quan
- Department of Teaching Experiment Center, Army Medical University, Chongqing 400038, China
| | - Qiyan Cai
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Yifan Le
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Teng Ma
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Zhi Liu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Guangyan Wu
- Department of Teaching Experiment Center, Army Medical University, Chongqing 400038, China
| | - Fei Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Chuncha Bao
- Department of Teaching Experiment Center, Army Medical University, Chongqing 400038, China
| | - Hongli Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
- Department of Teaching Experiment Center, Army Medical University, Chongqing 400038, China
| |
Collapse
|
5
|
Radioiodination and in vivo assessment of the potential of newly synthesized pyrrolizine-5-carboxamides derivative in tumor model. Appl Radiat Isot 2020; 166:109369. [PMID: 32828009 DOI: 10.1016/j.apradiso.2020.109369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 01/03/2023]
Abstract
Recently, pyrrolizine derivatives have been reported to possess numerous anticancer activities. In a previous study, (EZ)-6-((4-chlorobenzylidene)-amino)-7-cyano-N-(p-tolyl)-2,3-dihydro-1H-pyrrolizine carboxamide (EZPCA) compound was synthesized and the cytotoxic activity of EZPCA toward COX-2 enzyme (overexpressed in cancer cells) was reported. In order to assess the suitability of this compound as a promising pilot structure for in vivo applications, EZPCA was radiolabeled with radioiodine-131 (131I) and various factors affecting radiolabeling process were studied. Quality control studies of [131I]iodo-EZPCA were performed using paper chromatography and HPLC was used as a co-chromatographic technique for confirming the radiochemical yield. Biodistribution studies of [131I]iodo-EZPCA were undertaken in normal and tumor bearing mice. The radiochemical yield percentage of [131I]iodo-EZPCA was 94.20 ± 0.12%. The biodistribution results showed evident tumor uptake of [131I]iodo-EZPCA with promising target/non-target (T/NT) ratios. As a conclusion, these data suggest that [131I]iodo-EZPCA had high binding efficiency, high tumor uptake and sufficient stability to be used be used in diagnostic studies.
Collapse
|
6
|
Amin AH, El-Missiry MA, Othman AI, Ali DA, Gouida MS, Ismail AH. Ameliorative effects of melatonin against solid Ehrlich carcinoma progression in female mice. J Pineal Res 2019; 67:e12585. [PMID: 31066091 DOI: 10.1111/jpi.12585] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/27/2022]
Abstract
The current work estimated the antitumour efficacy of melatonin (MLT) on the growth of Ehrlich ascites carcinoma cells inoculated intramuscularly into the hind limbs of female BALB/c mice and to compare its effects with those of adriamycin (ADR). After solid tumours developed, the animals were divided into the three following groups: the tumour-bearing control, MLT-treated (20 mg/kg body weight) and ADR-treated (10 mg/kg body weight) groups. The results showed a significant reduction in the tumour masses of the treated animals in comparison with those of the control group. There were a significant decrease in the malondialdehyde level and a significant elevation of the glutathione concentration and the superoxide dismutase and catalase activities in the MLT and ADR groups. The current study indicated the increased expression levels of P53, caspase-3 and caspase-9 and the decreased expression levels of the rRNA and Bcl2. The MLT and ADR treatments resulted in histological changes, such as a marked degenerative area, the necrosis of neoplastic cells, the appearance of different forms of apoptotic cells and giant cells with condensed chromatin, and a deeply eosinophilic cytoplasm. The MLT and ADR treatments also significantly decreased the Ki-67 protein and vascular endothelial growth factor (VEGF) expression levels in the tumour masses. In conclusion, similar to ADR-treated tumour-bearing mice, MLT suppressed the growth and proliferation of tumour by inducing apoptosis and by inhibiting tumour vascularization. The current data recommend MLT as a safe natural chemotherapeutic adjuvant to overcome cancer progression after a clinical trial validates these results.
Collapse
Affiliation(s)
- Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Azza I Othman
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Doaa A Ali
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mona S Gouida
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ahmed H Ismail
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
- Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
7
|
Thompson JM, Nguyen QH, Singh M, Pavesic MW, Nesterenko I, Nelson LJ, Liao AC, Razorenova OV. Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma. Oncogene 2016; 36:1080-1089. [PMID: 27841867 PMCID: PMC5323317 DOI: 10.1038/onc.2016.272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/06/2016] [Accepted: 06/20/2016] [Indexed: 12/18/2022]
Abstract
Clear Cell Renal Cell Carcinoma (CC-RCC) is the most lethal of all genitourinary cancers. The functional loss of the von Hippel-Lindau (VHL) gene occurs in 90% of CC-RCC, driving cancer progression. The objective of this study was to identify chemical compounds that are synthetically lethal with VHL deficiency in CC-RCC. An annotated chemical library, the Library of Pharmacologically Active Compounds (LOPAC), was screened in parallel on VHL-deficient RCC4 cells and RCC4VHL cells with re-introduced VHL cDNA. The ROCK inhibitor, Y-27632, was identified and validated for selective targeting of VHL-deficient CC-RCC in multiple genetic backgrounds by clonogenic assays. Downregulation of ROCK1 by siRNA selectively reduced the colony forming ability of VHL-deficient CC-RCC, thus mimicking the effect of Y-27632 treatment, whereas downregulation of ROCK2 had no effect. In addition, two other ROCK inhibitors, RKI 1447 and GSK 429286, selectively targeted VHL-deficient CC-RCC. CC-RCC treatment with ROCK inhibitors is cytotoxic and cytostatic based on BrdU assay, Propidium Iodide (PI) staining, and growth curves; and blocks cell migration based on transwell assay. Importantly, knockdown of Hypoxia Inducible Factor (HIF) β in the VHL-deficient CC-RCC had a protective effect against Y-27632 treatment, mimicking VHL reintroduction. On the other hand, CC-RCCVHL cells were sensitized to Y-27632 treatment in hypoxia (2% O2). These results suggest that synthetic lethality between ROCK inhibition and VHL deficiency is dependent on HIF activation. Moreover, HIF1α or HIF2α overexpression in CC-RCCVHL cells is sufficient to sensitize them to ROCK inhibition. Finally, Y-27632 treatment inhibited growth of subcutaneous 786-OT1 CC-RCC tumors in mice. Thus, ROCK inhibitors represent potential therapeutics for VHL-deficient CC-RCC.
Collapse
Affiliation(s)
- J M Thompson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Q H Nguyen
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - M Singh
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - M W Pavesic
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - I Nesterenko
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - L J Nelson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - A C Liao
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - O V Razorenova
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
8
|
Liu X, Bi Y. Y-27632 Increases Sensitivity of PANC-1 Cells to EGCG in Regulating Cell Proliferation and Migration. Med Sci Monit 2016; 22:3529-3534. [PMID: 27694793 PMCID: PMC5063426 DOI: 10.12659/msm.897594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background The study aimed to investigate the inhibitory effect of (1R,4r)-4-((R)-1-aminoethyl)-N-(pyridin-4-yl) cyclohexanecarboxamide (Y-27632) and (−)-epigallocatechin-3-gallate (EGCG) on the proliferation and migration of PANC-1 cells. EGCG, found in green tea, has been previously shown to be one of the most abundant and powerful catechins in cancer prevention and treatment. Y-27632, a selective inhibitor of rho-associated protein kinase 1, is widely used in treating cardiovascular disease, inflammation, and cancer. Material/Methods PANC-1 cells, maintained in Dulbecco’s Modified Eagle’s Medium, were treated with dimethyl sulfoxide (control) as well as different concentrations (20, 40, 60, and 80 μg/mL) of EGCG for 48 h. In addition, PANC-1 cells were treated separately with 60 μg/mL EGCG, 20 μM Y-27632, and EGCG combined with Y-27632 (60 μg/mL EGCG + 20 μM Y-27632) for 48 h. The effect of EGCG and Y-27632 on the proliferation and migration of PANC-1 cells was evaluated using Cell Counting Kit-8 and transwell migration assays. The expression of peroxisome proliferator–activated receptor alpha (PPARα) and Caspase-3 mRNA was determined by Quantitative real-time polymerase chain reaction (RT-qPCR). Results EGCG (20–80 μg/mL) inhibited cell viability in a dose-dependent manner. Y-27632 enhanced the sensitivity of PANC-1 cells to EGCG (by increasing the expression of PPARα and Caspase-3 mRNA) and suppressed cell proliferation. PANC-1 cell migration was inhibited by treatment with a combination of EGCG and Y-27632. Conclusions Y-27632 increases the sensitivity of PANC-1 cells to EGCG in regulating cell proliferation and migration, which is likely to be related to the expression of PPARα mRNA and Caspase-3 mRNA.
Collapse
Affiliation(s)
- Xing Liu
- School of Public Health, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Yongyi Bi
- School of Public Health, Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|
9
|
Ozaslan M, Karagoz I, Lawal R, Kilic I, Cakir A, Odesanmi O, Guler I, Ebuehi O. Cytotoxic and Anti-proliferative Activities of the Tetrapleura tetraptera Fruit Extract on Ehrlich Ascites Tumor Cells. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.655.662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Yanardağ Açık D, Yılmaz M, Sarı İ, Öztuzcu S, Sayıner ZA, Subari S, Demiryürek AT. Investigation of Rho-Kinase Expressions and Polymorphisms in Mantle Cell Lymphoma Patients. Turk J Haematol 2016; 33:141-7. [PMID: 26377148 PMCID: PMC5100726 DOI: 10.4274/tjh.2015.0193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Mantle cell lymphoma (MCL) is a rare but aggressive form of B-cell non-Hodgkin lymphoma characterized by excessive expression of cyclin D1. Intracellular signaling enzyme Rho-kinase (ROCK) can contribute to cellular migration, proliferation, and differentiation, as well as tumor development and metastasis. However, ROCK gene and protein expressions or polymorphisms have never been investigated in MCL patients. The purpose of this study was to investigate the role of ROCK gene and protein expressions in MCL patients. We also examined ROCK2 gene polymorphisms in this study. MATERIALS AND METHODS A total of 60 patients with MCL and 60 healthy controls were included in this retrospective study. Hematoxylin and eosin-stained lymph node tissue slides in the entire archive were reevaluated and used for immunohistochemistry, gene expression, and polymerase chain reaction studies. RESULTS In immunohistochemical studies, there were significant increases in ROCK1 (p=0.0009) and ROCK2 (p<0.0001) protein expressions in MCL patients when compared with the control group. Although a marked increase in ROCK1 gene expression (p=0.0215) was noted, no significant change was observed in ROCK2 gene expression in MCL patients. Seven ROCK2 polymorphisms were studied, but the results showed no significant differences between the groups. CONCLUSION This is the first study to show that ROCK1 gene and ROCK protein expressions may contribute to the development of MCL.
Collapse
Affiliation(s)
- Didar Yanardağ Açık
- Gaziantep University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Gaziantep, Turkey, Phone : +90 532 157 76 56, E-mail :
| | | | | | | | | | | | | |
Collapse
|
11
|
Ren J, An HY. Effects of ROCK inhibitor Y-27632 on TGF-β1/CTGF pathway. Shijie Huaren Xiaohua Zazhi 2014; 22:3932-3936. [DOI: 10.11569/wcjd.v22.i26.3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Y-27632, a pyrimidine derivative, is a recently developed synthetic specific inhibitor of Rho associated coiled-coil forming protein kinase (ROCK), and it inhibits the process of hepatic fibrosis by regulating a variety of biological effects mediated by ROCK. Recent studies have found that the transforming growth factor β1 (TGF-β1)/connective tissue growth factor (CTGF) signaling pathway is involved in liver fibrosis. TGF-β1 induces the expression of its downstream molecule CTGF, resulting in the increase of extracellular matrix and liver fibrosis. Y-27632 can inhibit the expression of TGF-β1 and CTGF. This paper attempts to explain the anti-fibrosis effect of Y-27632 in terms of the impact of Y-27632 on the TGF-β1/CTGF pathway, with an aim to better understand the functional target of Y-27632 and provide a theoretical basis for the targeted therapy of liver fibrosis.
Collapse
|