1
|
Hernández-Rodríguez M, Mera Jiménez E, Nicolás-Vázquez MI, Miranda-Ruvalcaba R. Dihydroergotamine Increases Histamine Brain Levels and Improves Memory in a Scopolamine-Induced Amnesia Model. Int J Mol Sci 2024; 25:3710. [PMID: 38612521 PMCID: PMC11012231 DOI: 10.3390/ijms25073710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The beneficial effects of increasing histamine levels on memory have acquired special interest due to their applicability to psychiatric conditions that cause memory impairments. In addition, by employing drug repurposing approaches, it was demonstrated that dihydroergotamine (DHE), an FDA drug approved to treat migraines, inhibits Histamine N Methyl Transferase (HNMT), the enzyme responsible for the inactivation of histamine in the brain. For this reason, in the present work, the effect of DHE on histamine levels in the hippocampus and its effects on memory was evaluated, employing the scopolamine-induced amnesia model, the Novel Object Recognition (NOR) paradigm, and the Morris Water Maze (MWM). Furthermore, the role of histamine 1 receptor (H1R) and histamine 2 receptor (H2R) antagonists in the improvement in memory produced by DHE in the scopolamine-induced amnesia model was evaluated. Results showed that the rats that received DHE (10 mg/kg, i.p.) showed increased histamine levels in the hippocampus after 1 h of administration but not after 5 h. In behavioral assays, it was shown that DHE (1 mg/kg, i.p.) administered 20 min before the training reversed the memory impairment produced by the administration of scopolamine (2 mg/kg, i.p.) immediately after the training in the NOR paradigm and MWM. Additionally, the effects in memory produced by DHE were blocked by pre-treatment with pyrilamine (20 mg/kg, i.p.) administered 30 min before the training in the NOR paradigm and MWM. These findings allow us to demonstrate that DHE improves memory in a scopolamine-induced amnesia model through increasing histamine levels at the hippocampus due to its activity as an HNMT inhibitor.
Collapse
Affiliation(s)
- Maricarmen Hernández-Rodríguez
- Laboratorio de Cultivo Celular, Neurofarmacología y Conducta, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, Mexico
| | - Elvia Mera Jiménez
- Laboratorio de Cultivo Celular, Neurofarmacología y Conducta, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, Mexico
| | - María Inés Nicolás-Vázquez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Mexico; (M.I.N.-V.); (R.M.-R.)
| | - Rene Miranda-Ruvalcaba
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Mexico; (M.I.N.-V.); (R.M.-R.)
| |
Collapse
|
2
|
Maurer-Morelli CV, de Vasconcellos JF, Bruxel EM, Rocha CS, do Canto AM, Tedeschi H, Yasuda CL, Cendes F, Lopes-Cendes I. Gene expression profile suggests different mechanisms underlying sporadic and familial mesial temporal lobe epilepsy. Exp Biol Med (Maywood) 2022; 247:2233-2250. [PMID: 36259630 PMCID: PMC9899983 DOI: 10.1177/15353702221126666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) have hippocampal sclerosis on the postoperative histopathological examination. Although most patients with MTLE do not refer to a family history of the disease, familial forms of MTLE have been reported. We studied surgical specimens from patients with MTLE who had epilepsy surgery for medically intractable seizures. We assessed and compared gene expression profiles of the tissue lesion found in patients with familial MTLE (n = 3) and sporadic MTLE (n = 5). In addition, we used data from control hippocampi obtained from a public database (n = 7). We obtained expression profiles using the Human Genome U133 Plus 2.0 (Affymetrix) microarray platform. Overall, the molecular profile identified in familial MTLE differed from that in sporadic MTLE. In the tissue of patients with familial MTLE, we found an over-representation of the biological pathways related to protein response, mRNA processing, and synaptic plasticity and function. In sporadic MTLE, the gene expression profile suggests that the inflammatory response is highly activated. In addition, we found enrichment of gene sets involved in inflammatory cytokines and mediators and chemokine receptor pathways in both groups. However, in sporadic MTLE, we also found enrichment of epidermal growth factor signaling, prostaglandin synthesis and regulation, and microglia pathogen phagocytosis pathways. Furthermore, based on the gene expression signatures, we identified different potential compounds to treat patients with familial and sporadic MTLE. To our knowledge, this is the first study assessing the mRNA profile in surgical tissue obtained from patients with familial MTLE and comparing it with sporadic MTLE. Our results clearly show that, despite phenotypic similarities, both forms of MTLE present distinct molecular signatures, thus suggesting different underlying molecular mechanisms that may require distinct therapeutic approaches.
Collapse
Affiliation(s)
- Claudia V Maurer-Morelli
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Jaira F de Vasconcellos
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Department of Biology, James Madison
University, Harrisonburg, VA 22807, USA
| | - Estela M Bruxel
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Cristiane S Rocha
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Amanda M do Canto
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Helder Tedeschi
- Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Clarissa L Yasuda
- Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Fernando Cendes
- Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Iscia Lopes-Cendes.
| |
Collapse
|
3
|
Effect of famotidine in combination with antiepileptic drugs on locomotor activity in mice. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.2478/cipms-2019-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Histamine type 2 receptor antagonists are one of the most commonly used agents to treat peptic ulcer disease. Since patients with epilepsy may have many comorbidities, the aim of this study was to investigate the influence of one of the strongest second generation histamine type 2 receptor antagonist, famotidine, on the exploratory and spontaneous activity in mice after 1 or 7 days treatment. Additionally, the interaction between famotidine and antiepileptics: carbamazepine, phenytoin, phenobarbital or valproate and their effect on animals activity was also evaluated. Locomotor activity was monitored electronically using a Digiscan analyzer in relation to ambulatory and rearing activities, as well as total distance travelled by animals during 15 minute periods. Results of our study indicate that famotidine administered alone did not modulate three variables of exploratory motor activity (horizontal activity, total distance and vertical activity) in mice. On the other hand, famotidine co-administered with valproate (1 day) or phenobarbital (1 day or 7 days) worsened vertical activity in mice in exploratory time. Similarly, impairment in horizontal activity in mice was observed when famotidine was given with phenobarbital (1 or 7 days). An increase in total distance in mice after famotidine alone or in combination with tested antiepileptic drugs was also shown. Moreover, famotidine alone or together with antiepileptic agents significantly impaired spontaneous locomotor activity in mice. The presented results show that famotidine administration to patients with epilepsy should be considered as potentially hazardous.
Collapse
|
4
|
Misto A, Provensi G, Vozella V, Passani MB, Piomelli D. Mast Cell-Derived Histamine Regulates Liver Ketogenesis via Oleoylethanolamide Signaling. Cell Metab 2019; 29:91-102.e5. [PMID: 30318340 DOI: 10.1016/j.cmet.2018.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/11/2018] [Accepted: 09/12/2018] [Indexed: 01/30/2023]
Abstract
The conversion of lipolysis-derived fatty acids into ketone bodies (ketogenesis) is a crucial metabolic adaptation to prolonged periods of food scarcity. The process occurs primarily in liver mitochondria and is initiated by fatty-acid-mediated stimulation of the ligand-operated transcription factor, peroxisome proliferator-activated receptor-α (PPAR-α). Here, we present evidence that mast cells contribute to the control of fasting-induced ketogenesis via a paracrine mechanism that involves secretion of histamine into the hepatic portal circulation, stimulation of liver H1 receptors, and local biosynthesis of the high-affinity PPAR-α agonist, oleoylethanolamide (OEA). Genetic or pharmacological interventions that disable any one of these events, including mast cell elimination, deletion of histamine- or OEA-synthesizing enzymes, and H1 blockade, blunt ketogenesis without affecting lipolysis. The results reveal an unexpected role for mast cells in the regulation of systemic fatty-acid homeostasis, and suggest that OEA may act in concert with lipolysis-derived fatty acids to activate liver PPAR-α and promote ketogenesis.
Collapse
Affiliation(s)
- Alessandra Misto
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy; School of Advanced Studies Sant'Anna, Pisa 56127, Italy
| | - Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence 50139, Italy
| | - Valentina Vozella
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | | | - Daniele Piomelli
- Departments of Anatomy and Neurobiology, Biological Chemistry and Pharmacology, School of Medicine, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
Świąder MJ, Barczyński B, Tomaszewski M, Świąder K, Czuczwar SJ. The effects of cimetidine chronic treatment on conventional antiepileptic drugs in mice. Pharmacol Rep 2016; 68:283-8. [PMID: 26922528 DOI: 10.1016/j.pharep.2015.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/17/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE The aim of this study was to evaluate the effects of 1-day, 7-day and 14-day administrations of cimetidine on the anticonvulsant activity of conventional antiepileptic drugs (AEDs; valproate, carbamazepine, phenytoin and phenobarbital) against maximal electroshock (MES)-induced convulsions in mice. METHODS Electroconvulsions were evoked in Albino Swiss mice by a current delivered via ear-clip electrodes. In addition, the effects of cimetidine, AEDs alone and their combinations were studied on performance and long-term memory tests. Pharmacokinetic changes in plasma and brain concentrations of AEDs after cimetidine administration were evaluated with immunofluorescence. RESULTS Cimetidine (up to 100mg/kg) after 1-day administration did not affect the electroconvulsive threshold in animals. Moreover, in the 14-day treatment, cimetidine administered at a dose of 40mg/kg did not significantly change the electroconvulsive threshold in the MES-test, cimetidine administered 14-day (at 20mg/kg) significantly increased the anticonvulsant activity of carbamazepine, staying without effects after a 1-day and 7-day studies. In contrast, both the 7-day and 14-day administrations of cimetidine resulted in significant reductions of protective efficacy of the phenobarbital. Only valproate and phenytoin were not affected by cimetidine (20mg/kg) in all experimental period. Cimetidine administered 1-day, did not alter total brain concentrations and free plasma levels of all AEDs tested, whilst the 14-day study elevated carbamazepine plasma and brain concentration and reduced phenobarbital brain concentration. Cimetidine co-applied with AEDs did not impair performance of mice evaluated in the chimney test however, it worsened long-term memory in animals. CONCLUSIONS Based on this preclinical study, a special caution is advised when treating epileptic patients with combinations of phenobarbital or carbamazepine with cimetidine.
Collapse
Affiliation(s)
- Mariusz J Świąder
- Department of Experimental and Clinical Pharmacology, Medical University, Lublin, Poland.
| | - Bartłomiej Barczyński
- Department of Experimental and Clinical Pharmacology, Medical University, Lublin, Poland
| | - Michał Tomaszewski
- Department of Experimental and Clinical Pharmacology, Medical University, Lublin, Poland
| | - Katarzyna Świąder
- Department of Applied Pharmacy, The Medical University of Lublin, Lublin, Poland
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland; Department of Physiopathology, Institute of Agricultural Medicine, Lublin, Poland
| |
Collapse
|