1
|
Wei S, Song X, Mou Y, Yang T, Wang Y, Wang H, Ren C, Song X. New insights into pathogenisis and therapies of P2X7R in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:108. [PMID: 40325043 PMCID: PMC12053563 DOI: 10.1038/s41531-025-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/27/2025] [Indexed: 05/07/2025] Open
Abstract
Parkinson's disease (PD), a prevalent neurodegenerative disorder, is linked to genetics and environment, but its mechanisms remain unclear. Emerging evidence connects purinergic signaling-particularly ATP-sensitive P2X7 receptor (P2X7R)-to PD. P2X7R expression is elevated in PD patients, and its antagonist BBG mitigates 6-OHDA-induced dopaminergic neuron death. This review discusses P2X7R's structure, neural functions, PD-related mechanisms, and therapeutic potential as a targert.
Collapse
Affiliation(s)
- Shizhuang Wei
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiaoyu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ting Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Hanrui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Chao Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| |
Collapse
|
2
|
Zhu Y, Wang R, Fan Z, Luo D, Cai G, Li X, Han J, Zhuo L, Zhang L, Zhang H, Li Y, Wu S. Taurine Alleviates Chronic Social Defeat Stress-Induced Depression by Protecting Cortical Neurons from Dendritic Spine Loss. Cell Mol Neurobiol 2023; 43:827-840. [PMID: 35435537 PMCID: PMC9958166 DOI: 10.1007/s10571-022-01218-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Abnormal amino acid metabolism in neural cells is involved in the occurrence and development of major depressive disorder. Taurine is an important amino acid required for brain development. Here, microdialysis combined with metabonomic analysis revealed that the level of taurine in the extracellular fluid of the cerebral medial prefrontal cortex (mPFC) was significantly reduced in mice with chronic social defeat stress (CSDS)-induced depression. Therefore, taurine supplementation may be usable an intervention for depression. We found that taurine supplementation effectively rescued immobility time during a tail suspension assay and improved social avoidance behaviors in CSDS mice. Moreover, taurine treatment protected CSDS mice from impairments in dendritic complexity, spine density, and the proportions of different types of spines. The expression of N-methyl D-aspartate receptor subunit 2A, an important synaptic receptor, was largely restored in the mPFC of these mice after taurine supplementation. These results demonstrated that taurine exerted an antidepressive effect by protecting cortical neurons from dendritic spine loss and synaptic protein deficits.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Rui Wang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Ze Fan
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China ,State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Danlei Luo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Guohong Cai
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Xinyang Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Jiao Han
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Lixia Zhuo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Li Zhang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Haifeng Zhang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Yan Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Shengxi Wu
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
4
|
Alexandre J, Malheiro R, Dias da Silva D, Carmo H, Carvalho F, Silva JP. The Synthetic Cannabinoids THJ-2201 and 5F-PB22 Enhance In Vitro CB 1 Receptor-Mediated Neuronal Differentiation at Biologically Relevant Concentrations. Int J Mol Sci 2020; 21:6277. [PMID: 32872617 PMCID: PMC7503567 DOI: 10.3390/ijms21176277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 01/07/2023] Open
Abstract
Recreational use of synthetic cannabinoids (SCs) before and during pregnancy poses a major public health risk, due to the potential onset of neurodevelopmental disorders in the offspring. Herein, we report the assessment of the neurotoxic potential of two commonly abused SCs, THJ-2201 and 5F-PB22, particularly focusing on how they affect neuronal differentiation in vitro. Differentiation ratios, total neurite length, and neuronal marker expression were assessed in NG108-15 neuroblastoma x glioma cells exposed to the SCs at non-toxic, biologically relevant concentrations (≤1 μM), either in acute or repeated exposure settings. Both SCs enhanced differentiation ratios and total neurite length of NG108-15 cells near two-fold compared to vehicle-treated cells, in a CB1R activation-dependent way, as the CB1R blockade with a specific antagonist (SR141718) abrogated SC-induced effects. Interestingly, repeated 5F-PB22 exposure was required to reach effects similar to a single THJ-2201 dose. Cell viability and proliferation, mitochondrial membrane potential, and intracellular ATP levels were also determined. The tested SCs increased mitochondrial tetramethyl rhodamine ethyl ester (TMRE) accumulation after 24 h at biologically relevant concentrations but did not affect any of the other toxicological parameters. Overall, we report firsthand the CB1R-mediated enhancement of neurodifferentiation by 5F-PB22 and THJ-2201 at biologically relevant concentrations.
Collapse
Affiliation(s)
| | | | | | | | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.); (R.M.); (D.D.d.S.); (H.C.)
| | - João Pedro Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.); (R.M.); (D.D.d.S.); (H.C.)
| |
Collapse
|
5
|
Effects of Hericium erinaceus Mycelium Extracts on the Functional Activity of Purinoceptors and Neuropathic Pain in Mice with L5 Spinal Nerve Ligation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2890194. [PMID: 32508945 PMCID: PMC7244964 DOI: 10.1155/2020/2890194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/18/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022]
Abstract
Neuropathic pain is a serious clinical problem that is difficult to treat. Purinoceptors (P2Rs) transduce pain perception from the peripheral to the central nervous system and play an important role in the transmission of neuropathic pain signals. We previously found that the crude extracts of Hericium erinaceus mycelium (HE-CE) inhibited P2R-mediated signaling in cells and reduced heat-induced pain in mice. The present study explored the effects of HE-CE on neuropathic pain. We used adenosine triphosphate (ATP) as a P2R agonist to generate Ca2+ signaling and neuronal damage in a cell line. We also established a neuropathic mouse model of L5 spinal nerve ligation (L5-SNL) to examine neuropathic pain and neuroinflammation. Neuropathic pain was recorded using the von Frey test. Neuroinflammation was evaluated based on immunohistofluorescence observation of glial fibrillary acidic protein (GFAP) levels in astrocytes, ionized calcium-binding adaptor molecule1 (iba1) levels in microglia, and IL-6 levels in plasma. The results show that HE-CE and erinacine-S, but not erinacine-A, totally counteracted Ca2+ signaling and cytotoxic effects upon P2R stimulation by ATP in human osteosarcoma HOS cells and human neuroblastoma SH-SY5Y cells, respectively. SNL induced a decrease in the withdrawal pressure of the ipsilateral hind paw, indicating neuropathic pain. It also raised the GFAP level in astrocytes, the iba1 level in microglia, and the IL-6 level in plasma, indicating neuroinflammation. HE-CE significantly counteracted the SNL-induced decrease in withdrawal pressure, illustrating that it could relieve neuropathic pain. It also reduced SNL-induced increases in astrocyte GFAP levels, microglial iba1 levels, and plasma IL-6 levels, suggesting that HE-CE reduces neuroinflammation. Erinacine-S relieved neuropathic pain better than HE-CE. The present study demonstrated that HE inhibits P2R and, thus, that it can relieve neuropathic pain and neuroinflammation.
Collapse
|
6
|
Deficiency of the Purinergic Receptor 2X 7 Attenuates Nonalcoholic Steatohepatitis Induced by High-Fat Diet: Possible Role of the NLRP3 Inflammasome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8962458. [PMID: 29270247 PMCID: PMC5705892 DOI: 10.1155/2017/8962458] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/02/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
Molecular mechanisms driving transition from simple steatosis to nonalcoholic steatohepatitis (NASH), a critical step in the progression of nonalcoholic fatty liver disease (NAFLD) to cirrhosis, are poorly defined. This study aimed at investigating the role of the purinergic receptor 2X7 (PR2X7), through the NLRP3 inflammasome, in the development of NASH. To this end, mice knockout for the Pr2x7 gene (Pr2x7−/−) and coeval wild-type (WT) mice were fed a high-fat diet (HFD) or normal-fat diet for 16 weeks. NAFLD grade and stage were lower in Pr2x7−/− than WT mice, and only 1/7 Pr2x7−/− animals showed evidence of NASH, as compared with 4/7 WT mice. Molecular markers of inflammation, oxidative stress, and fibrosis were markedly increased in WT-HFD mice, whereas no or significantly reduced increments were detected in Pr2x7−/− animals, which showed also decreased modulation of genes of lipid metabolism. Deletion of Pr2x7 gene was associated with blunted or abolished activation of NLRP3 inflammasome and expression of its components, which were induced in liver sinusoidal endothelial cells challenged with appropriate stimuli. These data show that Pr2x7 gene deletion protects mice from HFD-induced NASH, possibly through blunted activation of NLRP3 inflammasome, suggesting that PR2X7 and NLRP3 may represent novel therapeutic targets.
Collapse
|
7
|
Neuronal P2X7 Receptor: Involvement in Neuronal Physiology and Pathology. J Neurosci 2017; 37:7063-7072. [PMID: 28747389 DOI: 10.1523/jneurosci.3104-16.2017] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/28/2022] Open
Abstract
The proposed presence of P2X7 receptor (P2X7R) in neurons has been the source of some contention. Initial studies suggested an absence of P2X7R mRNA in neurons, and the apparent nonspecificity of the antibodies used to identify P2X7R raised further doubts. However, subsequent studies using new pharmacological and biomolecular tools provided conclusive evidence supporting the existence of functional P2X7Rs in neurons. The P2X7 receptor has since been shown to play a leading role in multiple aspects of neuronal physiology, including axonal elongation and branching and neurotransmitter release. P2X7R has also been implicated in neuronal pathologies, in which it may influence neuronal survival. Together, this body of research suggests that P2X7R may constitute an important therapeutic target for a variety of neurological disorders.
Collapse
|