1
|
Keifi Bajestani A, Alavi MS, Etemad L, Roohbakhsh A. Role of orphan G-protein coupled receptors in tissue ischemia: A comprehensive review. Eur J Pharmacol 2024; 978:176762. [PMID: 38906238 DOI: 10.1016/j.ejphar.2024.176762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Ischemic events lead to many diseases and deaths worldwide. Ischemia/reperfusion (I/R) occurs due to reduced blood circulation in tissues followed by blood reflow. Reoxygenation of ischemic tissues is characterized by oxidative stress, inflammation, energy distress, and endoplasmic reticulum stress. There are still no adequate clinical protocols or pharmacological approaches to address the consequences of I/R damage. G protein-coupled receptors (GPCRs) are important therapeutic targets. They compose a large family of seven transmembrane-spanning proteins that are involved in many biological functions. Orphan GPCRs are a large subgroup of these receptors expressed in different organs. In the present review, we summarized the literature regarding the role of orphan GPCRs in I/R in different organs. We focused on the effect of these receptors on modulating cellular and molecular processes underlying ischemia including apoptosis, inflammation, and autophagy. The study showed that GPR3, GPR4, GPR17, GPR30, GPR31, GPR35, GPR37, GPR39, GPR55, GPR65, GPR68, GPR75, GPR81, and GPR91 are involved in ischemic events, mainly in the brain and heart. These receptors offer new possibilities for treating I/R injuries in the body.
Collapse
Affiliation(s)
- Alireza Keifi Bajestani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
He Y, Shen H, Bi GH, Zhang HY, Soler-Cedeño O, Alton H, Yang Y, Xi ZX. GPR55 is expressed in glutamate neurons and functionally modulates drug taking and seeking in rats and mice. Transl Psychiatry 2024; 14:101. [PMID: 38374108 PMCID: PMC10876975 DOI: 10.1038/s41398-024-02820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
G protein-coupled receptor 55 (GPR55) has been thought to be a putative cannabinoid receptor. However, little is known about its functional role in cannabinoid action and substance use disorders. Here we report that GPR55 is predominantly found in glutamate neurons in the brain, and its activation reduces self-administration of cocaine and nicotine in rats and mice. Using RNAscope in situ hybridization, GPR55 mRNA was identified in cortical vesicular glutamate transporter 1 (VgluT1)-positive and subcortical VgluT2-positive glutamate neurons, with no detection in midbrain dopamine (DA) neurons. Immunohistochemistry detected a GPR55-like signal in both wildtype and GPR55-knockout mice, suggesting non-specific staining. However, analysis using a fluorescent CB1/GPR55 ligand (T1117) in CB1-knockout mice confirmed GPR55 binding in glutamate neurons, not in midbrain DA neurons. Systemic administration of the GPR55 agonist O-1602 didnt impact ∆9-THC-induced analgesia, hypothermia and catalepsy, but significantly mitigated cocaine-enhanced brain-stimulation reward caused by optogenetic activation of midbrain DA neurons. O-1602 alone failed to alter extracellar DA, but elevated extracellular glutamate, in the nucleus accumbens. In addition, O-1602 also demonstrated inhibitory effects on cocaine or nicotine self-administration under low fixed-ratio and/or progressive-ratio reinforcement schedules in rats and wildtype mice, with no such effects observed in GPR55-knockout mice. Together, these findings suggest that GPR55 activation may functionally modulate drug-taking and drug-seeking behavior possibly via a glutamate-dependent mechanism, and therefore, GPR55 deserves further study as a new therapeutic target for treating substance use disorders.
Collapse
Affiliation(s)
- Yi He
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Hui Shen
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Guo-Hua Bi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
- Medication Development Program, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Hai-Ying Zhang
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Omar Soler-Cedeño
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
- Postdoctoral Research Associate Training Fellow, National Institute of General Medical Sciences, Bethesda, MD, 20892, USA
| | - Hannah Alton
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
- Medication Development Program, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Yihong Yang
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
3
|
Xi ZX, He Y, Shen H, Bi GH, Zhang HY, Soler-Cedeno O, Alton H, Yang Y. GPR55 is expressed in glutamate neurons and functionally modulates nicotine taking and seeking in rats and mice. RESEARCH SQUARE 2023:rs.3.rs-3222344. [PMID: 37886574 PMCID: PMC10602186 DOI: 10.21203/rs.3.rs-3222344/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Cannabis legalization continues to progress in the USA for medical and recreational purposes. G protein-coupled receptor 55 (GPR55) is a putative "CB3" receptor. However, its functional role in cannabinoid action and drug abuse is not explored. Here we report that GPR55 is mainly expressed in cortical and subcortical glutamate neurons and its activation attenuates nicotine taking and seeking in rats and mice. RNAscope in situ hybridization detected GPR55 mRNA in cortical vesicular glutamate transporter 1 (VgluT1)-positive and subcortical VgluT2-positive glutamate neurons in wildtype, but not GPR55-knockout, mice. GPR55 mRNA was not detected in midbrain dopamine (DA) neurons in either genotype. Immunohistochemistry assays detected GPR55-like staining, but the signal is not GPR55-specific as the immunostaining was still detectable in GPR55-knockout mice. We then used a fluorescent CB1-GPR55 ligand (T1117) and detected GPR55 binding in cortical and subcortical glutamate neurons, but not in midbrain DA neurons, in CB1-knockout mice. Systemic administration of O-1602, a GPR55 agonist, dose-dependently increased extracellular glutamate, not DA, in the nucleus accumbens. Pretreatment with O-1602 failed to alter Δ9-tetrahydrocannabinol (D9-THC)-induced triad effects or intravenous cocaine self-administration, but it dose-dependently inhibited nicotine self-administration under fixed-ratio and progressive-ratio reinforcement schedules in rats and wildtype mice, not in GPR55-knockout mice. O-1602 itself is not rewarding or aversive as assessed by optical intracranial self-stimulation (oICSS) in DAT-Cre mice. These findings suggest that GPR55 is functionally involved in nicotine reward process possibly by a glutamate-dependent mechanism, and therefore, GPR55 deserves further research as a new therapeutic target for treating nicotine use disorder.
Collapse
Affiliation(s)
| | - Yi He
- National Institute on Drug Abuse
| | - Hui Shen
- National Institute on Drug Abuse
| | | | | | | | | | | |
Collapse
|
4
|
Liu Q, Yu J, Li X, Guo Y, Sun T, Luo L, Ren J, Jiang W, Zhang R, Yang P, Yang Q. Cannabinoid receptor GPR55 activation blocks nicotine use disorder by regulation of AMPAR phosphorylation. Psychopharmacology (Berl) 2021; 238:3335-3346. [PMID: 34648060 DOI: 10.1007/s00213-021-05949-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
RATIONALE Nicotine use disorder can alter synaptic plasticity correlated with learning and memory process. G protein-coupled receptor 55 (GPR55), a novel cannabinoid receptor, which is highly expressed in the central nervous system, plays a prominent role in learning and memory. However, the role of GPR55 in nicotine use disorder remains unclear. METHODS In this study, we used the conditioned place preference (CPP) paradigm, a standard and well-established model for evaluating the rewarding effect of drug abuse, to investigate nicotine use disorder behavior in mice. After behavioral tests, the effect of GPR55 on nicotine response was evaluated using Western blotting, immunofluorescence staining, whole-cell patch-clamp recordings, and ELISA. RESULTS GPR55 activation significantly reduced nicotine-CPP behavior by decreasing the spontaneous excitatory postsynaptic currents frequency in the nucleus accumbens (NAc) and the release of dopamine in serum. Furthermore, we found that the inhibition effects of nicotine response were mediated by phosphorylation of AMPAR. The PI3K-Akt signaling was involved in nicotine-CPP via GPR55 activation. CONCLUSION Our findings showed that GPR55 in the NAc plays a specific role in blocking nicotine-CPP behavior and might be a potential target for the treatment of nicotine use disorder.
Collapse
Affiliation(s)
- Qingqing Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jiaoyan Yu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Xi Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yanyan Guo
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ting Sun
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Li Luo
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jing Ren
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Wei Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ruitao Zhang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Peng Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
5
|
The effect of intra-striatal administration of GPR55 agonist (LPI) and antagonist (ML193) on sensorimotor and motor functions in a Parkinson's disease rat model. Acta Neuropsychiatr 2021; 33:15-21. [PMID: 32967746 DOI: 10.1017/neu.2020.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE G protein-coupled receptor 55 (GPR55) is an orphan G protein-coupled receptor with various physiological functions. Recent evidence suggests that this receptor may be involved in the control of motor functions. Therefore, in the present study, we evaluated the effects of intra-striatal administration of GPR55 selective ligands in a rat model of Parkinson's disease. METHODS Experimental Parkinson was induced by unilateral intra-striatal administration of 6-hydroxydopamine (6-OHDA, 10 µg/rat). L-α-lysophosphatidylinositol (LPI, 1 and 5 µg/rat), an endogenous GPR55 agonist, and ML193 (1 and 5 µg/rat), a selective GPR55 antagonist, were injected into the striatum of 6-OHDA-lesioned rats. Motor performance and balance skills were evaluated using the accelerating rotating rod and the ledged beam tests. The sensorimotor function of the forelimbs and locomotor activity were assessed by the adhesive removal and open field tests, respectively. RESULTS 6-OHDA-lesioned rats had impaired behaviours in all tests. Intra-striatal administration of LPI in 6-OHDA-lesioned rats increased time on the rotarod, decreased latency to remove the label, with no significant effect on slip steps, and locomotor activity. Intra-striatal administration of ML193 also increased time on the rotarod, decreased latency to remove the label and slip steps in 6-OHDA-lesioned rats mostly at the dose of 1 µg/rat. CONCLUSIONS This study suggests that the striatal GPR55 is involved in the control of motor functions. However, considering the similar effects of GPR55 agonist and antagonist, it may be concluded that this receptor has a modulatory role in the control of motor deficits in an experimental model of Parkinson.
Collapse
|
6
|
Etemad L, Farkhari H, Alavi MS, Roohbakhsh A. The Effect of Dihydromyricetin, a Natural Flavonoid, on
Morphine-induced Conditioned Place Preference and Physical Dependence in
Mice. Drug Res (Stuttg) 2020; 70:410-416. [DOI: 10.1055/a-1206-6757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Objective Dihydromyricetin (DHM), a natural flavonoid, is used to reduce
alcohol hangover. It has a modulatory role on GABAA receptors with significant
effects on seizure and anxiety in animal models. We aimed to evaluate the effect
of DHM on morphine conditioned place preference (CPP) and withdrawal sings
following morphine dependence using animal models.
Methods The effect of DHM (1, 2 and 5 mg/kg,
intraperitoneal; ip) on the acquisition and expression of morphine-induced CPP
was evaluated in male mice. Administration of morphine for three consecutive
days induced physical dependence. The withdrawal signs such as jumping and
defecation were precipitated by administration of naloxone
(8 mg/kg, ip). The effect of DHM on the development of physical
dependence was assessed by injection of DHM before morphine administrations.
Results DHM, at the dose of 5 mg/kg, reduced expression
of morphine CPP with an increase in the locomotor activity. DHM, at the doses of
2 and 5 mg/kg, also reduced development of morphine CPP. DHM
alleviated development of morphine-induced physical dependence at the dose of 1,
2, and 5 mg/kg by decreasing jumping and defecation.
Conclusion These results indicated that DHM decreased acquisition and
expression of morphine CPP and inhibited development of morphine-induced
physical dependence.
Collapse
Affiliation(s)
- Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute,
Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farkhari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy,
Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of
Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences
Research Center, Mashhad University of Medical Sciences, Mashhad,
Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute,
Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Wróbel A, Serefko A, Szopa A, Ulrich D, Poleszak E, Rechberger T. O-1602, an Agonist of Atypical Cannabinoid Receptors GPR55, Reverses the Symptoms of Depression and Detrusor Overactivity in Rats Subjected to Corticosterone Treatment. Front Pharmacol 2020; 11:1002. [PMID: 32733244 PMCID: PMC7360849 DOI: 10.3389/fphar.2020.01002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 11/21/2022] Open
Abstract
In view of the fact that GPR55 receptors are localized in brain areas implicated in the pathophysiology of depression, GPR55 gene expression is reduced in the dorsolateral prefrontal cortex of suicide victims, and GPR55 receptor agonism exerts an anxiolytic-like effect, GPR55 receptors have drawn our attention as a potential target in the treatment of mood disorders. Therefore, in the present study, we wanted to check whether a 7-day intravenous administration of O-1602 (0.25 mg/kg/day) – a phytocannabinoid-like analogue of cannabidiol that belongs to the agonists of GPR55 receptors, was able to reverse the corticosterone-induced depressive-like behavior accompanied by detrusor overactivity in female Wistar rats. Additionally, we tried to determine the influence of GPR55 stimulation on the bladder, hippocampal and urine levels of several biomarkers that play a role in the functioning of the urinary bladder and/or the pathophysiology of depression. Our experiments showed that O-1602 therapy improved signs of depression (measured by the forced swim test) and detrusor contractility (measured by conscious cystometry) in animals exposed to the corticosterone treatment. Moreover, the treatment reduced the oxidative damage in the urinary bladder and neuroinflammation (observed as the reduction of elevated levels of 3-NIT, MAL, and IL-1β, TNF-α, CRF, respectively). The O-1602 treatment also reversed the abnormal changes in the bladder, hippocampal or urine values of CGRP, OCT3, VAChT, BDNF, and NGF. The above-mentioned findings allow to suggest that in the future the modulation of atypical cannabinoid receptors GPR55 could have a potential role in the treatment of depression and overactive bladder.
Collapse
Affiliation(s)
- Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Anna Serefko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Szopa
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Daniela Ulrich
- Department of Obstetrics and Gynaecology, Medical University Graz, Graz, Germany
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Tomasz Rechberger
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
8
|
Abstract
Substance use disorder (SUD) is a major public health crisis worldwide, and effective treatment options are limited. During the past 2 decades, researchers have investigated the impact of a variety of pharmacological approaches to treat SUD, one of which is the use of medical cannabis or cannabinoids. Significant progress was made with the discovery of rimonabant, a selective CB1 receptor (CB1R) antagonist (also an inverse agonist), as a promising therapeutic for SUDs and obesity. However, serious adverse effects such as depression and suicidality led to the withdrawal of rimonabant (and almost all other CB1R antagonists/inverse agonists) from clinical trials worldwide in 2008. Since then, much research interest has shifted to other cannabinoid-based strategies, such as peripheral CB1R antagonists/inverse agonists, neutral CB1R antagonists, allosteric CB1R modulators, CB2R agonists, fatty acid amide hydrolase (FAAH) inhibitors, monoacylglycerol lipase (MAGL) inhibitors, fatty acid binding protein (FABP) inhibitors, or nonaddictive phytocannabinoids with CB1R or CB2R-binding profiles, as new therapeutics for SUDs. In this article, we first review recent progress in research regarding the endocannabinoid systems, cannabis reward versus aversion, and the underlying receptor mechanisms. We then review recent progress in cannabinoid-based medication development for the treatment of SUDs. As evidence continues to accumulate, neutral CB1R antagonists (such as AM4113), CB2R agonists (JWH133, Xie2-64), and nonselective phytocannabinoids (cannabidiol, β-caryophyllene, ∆9-tetrahydrocannabivarin) have shown great therapeutic potential for SUDs, as shown in experimental animals. Several cannabinoid-based medications (e.g., dronabinol, nabilone, PF-04457845) that entered clinical trials have shown promising results in reducing withdrawal symptoms in cannabis and opioid users.
Collapse
Affiliation(s)
- Ewa Galaj
- Addiction Biology Unit, Molecular Targets and Medication Discoveries Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medication Discoveries Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| |
Collapse
|
9
|
Alavi MS, Shamsizadeh A, Azhdari-Zarmehri H, Roohbakhsh A. Orphan G protein-coupled receptors: The role in CNS disorders. Biomed Pharmacother 2017; 98:222-232. [PMID: 29268243 DOI: 10.1016/j.biopha.2017.12.056] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
There are various types of receptors in the central nervous system (CNS). G protein-coupled receptors (GPCRs) have the highest expression with a wide range of physiological functions. A newer sub group of these receptors namely orphan GPCRs have been discovered. GPR3, GPR6, GPR17, GPR26, GPR37, GPR39, GPR40, GPR50, GPR52, GPR54, GPR55, GPR85, GPR88, GPR103, and GPR139 are the selected orphan GPCRs for this article. Their roles in the central nervous system have not been understood well so far. However, recent studies show that they may have very important functions in the CNS. Hence, in the present study, we reviewed most recent findings regarding the physiological roles of the selected orphan GPCRs in the CNS. After a brief presentation of each receptor, considering the results from genetic and pharmacological manipulation of the receptors, their roles in the pathophysiology of different diseases and disorders including anxiety, depression, schizophrenia, epilepsy, Alzheimer's disease, Parkinson's disease, and substance abuse will be discussed. At present, our knowledge regarding the role of GPCRs in the brain is very limited. However, previous limited studies show that orphan GPCRs have an important place in psychopharmacology and these receptors are potential new targets for the treatment of major CNS diseases.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hassan Azhdari-Zarmehri
- Department of Basic Medical Sciences and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Wills KL, Parker LA. Effect of Pharmacological Modulation of the Endocannabinoid System on Opiate Withdrawal: A Review of the Preclinical Animal Literature. Front Pharmacol 2016; 7:187. [PMID: 27445822 PMCID: PMC4923145 DOI: 10.3389/fphar.2016.00187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 01/20/2023] Open
Abstract
Over the years, animal studies have revealed a role for the endocannabinoid system in the regulation of multiple aspects of opiate addiction. The current review provides an overview of this literature in regards to opiate withdrawal. The opiate withdrawal syndrome, hypothesized to act as a negative reinforcer in mediating continued drug use, can be characterized by the emergence of spontaneous or precipitated aversive somatic and affective states following the termination of drug use. The behaviors measured to quantify somatic opiate withdrawal and the paradigms employed to assess affective opiate withdrawal (e.g., conditioned place aversion) in both acutely and chronically dependent animals are discussed in relation to the ability of the endocannabinoid system to modulate these behaviors. Additionally, the brain regions mediating somatic and affective opiate withdrawal are elucidated with respect to their modulation by the endocannabinoid system. Ultimately, a review of these findings reveals dissociations between the brain regions mediating somatic and affective opiate withdrawal, and the ability of cannabinoid type 1 (CB1) receptor agonism/antagonism to interfere with opiate withdrawal within different brain sub regions.
Collapse
Affiliation(s)
- Kiri L Wills
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph ON, Canada
| |
Collapse
|