1
|
Development and In Vitro Evaluation of a Novel Pulsatile Drug Delivery System Containing Dexketoprofen Trometamol. J Pharm Innov 2021. [DOI: 10.1007/s12247-020-09452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
2
|
Yuvali D, Yilmaz E, Narin İ. A new liquid phase microextraction method-based reverse micelle for analysis of dexketoprofen in human plasma by HPLC-DAD. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00251-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AbstractA new liquid phase microextraction method was developed by used reverse micelle-based coacervates as microextraction agents for the separation of dexketoprofen (DKT) from human plasma before its determination by high-performance liquid chromatography with photodiode-array detection (HPLC-DAD). The change in the concentration of dexketoprofen in the plasma of the male and female patients was successfully monitored by using this method. The proposed method involves the use of reverse micelles of decanoic acid (DA) are dispersed in tetrahydrofuran (THF) and aqueous system. After addition of the DA and THF to the aqueous sample phase, the formation of micelles of nano and molecular size was observed in an ultrasonic bath. The solution was centrifuged, and the DKT extracted into the DA phase was analyzed by HPLC-DAD. Some analytical parameters that important in the developed procedure were examined in detail. The limit of detection (LOD), the limit of quantification (LOQ), the intraday, and inter day relative standard deviation (RSD, %) of the developed method in the plasma sample were found to be 12.8 ng mL−1, 38.8 ng mL−1, 1.7 and 3.9%, respectively. Additional/recovery studies were performed in plasma samples with proposed method, and quantitative recoveries were obtained in the range of 97–100%. The developed microextraction method was applied to human plasma that taken from volunteer patients for the determination of DKT.
Graphical abstract
Collapse
|
3
|
Franco de la-Torre L, Alonso-Castro ÁJ, Zapata-Morales JR, Rivas-Carrillo JD, Vidaurrazaga-Lugo J, Partida-Castellanos EM, Granados-Soto V, Isiordia-Espinoza MA. Antinociception and less gastric injury with the dexketoprofen-tapentadol combination in mice. Fundam Clin Pharmacol 2020; 35:371-378. [PMID: 33150641 DOI: 10.1111/fcp.12625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/17/2020] [Accepted: 11/02/2020] [Indexed: 01/11/2023]
Abstract
The purpose of this study was to evaluate the antinociceptive interaction between dexketoprofen and tapentadol in three different dose ratios, as well as the ulcerogenic activity of this combination. Dose-response curves were carried out for dexketoprofen, tapentadol, and dexketoprofen-tapentadol combinations in the acetic acid-induced writhing test in mice. On the other hand, the gastric damage of all treatments was assessed after the surgical extraction of the stomachs. Intraperitoneal administration of dexketoprofen and tapentadol induced a dose-dependent antinociceptive effect, reaching a maximal effect of about 58% and 99%, respectively. Isobolographic analysis and the interaction index showed that the three proportions produced an analgesic potentiation (synergistic interaction). Interestingly, the 1:1 and 1:3 ratios of the drugs combination produced minor gastric injury in comparison with the 3:1 proportion. Our data suggest that all proportions of the dexketoprofen-tapentadol combination produced a synergistic interaction in the acetic acid-induced visceral pain model in mice with a low incidence of gastric injury.
Collapse
Affiliation(s)
- Lorenzo Franco de la-Torre
- Instituto de Investigación en Ciencias Médicas, Cuerpo Académico Terapéutica y Biología Molecular (UDG-CA-973), Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Ángel Josabad Alonso-Castro
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Juan Ramón Zapata-Morales
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Jorge David Rivas-Carrillo
- Centro de Investigación Científica y Experimentación Animal, Laboratorio de Ingeniería de Tejidos y Trasplantes, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - José Vidaurrazaga-Lugo
- Instituto de Investigación en Ciencias Médicas, Cuerpo Académico Terapéutica y Biología Molecular (UDG-CA-973), Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Elsa Maria Partida-Castellanos
- Instituto de Investigación en Ciencias Médicas, Cuerpo Académico Terapéutica y Biología Molecular (UDG-CA-973), Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Mexico City, México
| | - Mario Alberto Isiordia-Espinoza
- Instituto de Investigación en Ciencias Médicas, Cuerpo Académico Terapéutica y Biología Molecular (UDG-CA-973), Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| |
Collapse
|
4
|
Receptors involved in dexketoprofen analgesia in murine visceral pain. J Biosci 2020. [DOI: 10.1007/s12038-020-00064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Kłobucki M, Urbaniak A, Grudniewska A, Kocbach B, Maciejewska G, Kiełbowicz G, Ugorski M, Wawrzeńczyk C. Syntheses and cytotoxicity of phosphatidylcholines containing ibuprofen or naproxen moieties. Sci Rep 2019; 9:220. [PMID: 30659229 PMCID: PMC6338774 DOI: 10.1038/s41598-018-36571-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022] Open
Abstract
In this study, novel phosphatidylcholines containing ibuprofen or naproxen moieties were synthesized in good yields and high purities. Under the given synthesis conditions, the attached drug moieties racemized, which resulted in the formation of phospholipid diastereomers. The comperative studies of the cytotoxicity of ibuprofen, naproxen and their phosphatidylcholine derivatives against human promyelocytic leukemia HL-60, human colon carcinoma Caco-2, and porcine epithelial intestinal IPEC-J2 cells were carried out. The results of these studies indicated that phospholipids with NSAIDs at both sn-1 and sn-2 positions (15 and 16) were more toxic than ibuprofen or naproxen themselves, whereas 2-lysophosphatidylcholines (7 and 8) were less toxic against all tested cell lines. Phospholipids with NSAIDs at sn-1 and palmitic acid at sn-2 (9 and 10) were also less toxic against Caco-2 and normal cells (IPEC-J2).
Collapse
Affiliation(s)
- Marek Kłobucki
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Anna Urbaniak
- Laboratory of Glycobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Aleksandra Grudniewska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Bartłomiej Kocbach
- Laboratory of Glycobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Gabriela Maciejewska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Grzegorz Kiełbowicz
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Maciej Ugorski
- Laboratory of Glycobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
- Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| | - Czesław Wawrzeńczyk
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
6
|
Tekeli AE, Yamurdu H, Ongen E, Tekeli A, Take G, Erdoan D, Dikmen B. Effect of Dexketoprofen Trometamol as Immunohistochemical and Electron Microscopy on Kidney in Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2019.31.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Lima MPD, Lopes EM, Gomes LDS, França ARDS, Acha BT, Carvalho ALM, Almeida FRDC. Technological development of microemulsions with perspectives for pain treatment: a patent review. Expert Opin Ther Pat 2018; 28:691-702. [PMID: 30175633 DOI: 10.1080/13543776.2018.1519025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Microemulsions are thermodynamically stable translucent systems widely used for systemic delivery of drugs. The present study is the first to analyze the biotechnological potential of microemulsion systems for therapeutic purposes, through transdermal route, for pain treatment. AREAS COVERED Patents were searched in the World Intellectual Property Organization (WIPO), European Patent Office (Espacenet), United States Patent and Trademark Office (USPTO) and National Institute of Intellectual Property (INPI). The inclusion criteria were published patents containing the keywords; 'microemulsion' and 'transdermal' in their title or abstract. 208 patents were found. However, only those patents which mentioned in their abstract or in their description the use of microemulsion system (object of invention) for pain treatment were selected. Were excluded duplicate patents and those that did not report pharmacological use of MEs specifically for pain treatment. Thus, sixteen patents were selected and described in the present study. EXPERT OPINION Patents were found that focused specifically on the development process of microemulsion systems, the inclusion of essential oils in microemulsions, which place microemulsions as delivery systems for NSAIDs and other substances, as well as microemulsions for transdermal administration. These studies reinforce the therapeutic applicability of MEs in the treatment of acute and chronic pain.
Collapse
Affiliation(s)
| | - Everton Moraes Lopes
- a Medicinal Plants Research nucleus, Center of Health Sciences , Federal University of Piauí , Teresina , Brazil
| | - Laércio da Silva Gomes
- a Medicinal Plants Research nucleus, Center of Health Sciences , Federal University of Piauí , Teresina , Brazil
| | - Ana Rita de Sousa França
- a Medicinal Plants Research nucleus, Center of Health Sciences , Federal University of Piauí , Teresina , Brazil
| | - Boris Timah Acha
- a Medicinal Plants Research nucleus, Center of Health Sciences , Federal University of Piauí , Teresina , Brazil
| | | | | |
Collapse
|
8
|
Varrassi G, Hanna M, Macheras G, Montero A, Montes Perez A, Meissner W, Perrot S, Scarpignato C. Multimodal analgesia in moderate-to-severe pain: a role for a new fixed combination of dexketoprofen and tramadol. Curr Med Res Opin 2017; 33:1165-1173. [PMID: 28326850 DOI: 10.1080/03007995.2017.1310092] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Untreated and under-treated pain represent one of the most pervasive health problems, which is worsening as the population ages and accrues risk for pain. Multiple treatment options are available, most of which have one mechanism of action, and cannot be prescribed at unlimited doses due to the ceiling of efficacy and/or safety concerns. Another limitation of single-agent analgesia is that, in general, pain is due to multiple causes. Combining drugs from different classes, with different and complementary mechanism(s) of action, provides a better opportunity for effective analgesia at reduced doses of individual agents. Therefore, there is a potential reduction of adverse events, often dose-related. Analgesic combinations are recommended by several organizations and are used in clinical practice. Provided the two agents are combined in a fixed-dose ratio, the resulting medication may offer advantages over extemporaneous combinations. CONCLUSIONS Dexketoprofen/tramadol (25 mg/75 mg) is a new oral fixed-dose combination offering a comprehensive multimodal approach to moderate-to-severe acute pain that encompasses central analgesic action, peripheral analgesic effect and anti-inflammatory activity, together with a good tolerability profile. The analgesic efficacy of dexketoprofen/tramadol combination is complemented by a favorable pharmacokinetic and pharmacodynamic profile, characterized by rapid onset and long duration of action. This has been well documented in both somatic- and visceral-pain human models. This review discusses the available clinical evidence and the future possible applications of dexketoprofen/tramadol fixed-dose combination that may play an important role in the management of moderate-to-severe acute pain.
Collapse
Affiliation(s)
- Giustino Varrassi
- a European League Against Pain, Zurich and Rome , Switzerland and Italy
| | - Magdi Hanna
- b Analgesics and Pain Research Unit (APRU), King's College Hospital , London , UK
| | | | - Antonio Montero
- d Anaesthesiology & Surgery Department , Hospital Arnau de Vilanova , Lleida , Spain
| | - Antonio Montes Perez
- e Anaesthesiology Department , Hospitales Mar-Eseranza , Barcelona , Spain
- f Universitat Autonoma de Barcelona
| | - Winfried Meissner
- g Department of Anaesthesiology and Intensive Care , Jena University Hospital , Jena , Germany
| | - Serge Perrot
- h Centre de la Douleur, Université Paris Descartes, INSERM U987, Hopital Cochin , Paris , France
| | - Carmelo Scarpignato
- i Clinical Pharmacology & Digestive Pathophysiology Unit, Department of Clinical & Experimental Pharmacology , University of Parma , Parma , Italy
| |
Collapse
|