1
|
Antonijevic M, Dallemagne P, Rochais C. Indirect influence on the BDNF/TrkB receptor signaling pathway via GPCRs, an emerging strategy in the treatment of neurodegenerative disorders. Med Res Rev 2025; 45:274-310. [PMID: 39180386 DOI: 10.1002/med.22075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2022] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Neuronal survival depends on neurotrophins and their receptors. There are two types of neurotrophin receptors: a nonenzymatic, trans-membrane protein of the tumor necrosis factor receptor (TNFR) family-p75 receptor and the tyrosine kinase receptors (TrkR) A, B, and C. Activation of the TrkBR by brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5) promotes neuronal survival, differentiation, and synaptic function. It is shown that in the pathogenesis of several neurodegenerative conditions (Alzheimer's disease, Parkinson's disease, Huntington's disease) the BDNF/TrkBR signaling pathway is impaired. Since it is known that GPCRs and TrkR are regulating several cell functions by interacting with each other and generating a cross-communication in this review we have focused on the interaction between different GPCRs and their ligands on BDNF/TrkBR signaling pathway.
Collapse
|
2
|
Nekhoroshev EV, Kleshchev MA, Volgin AD, Shevlyakov AD, Bao X, Wang S, de Abreu MS, Amstislavskaya TG, Kalueff AV. Laser-Induced Olfactory Bulbectomy in Adult Zebrafish as a Novel Putative Model for Affective Syndrome: A Research Tribute to Brian Leonard. Eur J Neurosci 2025; 61:e16660. [PMID: 39804131 DOI: 10.1111/ejn.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 03/04/2025]
Abstract
Inducing multiple neurobehavioural and neurochemical deficits, olfactory bulbectomy (OBX) has been developed as a rodent model of depression with potential for antidepressant drug screening. However, the generality of this model in other vertebrate taxa remains poorly understood. A small freshwater teleost fish, the zebrafish (Danio rerio), is rapidly becoming a common model species in neuroscience research. Capitalizing on a recently developed model of noninvasive targeted laser ablation of zebrafish brain, here we report an OBX model in adult fish. An easy-to-perform noninvasive method of inducing affective syndrome-like behavioural deficits in fish, it extends the generality of OBX to other taxa beyond mammals, also offering several practical advantages and novel lines of research in experimental modelling of CNS disorders. The work is a scientific tribute to the legacy of Brian Leonard (1936-2023), a great friend and a brilliant scientist who introduced OBX as a rodent model for affective pathobiology and whose advice and encouragement have inspired the present study.
Collapse
Affiliation(s)
- Evgeny V Nekhoroshev
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - Maxim A Kleshchev
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - Anton D Shevlyakov
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Sirius, Russia
| | - Xixin Bao
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - Shenghao Wang
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
- Western Caspian University, Baku, Azerbaijan
| | | | - Allan V Kalueff
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Sirius, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
3
|
The 5-HT6R agonist E-6837 and the antagonist SB-271046 reverse the psychotic-like behaviors induced by ketamine. Behav Pharmacol 2022; 33:249-254. [DOI: 10.1097/fbp.0000000000000669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Siodłak D, Nowak G, Mlyniec K. Interaction between zinc, the GPR39 zinc receptor and the serotonergic system in depression. Brain Res Bull 2021; 170:146-154. [PMID: 33549699 DOI: 10.1016/j.brainresbull.2021.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Zinc signalling has a crucial impact on the proper functioning of the brain. Disturbances within the zincergic system may lead to neuropsychological disorders, including major depression. Studying this disease and designing effective treatment is hampered by its heterogeneous etiology and the diversified nature of the symptoms. Over the years, studies have shown that zinc deficiency and disturbances in the expression profile of the zinc receptor - GPR39 - might be a useful neurobiological indicator of a pathological state. Zinc levels and the zinc receptor are altered by classic antidepressant treatment, which indicates possible reciprocity between the monoaminergic system and zinc signalling. Disruptions in this specific interplay might be a cause of a pathological depressive state, and restoring balance and cooperation between those systems might be key to a successful form of pharmacotherapy. In this review, we aim to describe interactions between the serotonergic and zincergic systems and to highlight their significance in the pathophysiology and treatment of depression.
Collapse
Affiliation(s)
- Dominika Siodłak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL, 30-688, Krakow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL, 30-688, Krakow, Poland; Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL, 30-688, Krakow, Poland.
| |
Collapse
|
5
|
Wang F, Wu X, Gao J, Li Y, Zhu Y, Fang Y. The relationship of olfactory function and clinical traits in major depressive disorder. Behav Brain Res 2020; 386:112594. [PMID: 32194189 DOI: 10.1016/j.bbr.2020.112594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/12/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
People who have developed a good sense of smell could experience much more happiness and pleasure, which would trigger a discussion that olfactory disorder might correlate with the pathogenesis of major depressive disorder (MDD). Similar experiments conducted on rats have confirmed that nerve damage of olfactory pathway can induce a series of depression-like changes, including behavior, neurobiochemistry, and neuroimmunity. These changes will recover progressively with anti-depression treatment. While in similar studies on human beings, olfactory dysfunction has been found in people suffering from depression. This review briefly discusses the correlation between olfactory deficits and clinical traits of depression in different dimensions, such as the severity, duration and cognitive impairment of depression. Improving olfactory function may be expected to be a potential antidepressant therapy.
Collapse
Affiliation(s)
- Fang Wang
- Shanghai Yangpu Mental Health Center, Shanghai, 200093, China; Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaohui Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jerry Gao
- Yennora Public School, NSW, 2161, Australia
| | - Yongchao Li
- Shanghai Yangpu Mental Health Center, Shanghai, 200093, China
| | - Yuncheng Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Yiru Fang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology, 200031, China; Shanghai Key Laboratory of Psychotic disorders, Shanghai, 201108, China.
| |
Collapse
|