1
|
Mahdavi R, Talebpour Z. Analytical approaches for determination of COVID-19 candidate drugs in human biological matrices. Trends Analyt Chem 2023; 160:116964. [PMID: 36816451 PMCID: PMC9922681 DOI: 10.1016/j.trac.2023.116964] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/24/2023]
Abstract
Since the outbreak of the COVID-19 pandemic, the use of antiviral and other available drugs has been considered to combat or reduce the clinical symptoms of patients. In this regard, it would be necessary to choose sensitive and selective analytical techniques for pharmacokinetic and pharmacodynamic studies, monitoring of drug concentration in biological fluids, and determination of the most appropriate dose to achieve the desired effect on the disease. In the present study, the analytical techniques based on spectroscopy and chromatography with different detectors for diagnosis and determination of candidate drugs in the treatment of COVID-19 in human biological fluids are reviewed during the period 2015-2022. Moreover, various sample preparation and extraction techniques, are being used for this purpose, such as protein precipitation (PP), solid-phase extraction (SPE), liquid-liquid extraction (LLE), and QuEChERS (quick, easy, cheap, effective, rugged, and safe) are investigated.
Collapse
Affiliation(s)
- Rabee Mahdavi
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Zahra Talebpour
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran,Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran,Corresponding author. Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| |
Collapse
|
2
|
Maxwell A, Mary E, Ghate V, Aranjani J, Lewis S. A Novel high throughput 96-well based Fluorimetric Method to Measure Amikacin in Pharmaceutical Formulations: Development using Response Surface Methodology. LUMINESCENCE 2022; 37:930-943. [PMID: 35322527 DOI: 10.1002/bio.4238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022]
Abstract
An aminoglycoside antibiotic, amikacin, is used to treat severe and recurring bacterial infections. Due to the absence of a chromophore, however, amikacin must be extensively derivatized before being quantified, both in analytical and bioanalytical samples. In this study, for the first time, we developed a simple and sensitive method for measuring amikacin sulfate by spectrofluorimetry using a 96-well plate reader, based on the design of the experiment's approach. To develop a robust and reproducible spectrofluorimetric method, the influence of essential attributes, namely pH of the buffer, heating temperature, and concentration of reagents, were evaluated by univariate analysis followed by multivariate analysis (central composite design). ICH guidelines were used to validate the optimized method. The developed technique is linear from 1.9 to 10 μg/mL with a regression coefficient of 0.9991. The detection and quantification limits were 0.649 μg/mL and 1.9 μg/mL, respectively. For the developed method, both intra- and inter-day precision (%RSD) were below 5%. Using the method, amikacin concentrations were quantified in prepared amikacin liposomes and commercial formulations of Amicin®. The developed method greatly reduces sample volume and is a rapid, high throughput microplate-based fluorescence approach for the convenient and cost-effective measurement of amikacin in pharmaceutical formulations. In comparison to previously published approaches, the suggested method allowed for quick analysis of a high number of samples in a short amount of time (96 samples in 125 seconds), resulting in an average duration of analysis of 1.3 seconds per sample.
Collapse
Affiliation(s)
- Amala Maxwell
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Elizabeth Mary
- Department of School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Jesil Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
3
|
Abdel-Tawab MAH, Abd El-Moghny MG, El Nashar RM. Recent advances in the chromatographic determination of the most commonly used anti-hepatitis C drug sofosbuvir and its co-administered drugs in human plasma. Biomed Chromatogr 2021; 36:e5238. [PMID: 34469609 DOI: 10.1002/bmc.5238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/08/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022]
Abstract
Sofosbuvir is a direct-acting antiviral drug that inhibits hepatitis C virus (HCV) NS5B polymerase, which in turn affects the virus replication inside biological systems. The clinical importance of sofosbuvir is based not only on its effect on HCV but also on other lethal viruses such as Zika and severe acute respiratory syndrome coronavirus disease 2019 (SARS-COVID-19). Accordingly, there is a continuous shedding of light on the development and validation of accurate and fast analytical methods for the determination of sofosbuvir in different environments. This work critically reviews the recent advances in chromatographic methods for the analysis of sofosbuvir and/or its metabolites in pure samples, pharmaceutical dosage forms, and in the presence of other co-administered drugs to highlight the current status and future perspectives to enhance its determination in different matrixes.
Collapse
|
4
|
Aboras SI, Abdine HH, Ragab MAA, Korany MA. A Review on Analytical Strategies for the Assessment of Recently Approved Direct Acting Antiviral Drugs. Crit Rev Anal Chem 2021; 52:1878-1900. [PMID: 34138669 DOI: 10.1080/10408347.2021.1923456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human beings are in dire need of developing an efficient treatment against fierce viruses like hepatitis C virus (HCV) and Coronavirus (COVID-19). These viruses have already caused the death of over two million people all over the world. Therefore, over the last years, many direct-acting antiviral drugs (DAADs) were developed targeting nonstructural proteins of these two viruses. Among these DAADs, several drugs were found more effective and safer than the others as sofosbuvir, ledipasvir, grazoprevir, glecaprevir, voxilaprevir, velpatasvir, elbasvir, pibrentasvir and remdesivir. The last one is indicated for COVID-19, while the rest are indicated for HCV treatment. Due to the valuable impact of these DAADs, larger number of analytical methods were required to meet the needs of the clinical studies. Therefore, this review will highlight the current approaches, published in the period between 2017 to present, dealing with the determination of these drugs in two different matrices: pharmaceuticals and biological fluids with the challenges of analyzing these drugs either alone, with other drugs, in presence of interferences (pharmaceutical excipients or endogenous plasma components) or in presence of matrix impurities, degradation products and metabolites. These approaches include spectroscopic, chromatographic, capillary electrophoretic, voltametric and nuclear magnetic resonance methods that have been reported during this period. Moreover, the analytical instrumentation and methods used in determination of these DAADs will be illustrated in tabulated forms.
Collapse
Affiliation(s)
- Sara I Aboras
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Heba H Abdine
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Marwa A A Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Mohamed A Korany
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| |
Collapse
|
5
|
Determination of sofosbuvir with two co-administered drugs; paracetamol and DL-methionine by two chromatographic methods. Application to a pharmacokinetic study. Bioanalysis 2019; 11:349-364. [PMID: 30873855 DOI: 10.4155/bio-2018-0191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM Two rapid and sensitive chromatographic methods have been developed and validated for simultaneous analysis of sofosbuvir (SOF) in rat plasma with two co-administered drugs, paracetamol (PAR) and DL-methionine (MET). MATERIALS & METHODS The first method relied on using TLC-densitometry with a developing system consisted of chloroform: methanol: glacial acetic acid: formic acid in the ratio of 9.5: 1: 1.5: 0.5, by volume. The studied analytes and the internal standard naphazoline hydrochloride were scanned at 210 nm. The second method was HPLC method, whereas the analytes and the internal standard cinnarizine were separated on XTerra® HPLC RP C18 column using gradient elution mode and a mobile phase consisted of methanol: 0.1% aqueous TEA at pH 3 adjusted with orthophosphoric acid at 210 nm. RESULTS The TLC-densitometry method showed linearity over concentration ranges of 160-3000 ng/band for SOF and PAR, 300-3000 ng/band for MET, but HPLC method was linear and validated over concentration ranges of 150-5000 ng/ml for SOF, 300-5000 ng/ml for both PAR and MET. CONCLUSION All validation parameters met the acceptance criteria according to US FDA guidelines. Pharmacokinetic study was successfully applied and proved the possibility of co-administration of SOF with PAR and MET.
Collapse
|
6
|
Rapid bioanalytical LC-MS/MS method for the simultaneous determination of sofosbuvir and velpatasvir in human plasma-application to a pharmacokinetic study in Egyptian volunteers. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1102-1103:116-124. [PMID: 30384188 DOI: 10.1016/j.jchromb.2018.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Accepted: 10/20/2018] [Indexed: 01/11/2023]
Abstract
A novel, rapid and validated LC-MS/MS bioanalytical method has been developed for the extraction and determination of sofosbuvir and velpatasvir simultaneously in human plasma using ledipasvir as an internal standard (IS). The simple and reproducible protein precipitation technique with acetonitrile was successfully used for the deproteinization and extraction of the analytes from human plasma matrix. The developed method achieved consistent recoveries over different concentrations with average extraction recoveries of 81.72% and 80.46% for sofosbuvir and velpatasvir, respectively. The chromatographic separation was performed within only 2.80 min as a run time by an isocratic elution through C18 Zorbox eclipse plus (100 × 4.6 mm, 5 μm). Optimum mobile phase consisted of 0.1% formic acid in water: acetonitrile: methanol (30:60:10, v/v/v) pumped at a flow rate of 0.55 mL min-1 and injection volume was 10 μL. LC-MS/MS detection was done by multiple reaction monitoring transitions operating at positive ionization mode for both analytes and IS. Bioanalytical method validation as per EMA guidelines was carried out where the proposed method revealed linearity over the concentration range of 5-5000 and 10-1500 ng mL-1 for sofosbuvir and velpatasvir, respectively. After validation, the method was applied to the analysis of the two drugs after a single oral administration of Epclusa 400/100 mg tablets to Egyptian healthy volunteers.
Collapse
|