1
|
Puglisi R, Mancuso LM, Santonocito R, Gulino A, Oliveri V, Ruffino R, Li Destri G, Muccilli V, Cardullo N, Tuccitto N, Pappalardo A, Sfuncia G, Nicotra G, Petroselli M, Pappalardo F, Zaccaria V, Trusso Sfrazzetto G. Dopamine sensing by fluorescent carbon nanoparticles synthesized using artichoke extract. J Mater Chem B 2024; 12:7826-7836. [PMID: 39041171 DOI: 10.1039/d4tb00651h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The practical and easy detection of dopamine levels in human fluids, such as urine and saliva, is of great interest due to the correlation of dopamine concentration with several diseases. In this work, the one-step synthesis of water-soluble carbon nanoparticles (CNPs), starting from artichoke extract, containing catechol groups, for the fluorescence sensing of dopamine is reported. Size, morphology, chemical composition and electronic structure of CNPs were elucidated by DLS, AFM, XPS, FT-IR, EDX and TEM analyses. Their optical properties were then explored by UV-vis and fluorescence measurements in water. The dopamine recognition properties of these CNPs were investigated in water through fluorescence measurements and we observed the progressive enhancement of the CNP emission intensity upon the progressive addition of dopamine, with a binding affinity value of log K = 5.76 and a detection limit of 0.81 nM. Selectivity towards dopamine was tested over other interfering analytes commonly present in human saliva. Finally, in order to perform a solid point of care test, CNPs were adsorbed on a solid support and exposed to different concentrations of dopamine, thus observing a pseudo-linear response, using a smartphone as a detector. Therefore, the detection of dopamine in simulated human saliva was performed with excellent results, in terms of selectivity and a detection limit of 100 pM.
Collapse
Affiliation(s)
- Roberta Puglisi
- Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Laura Maria Mancuso
- Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Rossella Santonocito
- Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Antonino Gulino
- Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
- INSTM Udr of Catania, Catania 95125, Italy
| | - Valentina Oliveri
- Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Roberta Ruffino
- Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Giovanni Li Destri
- Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Nunzio Tuccitto
- Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Andrea Pappalardo
- Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
- INSTM Udr of Catania, Catania 95125, Italy
| | - Gianfranco Sfuncia
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII, n. 5, Zona Industriale, Catania, 1-95121, Italy
| | - Giuseppe Nicotra
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII, n. 5, Zona Industriale, Catania, 1-95121, Italy
| | - Manuel Petroselli
- Institute of Chemical Research of Catalonia (ICIQ), Av. PaÏsos Catalans 16, Tarragona, 43007, Spain
| | | | | | - Giuseppe Trusso Sfrazzetto
- Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
- INSTM Udr of Catania, Catania 95125, Italy
| |
Collapse
|
2
|
Bhattacharya T, Preetam S, Mukherjee S, Kar S, Roy DS, Singh H, Ghose A, Das T, Mohapatra G. Anticancer activity of quantum size carbon dots: opportunities and challenges. DISCOVER NANO 2024; 19:122. [PMID: 39103694 DOI: 10.1186/s11671-024-04069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Research into the anticancer activity of quantum-sized carbon dots (CDs) has emerged as a promising avenue in cancer research. This CDs delves into the opportunities and challenges associated with harnessing the potential of these nanostructures for combating cancer. Quantum-sized carbon dots, owing to their unique physicochemical properties, exhibit distinct advantages as potential therapeutic agents. Opportunities lie in their tunable size, surface functionalization capabilities, and biocompatibility, enabling targeted drug delivery and imaging in cancer cells. However, we include challenges, a comprehensive understanding of the underlying mechanisms, potential toxicity concerns, and the optimization of synthesis methods for enhanced therapeutic efficacy. A succinct summary of the state of the research in this area is given in this review, emphasizing the exciting possibilities and ongoing challenges in utilizing quantum-sized carbon dots as a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sanjukta Kar
- Dietetics and Applied Nutrition, Amity University Kolkata, Kadampukur, India
| | | | - Harshita Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Arak Ghose
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Gautam Mohapatra
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Chen Q, Wu C, Wang S, Wang Q, Wu P, Wang L, Yan P, Xie Y. Glycyrrhizic acid modified Poria cocos polyscaccharide carbon dots dissolving microneedles for methotrexate delivery to treat rheumatoid arthritis. Front Chem 2023; 11:1181159. [PMID: 37288078 PMCID: PMC10243470 DOI: 10.3389/fchem.2023.1181159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction: Rheumatoid arthritis is an autoimmune disease characterized by chronic joint inflammation. Methotrexate is one of the most effective drugs for rheumatoid arthritis, but the adverse reactions caused by oral methotrexate greatly limit its clinical application. Transdermal drug delivery system is an ideal alternative to oral methotrexate by absorbing drugs into the human body through the skin. However, methotrexate in the existing methotrexate microneedles is mostly used alone, and there are few reports of combined use with other anti-inflammatory drugs. Methods: In this study, glycyrrhizic acid was first modified onto carbon dots, and then methotrexate was loaded to construct a nano-drug delivery system with fluorescence and dual anti-inflammatory effects. Then hyaluronic acid was combined with nano-drug delivery system to prepare biodegradable soluble microneedles for transdermal drug delivery of rheumatoid arthritis. The prepared nano-drug delivery system was characterized by transmission electron microscopy, fluorescence spectroscopy, laser nanoparticle size analyzer, ultraviolet-visible absorption spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimeter and nuclear magnetic resonance spectrometer. The results showed that glycyrrhizic acid and methotrexate were successfully loaded on carbon dots, and the drug loading of methotrexate was 49.09%. The inflammatory cell model was constructed by lipopolysaccharide-induced RAW264.7 cells. In vitro cell experiments were used to explore the inhibitory effect of the constructed nano-drug delivery system on the secretion of inflammatory factors by macrophages and the cell imaging ability. The drug loading, skin penetration ability, in vitro transdermal delivery and in vivo dissolution characteristics of the prepared microneedles were investigated. The rat model of rheumatoid arthritis was induced by Freund's complete adjuvant. Results: The results of in vivo animal experiments showed that the soluble microneedles of the nano drug delivery system designed and prepared in this study could significantly inhibit the secretion of pro-inflammatory cytokines and had a significant therapeutic effect on arthritis. Discussion: The prepared glycyrrhizic acid-carbon dots-methotrexate soluble microneedle provides a feasible solution for the treatment of Rheumatoid arthritis.
Collapse
Affiliation(s)
- Qi Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Chengyuan Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Siwei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qiang Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Peiyun Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Peiyu Yan
- Macau University of Science and Technology, Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macao, China
| | - Ying Xie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Kuo YC, De S. Development of carbon dots to manage Alzheimer's disease and Parkinson's disease. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
5
|
Yu W, Li Q, He L, Zhou R, Liao L, Xue J, Xiao X. Green synthesis of CQDs for determination of iron and isoniazid in pharmaceutical formulations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:944-950. [PMID: 36723197 DOI: 10.1039/d2ay01793h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Camphor leaves were used as the precursor for the hydrothermal synthesis of carbon quantum dots. The preparation method is simple and rapid, and the raw material is environmentally friendly and easy to obtain. Without additional modification, the carbon quantum dots were used as fluorescent probes for the sensitive and selective detection of Fe3+ and isoniazid at different excitation wavelengths. For Fe3+, at the excitation wavelength of 320 nm, the ratio of fluorescence intensity of CQD solution after adding Fe3+ to CQD solution without Fe3+ addition, F/F0, and Fe3+ concentration showed a good linear relationship in the range of 2.72 × 10-5 to 1.00 × 10-4 mol L-1 (R2 = 0.9912), and the limit of detection was 8.16 μmol L-1. For isoniazid, at the excitation wavelength of 270 nm, the ratio of fluorescence intensity of CQDs solution with isoniazid to CQDs solution without isoniazid, F/F0, and isoniazid concentration showed good linear relationships in the range of 3.81 × 10-6 to 1.00 × 10-5 mol L-1 (R2 = 0.9941) and 1.00 × 10-5 to 2.10 × 10-4 mol L-1 (R2 = 0.9910) respectively, and the limit of detection was 1.14 μmol L-1. A fluorescence method for the determination of Fe and isoniazid content was proposed. The method has been used to detect iron in iron supplement tablets and isoniazid in isoniazid tablets with satisfactory results.
Collapse
Affiliation(s)
- Wenzhan Yu
- School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, PR China
| | - Qian Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, PR China
| | - Liqiong He
- School of Public Health, University of South China, Hengyang 421001, Hunan, PR China.
| | - Renlong Zhou
- School of Public Health, University of South China, Hengyang 421001, Hunan, PR China.
| | - Lifu Liao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, PR China
| | - Jinhua Xue
- School of Public Health, University of South China, Hengyang 421001, Hunan, PR China.
| | - Xilin Xiao
- School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, PR China
| |
Collapse
|
6
|
Qian S, Li L, Wu K, Wang Y, Wei G, Zheng J. Emerging and Versatile Platforms of Metal-Ion-Doped Carbon Dots for Biosensing, Bioimaging, and Disease Therapy. ChemMedChem 2023; 18:e202200479. [PMID: 36250779 DOI: 10.1002/cmdc.202200479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/16/2022] [Indexed: 01/24/2023]
Abstract
Metal ions possess abundant electrons and unoccupied orbitals, as well as large atomic radii, whose doping into carbon dots (CDs) is a facile strategy to endow CDs with additional physicochemical characteristics. After being doped with metal ions, CDs reveal obvious changes in their optical, electronic, and magnetic properties by adjustments to their electron density distribution and the energy gaps, leading them to be promising and competitive candidates as labeling probes, imaging agents, catalysts, nanodrugs, and so on. In this review, we summarize the fabrication methods of metal-ion-doped CDs (M-CDs), and highlight their biological applications including biosensing, bioimaging, tumor therapy, and anti-microbial treatment. Finally, the challenging future perspectives of M-CDs are analyzed. We hope this review will provide inspiration for further development of M-CDs in various biological aspects, and help readers who are interested in M-CDs and their biological applications.
Collapse
Affiliation(s)
- Sihua Qian
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), 315300, Ningbo, P. R. China
| | - Lin Li
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), 315300, Ningbo, P. R. China
| | - Kerong Wu
- Translational Research Laboratory for Urology, Department of Urology, Ningbo First Hospital, 315010, Ningbo, P. R. China
| | - Yuhui Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), 315300, Ningbo, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, P. R. China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), 315300, Ningbo, P. R. China
| |
Collapse
|
7
|
Santonocito R, Intravaia M, Caruso IM, Pappalardo A, Trusso Sfrazzetto G, Tuccitto N. Fluorescence sensing by carbon nanoparticles. NANOSCALE ADVANCES 2022; 4:1926-1948. [PMID: 36133414 PMCID: PMC9418512 DOI: 10.1039/d2na00080f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/20/2022] [Indexed: 05/03/2023]
Abstract
Sensing is one of the most important fields in which chemists, engineers and other scientists are involved to realize sensoristic devices that can detect different analytes, both chemicals and biologicals. In this context, fluorescence sensing paves the way for the realization of smart sensoristic devices due to the possibility to detect the target analyte via a change in colour or emission. Recently (since 2006), carbon nanoparticles, which are a "new class" of nanostructures based on carbon atoms, have been widely used in sensing applications due to their intriguing optical properties. The scientific literature on this topic started from 2006 and a progressive increase in the corresponding number of publications has been observed. This review summarises the application of carbon nanoparticles in the sensing field, focusing on chemical and ion sensing.
Collapse
Affiliation(s)
| | | | - Ivana Maria Caruso
- Department of Chemical Sciences, University of Catania 95125 Catania Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania 95125 Catania Italy
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.), Research Unit of Catania 95125 Catania Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania 95125 Catania Italy
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.), Research Unit of Catania 95125 Catania Italy
| | - Nunzio Tuccitto
- Department of Chemical Sciences, University of Catania 95125 Catania Italy
- Laboratory for Molecular Surfaces and Nanotechnology - CSGI 95125 Catania Italy
| |
Collapse
|