1
|
Kundu M, Dey A, Maji PK, Mandal M. Targeting friend leukemia integration 1: A promising approach for prevention and treatment of solid tumors. Int J Biol Macromol 2025; 309:143080. [PMID: 40228766 DOI: 10.1016/j.ijbiomac.2025.143080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Friend leukemia integration 1 (FLI1) is an ETS transcription factor first identified in erythroleukemia. This protein contributes to various cellular functions such as cell growth and proliferation, apoptosis, angiogenesis, etc. FLI1 is also known to be involved in tumorigenesis. The role of this transcription factor as a proto-oncogene, promoting cancer progression, especially Ewing sarcoma, is well reported. Recent research has found the connection of FLI1 with other solid cancers, including breast cancer, prostate cancer, glioma, and lung cancer. The role of this protein in solid cancers is also controversial. FLI1 is found to promote and suppress cancer growth and progression, particularly in Ewing sarcoma and breast cancer. This review article aims to provide a detailed perception of the FLI1-associated mechanisms in various solid cancers for preventive and therapeutic implications. The result of bioinformatic analysis using the cBioportal database (https://www.cbioportal.org/) is also presented in this article to understand the effect of this protein on solid cancers. Moreover, the current status of FLI1 targeting agents for preventing and treating solid cancers has been focused. Several studies established the efficacy of FLI1 inhibitors in solid tumor therapy. A few reports are also available on the effect of FLI1 agonists on solid tumors. This article discussed different FLI1 targeting agents to provide insight into the FLI1 targeting mechanisms required for discovering more potent FLI1 targeting agents and better therapeutic outcomes.
Collapse
Affiliation(s)
- Moumita Kundu
- Department of Pharmaceutical Technology, Brainware University, Barasat, India; Center for Multidisciplinary Research & Innovations, Brainware University, Barasat, India.
| | - Ankita Dey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Pallab Kumar Maji
- Department of Pharmaceutical Technology, Brainware University, Barasat, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
2
|
Payá-Milans M, Peña-Chilet M, Loucera C, Esteban-Medina M, Dopazo J. Functional Profiling of Soft Tissue Sarcoma Using Mechanistic Models. Int J Mol Sci 2023; 24:14732. [PMID: 37834179 PMCID: PMC10572617 DOI: 10.3390/ijms241914732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Soft tissue sarcoma is an umbrella term for a group of rare cancers that are difficult to treat. In addition to surgery, neoadjuvant chemotherapy has shown the potential to downstage tumors and prevent micrometastases. However, finding effective therapeutic targets remains a research challenge. Here, a previously developed computational approach called mechanistic models of signaling pathways has been employed to unravel the impact of observed changes at the gene expression level on the ultimate functional behavior of cells. In the context of such a mechanistic model, RNA-Seq counts sourced from the Recount3 resource, from The Cancer Genome Atlas (TCGA) Sarcoma project, and non-diseased sarcomagenic tissues from the Genotype-Tissue Expression (GTEx) project were utilized to investigate signal transduction activity through signaling pathways. This approach provides a precise view of the relationship between sarcoma patient survival and the signaling landscape in tumors and their environment. Despite the distinct regulatory alterations observed in each sarcoma subtype, this study identified 13 signaling circuits, or elementary sub-pathways triggering specific cell functions, present across all subtypes, belonging to eight signaling pathways, which served as predictors for patient survival. Additionally, nine signaling circuits from five signaling pathways that highlighted the modifications tumor samples underwent in comparison to normal tissues were found. These results describe the protective role of the immune system, suggesting an anti-tumorigenic effect in the tumor microenvironment, in the process of tumor cell detachment and migration, or the dysregulation of ion homeostasis. Also, the analysis of signaling circuit intermediary proteins suggests multiple strategies for therapy.
Collapse
Affiliation(s)
- Miriam Payá-Milans
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - María Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Carlos Loucera
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Marina Esteban-Medina
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Joaquín Dopazo
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
- FPS/ELIXIR-ES, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| |
Collapse
|
3
|
Beadle EP, Bennett NE, Rhoades JA. Bioinformatics Screen Reveals Gli-Mediated Hedgehog Signaling as an Associated Pathway to Poor Immune Infiltration of Dedifferentiated Liposarcoma. Cancers (Basel) 2023; 15:3360. [PMID: 37444470 PMCID: PMC10341348 DOI: 10.3390/cancers15133360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Liposarcomas are the most diagnosed soft tissue sarcoma, with most cases consisting of well-differentiated (WDLPS) or dedifferentiated (DDLPS) histological subtypes. While both tumor subtypes can have clinical recurrence due to incomplete resections, DDLPS often has worse prognosis due to a higher likelihood of metastasis compared to its well-differentiated counterpart. Unfortunately, targeted therapeutic interventions have lagged in sarcoma oncology, making the need for molecular targeted therapies a promising future area of research for this family of malignancies. In this work, previously published data were analyzed to identify differential pathways that may contribute to the dedifferentiation process in liposarcoma. Interestingly, Gli-mediated Hedgehog signaling appeared to be enriched in dedifferentiated adipose progenitor cells and DDLPS tumors, and coincidentally Gli1 is often co-amplified with MDM2 and CDK4, given its genomic proximity along chromosome 12q13-12q15. However, we find that Gli2, but not Gli1, is differentially expressed between WDLPS and DDLPS, with a noticeable co-expression signature between Gli2 and genes involved in ECM remodeling. Additionally, Gli2 co-expression had a noticeable transcriptional signature that could suggest Gli-mediated Hedgehog signaling as an associated pathway contributing to poor immune infiltration in these tumors.
Collapse
Affiliation(s)
- Erik P. Beadle
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Natalie E. Bennett
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Julie A. Rhoades
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Health Care, Nashville, TN 37212, USA
| |
Collapse
|
4
|
Crombé A, Bertolo F, Fadli D, Kind M, Le Loarer F, Perret R, Chaire V, Spinnato P, Lucchesi C, Italiano A. Distinct patterns of the natural evolution of soft tissue sarcomas on pre-treatment MRIs captured with delta-radiomics correlate with gene expression profiles. Eur Radiol 2023; 33:1205-1218. [PMID: 36029343 DOI: 10.1007/s00330-022-09104-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Radiomics of soft tissue sarcomas (STS) is assumed to correlate with histologic and molecular tumor features, but radiogenomics analyses are lacking. Our aim was to identify if distinct patterns of natural evolution of STS obtained from consecutive pre-treatment MRIs are associated with differential gene expression (DGE) profiling in a pathway analysis. METHODS All patients with newly diagnosed STS treated in a curative intent in our sarcoma reference center between 2008 and 2019 and with two available pre-treatment contrast-enhanced MRIs were included in this retrospective study. Radiomics features (RFs) were extracted from fat-sat contrast-enhanced T1-weighted imaging. Log ratio and relative change in RFs were calculated and used to determine grouping of samples based on a consensus hierarchical clustering. DGE and oncogenesis pathway analysis were performed in the delta-radiomics groups identified in order to detect associations between delta-radiomics patterns and transcriptomics features of STS. Secondarily, the prognostic value of the delta-radiomics groups was investigated. RESULTS Sixty-three patients were included (median age: 63 years, interquartile range: 52.5-70). The consensus clustering identified 3 reliable delta-radiomics patient groups (A, B, and C). On imaging, group B patients were characterized by increase in tumor heterogeneity, necrotic signal, infiltrative margins, peritumoral edema, and peritumoral enhancement before the treatment start (p value range: 0.0019-0.0244), and, molecularly, by downregulation of natural killer cell-mediated cytotoxicity genes and upregulation of Hedgehog and Hippo signaling pathways. Group A patients were characterized by morphological stability of pre-treatment MRI traits and no local relapse (log-rank p = 0.0277). CONCLUSIONS This study highlights radiomics and transcriptomics convergence in STS. Proliferation and immune response inhibition were hyper-activated in the STS that were the most evolving on consecutive imaging. KEY POINTS • Three consensual and stable delta-radiomics clusters were identified and captured the natural patterns of morphological evolution of STS on pre-treatment MRIs. • These 3 patterns were explainable and correlated with different well-known semantic radiological features with an ascending gradient of pejorative characteristics from the A group to C group to B group. • Gene expression profiling stressed distinct patterns of up/downregulated oncogenetic pathways in STS from B group in keeping with its most aggressive radiological evolution.
Collapse
Affiliation(s)
- Amandine Crombé
- Department of Oncologic Imaging, Institut Bergonié, Comprehensive Cancer Center, F-33076, Bordeaux, France. .,Models in Oncology (MONC) Team, INRIA Bordeaux Sud-Ouest, CNRS UMR 5251 & Bordeaux University, F-33400, Talence, France. .,Department of Musculoskeletal Imaging, Pellegrin University Hospital, 2, place Amélie Raba Léon, F-33000, Bordeaux, France.
| | - Frédéric Bertolo
- Bioinformatics Department, Institut Bergonié, Comprehensive Cancer Center, F-33076, Bordeaux, France
| | - David Fadli
- Department of Musculoskeletal Imaging, Pellegrin University Hospital, 2, place Amélie Raba Léon, F-33000, Bordeaux, France
| | - Michèle Kind
- Department of Oncologic Imaging, Institut Bergonié, Comprehensive Cancer Center, F-33076, Bordeaux, France
| | - François Le Loarer
- Department of Pathology, Institut Bergonié, Comprehensive Cancer Center, F-33076, Bordeaux, France
| | - Raul Perret
- Department of Pathology, Institut Bergonié, Comprehensive Cancer Center, F-33076, Bordeaux, France
| | - Vanessa Chaire
- Department of Pathology, Institut Bergonié, Comprehensive Cancer Center, F-33076, Bordeaux, France
| | - Paolo Spinnato
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Carlo Lucchesi
- Bioinformatics Department, Institut Bergonié, Comprehensive Cancer Center, F-33076, Bordeaux, France
| | - Antoine Italiano
- Department of Medical Oncology, Institut Bergonié, Comprehensive Cancer Center, F-33076, Bordeaux, France
| |
Collapse
|
5
|
Tang L, Liu B. Lung and bone metastases patterns in osteosarcoma: Chemotherapy improves overall survival. Medicine (Baltimore) 2023; 102:e32692. [PMID: 36705375 PMCID: PMC9875956 DOI: 10.1097/md.0000000000032692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Osteosarcoma (OS) is a malignant tumor originating from the mesenchymal tissue. Simultaneous reports of lung and bone metastases (BM) in OS are rare in the literature. A total of 353 new cases of lung metastases (LM), 93 new cases of BM, and 59 new cases of LM and BM were diagnosed in the Surveillance, Epidemiology and End Results (SEER) database from 2010 to 2019. Univariate and multivariate logistic regression analyses were used to identify risk factors for LM and/or BM, and Cox regression analyses were performed to identify the prognostic factors for LM and/or BM. Kaplan-Meier (K-M) curves and log-rank tests were used to analyze the overall survival of patients with LM and/or BM. LM was diagnosed in 353 patients. Female sex, tumor size >100 mm, telangiectatic OS type, central OS type, N1 stage, other locations, BM, surgical treatments, radiotherapy and chemotherapy were significantly correlated with LM. 93 patients were diagnosed with BM. 25 to 59 years old, T1 stage, presence of LM, liver metastases, radiotherapy, and surgical treatments were significantly correlated with the BM. 59 patients were diagnosed with LM and BM. The chondroblastic OS type, small cell OS type, T1 stage, N1 stage, other locations, liver metastases, radiotherapy, and surgical treatments were significantly correlated with LM and BM. Metastases, radiotherapy, and surgery at the primary site were significantly associated with LM and/or BM. Chemotherapy at the primary site has been shown to be effective in improving the survival rate of LM and/or BM. Of the OS patients with LM, 61.47% died, and older age, BM, no surgery, and no chemotherapy were harmful to survival. 72.04% of OS patients with BM died, and N1 stage, no surgery, and no chemotherapy were harmful for survival. 69.49% of OS patients with LM and BM died, and older age and no chemotherapy were harmful for survival.
Collapse
Affiliation(s)
- Liyuan Tang
- Drug Clinical Trial Institution, Cangzhou Central Hospital, Cangzhou, Hebei, P.R. China
| | - Binbin Liu
- Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, Hebei, P.R. China
- *Correspondence: Binbin Liu, Department of Orthopedics, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou, 061000, Hebei, P.R. China (e-mail: )
| |
Collapse
|
6
|
Jin M, Zeng B, Liu Y, Jin L, Hou Y, Liu C, Liu W, Wu H, Chen L, Gao Z, Huang W. Co-Delivery of Repurposing Itraconazole and VEGF siRNA by Composite Nanoparticulate System for Collaborative Anti-Angiogenesis and Anti-Tumor Efficacy against Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14071369. [PMID: 35890264 PMCID: PMC9317122 DOI: 10.3390/pharmaceutics14071369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Combinations of two different therapeutic modalities of VEGF inhibitors against angiogenesis can cooperatively impede breast cancer tumor growth and enhance therapeutic efficacy. Itraconazole (ITZ) is a conventional antifungal drug with high safety; however, it has been repurposed to be a multi target anti-angiogenesis agent for cancer therapy in recent years. In the present study, composite nanoparticles co-loaded with ITZ and VEGF siRNA were prepared in order to investigate their anti-angiogenesis efficacy and synergistic anticancer effect against breast cancer. The nanoparticles had a suitable particle size (117.9 ± 10.3 nm) and weak positive surface charge (6.69 ± 2.46 mV), as well as good stability and drug release profile in vitro. Moreover, the nanoparticles successfully escaped from endosomes and realized cell apoptosis and cell proliferation inhibition in vitro. In vitro and in vivo experiments showed that the nanoparticles could induce the silencing of VEGF-related expressions as well as anti-angiogenesis efficacy, and the co-loaded ITZ-VEGF siRNA NPs could inhibit tumor growth effectively with low toxicity and side effects. Taken together, the as-prepared delivery vehicles are a simple and safe nano-platform that improves the antitumor efficacy of VEGF siRNA and ITZ, which allows the repositioning of the generic drug ITZ as a great candidate for antitumor therapy.
Collapse
Affiliation(s)
- Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bowen Zeng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Respiratory Medicine, Yanbian University Hospital, Yanji 133000, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lili Jin
- Department of Pharmacy, Yanbian University, Yanji 133000, China;
| | - Yan Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Yanbian University, Yanji 133000, China;
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Yanbian University, Yanji 133000, China;
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.G.); (W.H.)
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.G.); (W.H.)
| |
Collapse
|
7
|
Ovarian fibroma as a novel indicator for burden of basal cell carcinoma in women with Gorlin syndrome: a retrospective cross-sectional analysis of the Gorlin syndrome national patient registry. Int J Womens Dermatol 2022; 8:e020. [PMID: 35720808 PMCID: PMC9200378 DOI: 10.1097/jw9.0000000000000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/10/2022] [Indexed: 11/25/2022] Open
|
8
|
Li Y, Zou J, Li B, Du J. Anticancer effects of melatonin via regulating lncRNA JPX-Wnt/β-catenin signalling pathway in human osteosarcoma cells. J Cell Mol Med 2021; 25:9543-9556. [PMID: 34547170 PMCID: PMC8505851 DOI: 10.1111/jcmm.16894] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is a type of malignant primary bone cancer, which is highly aggressive and occurs more commonly in children and adolescents. Thus, novel potential drugs and therapeutic methods are urgently needed. In the present study, we aimed to elucidate the effects and mechanism of melatonin on OS cells to provide a potential treatment strategy for OS. The cell survival rate, cell viability, proliferation, migration, invasion and metastasis were examined by trypan blue assay, MTT, colony formation, wound healing, transwell invasion and attachment/detachment assay, respectively. The expression of relevant lncRNAs in OS cells was determined by real-time qPCR analysis. The functional roles of lncRNA JPX in OS cells were further examined by gain and loss of function assays. The protein expression was measured by western blot assay. Melatonin inhibited the cell viability, proliferation, migration, invasion and metastasis of OS cells (Saos-2, MG63 and U2OS) in a dose-dependent manner. Melatonin treatment significantly downregulated the expression of lncRNA JPX in Saos-2, MG63 and U2OS cells. Overexpression of lncRNA JPX into OS cell lines elevated the cell viability and proliferation, which was accompanied by the increased metastasis. We also found that melatonin inhibited the OS progression by suppressing the expression of lncRNA JPX via regulating the Wnt/β-catenin pathway. Our results suggested that melatonin inhibited the biological functions of OS cells by repressing the expression of lncRNA JPX through regulating the Wnt/β-catenin signalling pathway, which indicated that melatonin might be applied as a potentially useful and effective natural agent in the treatment of OS.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, China
| | - Jilong Zou
- Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jianyang Du
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
9
|
Wang C, Jing J, Hu X, Yu S, Yao F, Li Z, Cheng L. Gankyrin activates the hedgehog signalling to drive metastasis in osteosarcoma. J Cell Mol Med 2021; 25:6232-6241. [PMID: 34089292 PMCID: PMC8366451 DOI: 10.1111/jcmm.16576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Gankyrin is a regulatory subunit of the 26-kD proteasome complex and promotes the occurrence and progression of many malignancies. However, the role of gankyrin in osteosarcoma (OS) metastasis remains unclear. Hedgehog signalling has been shown to regulate stem cell homeostasis and cancer metastasis, but the mechanisms that activate this pathway in OS are still poorly understood. Here, a series of in vitro and in vivo assays were carried out to explore the function and mechanism of gankyrin regulating Hedgehog signalling in OS. We demonstrated that gankyrin promotes migration, invasion and regulates the expression of some stemness factors by up-regulating Gli1 in OS. Importantly, our data showed an interaction between gankyrin and Gli1. Moreover, gankyrin suppresses the ubiquitin-mediated degradation of Gli1 protein in OS. Gankyrin also significantly promotes the lung metastasis of OS in vivo. Our findings suggest that gankyrin drives metastasis and regulates the expression of some stemness factors in osteosarcoma by activating Hedgehog signalling, indicating that drug screening for compounds targeting gankyrin may contribute to the development of novel and effective therapies for OS.
Collapse
Affiliation(s)
- Chongchong Wang
- Department of OncologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Juehua Jing
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xuyang Hu
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Shuisheng Yu
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Fei Yao
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ziyu Li
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Li Cheng
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- School of pharmacyAnhui Medical UniversityHefeiChina
| |
Collapse
|
10
|
Fu P, Shi Y, Chen G, Fan Y, Gu Y, Gao Z. Prognostic Factors in Patients With Osteosarcoma With the Surveillance, Epidemiology, and End Results Database. Technol Cancer Res Treat 2020; 19:1533033820947701. [PMID: 32787692 PMCID: PMC7427153 DOI: 10.1177/1533033820947701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Osteosarcoma is a rare type of bone tumor, and this study aimed to assess the clinicopathologic features and prognoses of osteosarcoma patients. Methods: Clinicopathologic and survival data of 1025 patients between 2010 and 2016, 230 between 2008 and 2009 were downloaded and analyzed from the SEER database. Patients’ survival was analyzed using the Kaplan-Meier analysis; prognostic factors were assessed using the Cox regression hazards model. The 1-, 3-, and 5-year survival rates were estimated with nomogram. Competitive risk models were used to identify prognostic risk factors related to endpoint events of osteosarcoma patients. Results: Overall, 722 samples were obtained from the extremities, 134 from the axial bones, and 119 from the cranial and mandible in SEER (2010-2016 cohort). After the preliminary diagnosis, the median survival time of patients with osteosarcoma was 39 months, and the 1-, 3-, and 5-year survival rates were 87.3%, 67.2%, and 58.0%, respectively (P < 0.001). The competitive risk model revealed no competitive risks of the endpoint event. Conclusion: Our study found out the prognostic factors in patients with Osteosarcoma by Cox regression hazards model, after that, nomogram was established to predict the 1-, 3-, and 5-year survival rates, which may help oncologists to understand the highly malignant tumor.
Collapse
Affiliation(s)
- Peng Fu
- Department of Orthopedic, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yu Shi
- Department of Radiotherapy, 74567Affiliated Hospital of Nantong University, Nantong, China
| | - Gang Chen
- Department of Orthopedic, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yaohua Fan
- Department of Clinical Oncology, 569220The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yanhong Gu
- Department of Clinical Oncology, 74734The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Gao
- Department of Clinical Oncology, 569220The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
11
|
Weber M, Söder S, Sander J, Ries J, Geppert C, Kesting M, Wehrhan F. Craniofacial Osteosarcoma-Pilot Study on the Expression of Osteobiologic Characteristics and Hypothesis on Metastasis. Front Oncol 2020; 10:745. [PMID: 32656074 PMCID: PMC7325581 DOI: 10.3389/fonc.2020.00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/20/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Craniofacial osteosarcomas (COS) and extracranial osteosarcomas (EOS) show distinct clinical differences. COS show a remarkably lower incidence of metastases and a better survival. However, in contrast to EOS, they show a poor response to neoadjuvant chemotherapy. Tumor-associated macrophages and their polarization as well as developmental biological signaling pathways are possible candidates for explaining the clinical differences between COS and EOS. The aim of the study was to analyze differential expression of macrophage markers and important regulators of these pathways. Methods: Twenty osteosarcoma cases (10 COS and 10 EOS) were immunohistochemically stained to assess CD68, CD11c, CD163, MRC1, Gli1, and Gli2 expression. Statistical differences between COS and EOS were tested using the Mann–Whitney U test. Additionally, the paper describes an example of multidisciplinary treatment of a patient suffering from COS and discusses the surgical challenges in treatment and rehabilitation of COS. Results: COS showed a significantly (p < 0.05) increased infiltration of CD11c-positive M1 macrophages and a shift toward M1 polarization compared to EOS. Additionally, COS revealed a significantly (p < 0.05) lower Gli1 expression than EOS. Conclusion: The reduced Gli1 expression in COS can be interpreted as reduced activation of the Hedgehog (Hh) signaling pathway. The increased M1 polarization and reduced Hh activation in COS could explain the low incidence of metastases in these osteosarcomas.
Collapse
Affiliation(s)
- Manuel Weber
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Janina Sander
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jutta Ries
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carol Geppert
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Falk Wehrhan
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
12
|
Yoon JW, Lamm M, Chandler C, Iannaccone P, Walterhouse D. Up-regulation of GLI1 in vincristine-resistant rhabdomyosarcoma and Ewing sarcoma. BMC Cancer 2020; 20:511. [PMID: 32493277 PMCID: PMC7310145 DOI: 10.1186/s12885-020-06985-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/20/2020] [Indexed: 01/20/2023] Open
Abstract
Background The clinical significance of GLI1 expression either through canonical Hedgehog signal transduction or through non-canonical mechanisms in rhabdomyosarcoma (RMS) or Ewing sarcoma (EWS) is incompletely understood. We tested a role for Hedgehog (HH) signal transduction and GL11 expression in development of vincristine (VCR) resistance in RMS and EWS. Methods We characterized baseline expression and activity of HH pathway components in 5 RMS (RD, Rh18, Ruch-2, Rh30, and Rh41) and 5 EWS (CHLA9, CHLA10, TC32, CHLA258, and TC71) cell lines. We then established VCR-resistant RMS and EWS cell lines by exposing cells to serially increasing concentrations of VCR and determining the IC50. We defined resistance as a ≥ 30-fold increase in IC50 compared with parental cells. We determined changes in gene expression in the VCR-resistant cells compared with parental cells using an 86-gene cancer drug resistance array that included GLI1 and tested the effect of GLI1 inhibition with GANT61 or GLI1 siRNA on VCR resistance. Results We found evidence for HH pathway activity and GLI1 expression in RMS and EWS cell lines at baseline, and evidence that GLI1 contributes to survival and proliferation of these sarcoma cells. We were able to establish 4 VCR-resistant cell lines (Ruch-2VR, Rh30VR, Rh41VR, and TC71VR). GLI1 was significantly up-regulated in the Rh30VR, Rh41VR, and TC71VR cells. The only other gene in the drug resistance panel that was significantly up-regulated in each of these VCR-resistant cell lines compared with their corresponding parental cells was the GLI1 direct target and multidrug resistance gene, ATP-binding cassette sub-family B member 1 (MDR1). We established major vault protein (MVP), which was up-regulated in both vincristine-resistant alveolar RMS cell lines (Rh30VR and Rh41VR), as another direct target of GLI1 during development of drug resistance. Treatment of the VCR-resistant cell lines with the small molecule inhibitor GANT61 or GLI1 siRNA together with VCR significantly decreased cell viability at doses that did not reduce viability individually. Conclusions These experiments demonstrate that GLI1 up-regulation contributes to VCR resistance in RMS and EWS cell lines and suggest that targeting GLI1 may benefit patients with RMS or EWS by reducing multidrug resistance.
Collapse
Affiliation(s)
- Joon Won Yoon
- Department of Pediatrics, Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine Chicago, Box 30, 225 East Chicago Ave., Chicago, IL, 60611, USA
| | - Marilyn Lamm
- Department of Pediatrics, Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine Chicago, Box 30, 225 East Chicago Ave., Chicago, IL, 60611, USA
| | - Christopher Chandler
- Department of Pediatrics, Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine Chicago, Box 30, 225 East Chicago Ave., Chicago, IL, 60611, USA
| | - Philip Iannaccone
- Department of Pediatrics, Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine Chicago, Box 30, 225 East Chicago Ave., Chicago, IL, 60611, USA.,Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine Chicago, Chicago, IL, 60611, USA
| | - David Walterhouse
- Department of Pediatrics, Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine Chicago, Box 30, 225 East Chicago Ave., Chicago, IL, 60611, USA.
| |
Collapse
|
13
|
Otoukesh B, Boddouhi B, Moghtadaei M, Kaghazian P, Kaghazian M. Novel molecular insights and new therapeutic strategies in osteosarcoma. Cancer Cell Int 2018; 18:158. [PMID: 30349420 PMCID: PMC6192346 DOI: 10.1186/s12935-018-0654-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is one of the most prevalent malignant cancers with lower survival and poor overall prognosis mainly in children and adolescents. Identifying the molecular mechanisms and OS stem cells (OSCs) as new concepts involved in disease pathogenesis and progression may potentially lead to new therapeutic targets. Therefore, therapeutic targeting of OSCs can be one of the most important and effective strategies for the treatment of OS. This review describes the new molecular targets of OS as well as novel therapeutic approaches in the design of future investigations and treatment.
Collapse
Affiliation(s)
- Babak Otoukesh
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, 1445613131 Iran
| | - Bahram Boddouhi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, 1445613131 Iran
| | - Mehdi Moghtadaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, 1445613131 Iran
| | - Peyman Kaghazian
- Department of Orthopedic and Traumatology, Universitätsklinikum Bonn, Bonn, Germany
| | - Maria Kaghazian
- Department of Biology, Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
Boehme KA, Schleicher SB, Traub F, Rolauffs B. Chondrosarcoma: A Rare Misfortune in Aging Human Cartilage? The Role of Stem and Progenitor Cells in Proliferation, Malignant Degeneration and Therapeutic Resistance. Int J Mol Sci 2018; 19:ijms19010311. [PMID: 29361725 PMCID: PMC5796255 DOI: 10.3390/ijms19010311] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/07/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Unlike other malignant bone tumors including osteosarcomas and Ewing sarcomas with a peak incidence in adolescents and young adults, conventional and dedifferentiated chondrosarcomas mainly affect people in the 4th to 7th decade of life. To date, the cell type of chondrosarcoma origin is not clearly defined. However, it seems that mesenchymal stem and progenitor cells (MSPC) in the bone marrow facing a pro-proliferative as well as predominantly chondrogenic differentiation milieu, as is implicated in early stage osteoarthritis (OA) at that age, are the source of chondrosarcoma genesis. But how can MSPC become malignant? Indeed, only one person in 1,000,000 will develop a chondrosarcoma, whereas the incidence of OA is a thousandfold higher. This means a rare coincidence of factors allowing escape from senescence and apoptosis together with induction of angiogenesis and migration is needed to generate a chondrosarcoma. At early stages, chondrosarcomas are still assumed to be an intermediate type of tumor which rarely metastasizes. Unfortunately, advanced stages show a pronounced resistance both against chemo- and radiation-therapy and frequently metastasize. In this review, we elucidate signaling pathways involved in the genesis and therapeutic resistance of chondrosarcomas with a focus on MSPC compared to signaling in articular cartilage (AC).
Collapse
Affiliation(s)
- Karen A Boehme
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany.
| | - Sabine B Schleicher
- Department of Hematology and Oncology, Eberhard Karls University Tuebingen, Children's Hospital, 72076 Tuebingen, Germany.
| | - Frank Traub
- Department of Orthopedic Surgery, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany.
| | - Bernd Rolauffs
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany.
| |
Collapse
|
15
|
Schleicher SB, Zaborski JJ, Riester R, Zenkner N, Handgretinger R, Kluba T, Traub F, Boehme KA. Combined application of arsenic trioxide and lithium chloride augments viability reduction and apoptosis induction in human rhabdomyosarcoma cell lines. PLoS One 2017; 12:e0178857. [PMID: 28575066 PMCID: PMC5456379 DOI: 10.1371/journal.pone.0178857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 05/21/2017] [Indexed: 12/18/2022] Open
Abstract
Rhabdomyosarcomas (RMS) are the most prevalent soft tissue sarcomas affecting children and adolescents. Despite intensive treatment consisting of multimodal chemotherapy and surgery RMS patients diagnosed with metastatic disease expect long term survival rates of only 20%. Often multidrug resistance arises upon initial response emphasizing the need for new therapeutic drugs to improve treatment efficiency. Previously, we demonstrated the efficacy of the FDA approved drug arsenic trioxide (ATO) specifically inhibiting viability and clonal growth as well as inducing cell death in human RMS cell lines of different subtypes. In this study, we combined low dose ATO with lithium chloride (LiCl), which is approved as mood stabilizer for the treatment of bipolar disorder, but also inhibits growth and survival of different cancer cell types in pre-clinical research. Indeed, we could show additive effects of LiCl and ATO on viability reduction, decrease of colony formation as well as cell death induction. In the course of this, LiCl induced inhibitory glycogen synthase kinase-3β (GSK-3β) serine 9 phosphorylation, whereas glioma associated oncogene family 1 (GLI1) protein expression was particularly reduced by combined ATO and LiCl treatment in RD and RH-30 cell lines, showing high rates of apoptotic cell death. These results imply that combination of ATO with LiCl or another drug targeting GSK-3 is a promising strategy to enforce the treatment efficiency in resistant and recurrent RMS.
Collapse
Affiliation(s)
- Sabine B. Schleicher
- Eberhard Karls University Tuebingen, Children’s Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| | - Julian J. Zaborski
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Laboratory of Cell Biology, Tuebingen, Germany
| | - Rosa Riester
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Laboratory of Cell Biology, Tuebingen, Germany
| | - Natascha Zenkner
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Laboratory of Cell Biology, Tuebingen, Germany
| | - Rupert Handgretinger
- Eberhard Karls University Tuebingen, Children’s Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| | - Torsten Kluba
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Tuebingen, Germany
| | - Frank Traub
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Laboratory of Cell Biology, Tuebingen, Germany
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Tuebingen, Germany
| | - Karen A. Boehme
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Laboratory of Cell Biology, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
16
|
Bayir E, Bilgi E, Urkmez AS. Implementation of Nanoparticles in Cancer Therapy. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cancer is a wide group of diseases and generally characterized by uncontrolled proliferation of cells whose metabolic activities are disrupted. Conventionally, chemotherapy, radiotherapy, and surgery are used in the treatment of cancer. However, in theory, even a single cancer cell may trigger recurrence. Therefore, these treatments cannot provide high survival rate for deadly types. Identification of alternative methods in treatment of cancers is inevitable because of adverse effects of conventional methods. In the last few decades, nanotechnology developed by scientists working in different disciplines—physics, chemistry, and biology—offers great opportunities. It is providing elimination of both circulating tumor cells and solid cancer cells by targeting cancer cells. In this chapter, inadequate parts of conventional treatment methods, nanoparticle types used in new treatment methods of cancer, and targeting methods of nanoparticles are summarized; furthermore, recommendations of future are provided.
Collapse
|
17
|
Re-calculating! Navigating through the osteosarcoma treatment roadblock. Pharmacol Res 2016; 117:54-64. [PMID: 27940205 DOI: 10.1016/j.phrs.2016.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 01/03/2023]
Abstract
The survival rates for patients with osteosarcoma have remained almost static for the past three decades. Current standard of care therapy includes chemotherapies such as doxorubicin, cisplatin, and methotrexate along with complete surgical resection and surgery with or without ifosfamide and etoposide for relapse, though outcomes are hoped to be improved through clinical trials. Additionally, increased understanding of the genetics, signaling pathways and microenvironmental factors driving the disease have led to the identification of promising agents and potential paths towards translation of an exciting array of novel targeted therapies. Here, we review the mechanism of action of these emerging therapies and how, with clinical translation, they can potentially improve the survival rates for osteosarcoma patients in the near future.
Collapse
|
18
|
Halcrow PW, Dancer M, Panteah M, Walden C, Ohm JE. Molecular Changes Associated With Tumor Initiation and Progression of Soft Tissue Sarcomas: Targeting the Genome and Epigenome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:323-380. [PMID: 27865462 DOI: 10.1016/bs.pmbts.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Soft tissue sarcomas are rare, but generally aggressive tumors which disproportionately affect children and young adults. They represent less than 10% of all cancers, but are one of the most frequently diagnosed cancers in pediatric patients. These cancers have a high rate of morbidity and mortality, and their overall incidence has been increasing at an estimated rate of 26% over the last 2 decades. The cause of this increased incidence is unknown but various environmental factors have been implicated. Establishing standard therapeutic strategies is challenging for soft tissue sarcomas as more than 50 different histological subtypes exist, each with their own molecular alterations and clinical characteristics, and this combination of tumor heterogeneity and a limited number of clinical cases make detailed omics level molecular studies particularly challenging. This chapter will focus on the unique genetic and epigenetic changes which characterize these cancers, with an emphasis on translocation-associated sarcomas involving primary gene fusions with the RNA chaperone protein EWSR1. We will highlight current therapeutic approaches and discuss opportunities for targeted molecular therapeutics.
Collapse
Affiliation(s)
- P W Halcrow
- University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - M Dancer
- University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - M Panteah
- University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - C Walden
- University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - J E Ohm
- Roswell Park Cancer Institute, Buffalo, NY, United States.
| |
Collapse
|
19
|
Boehme KA, Nitsch J, Riester R, Handgretinger R, Schleicher SB, Kluba T, Traub F. Arsenic trioxide potentiates the effectiveness of etoposide in Ewing sarcomas. Int J Oncol 2016; 49:2135-2146. [PMID: 27665785 DOI: 10.3892/ijo.2016.3700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 07/28/2016] [Indexed: 11/05/2022] Open
Abstract
Ewing sarcomas (ES) are rare mesenchymal tumours, most commonly diagnosed in children and adolescents. Arsenic trioxide (ATO) has been shown to efficiently and selectively target leukaemic blasts as well as solid tumour cells. Since multidrug resistance often occurs in recurrent and metastatic ES, we tested potential additive effects of ATO in combination with the cytostatic drugs etoposide and doxorubicin. The Ewing sarcoma cell lines A673, RD-ES and SK-N-MC as well as mesenchymal stem cells (MSC) for control were treated with ATO, etoposide and doxorubicin in single and combined application. Viability and proliferation (MTS assay, colony formation, 3D spheroid culture) as well as cell death induction (western blot analysis, flow cytometry) were analysed. In the MTS viability assays ATO treatment significantly reduced the metabolic activity of all three ES cell lines (A673, RD-ES and SK-N-MC) examined. Moreover, all ES cell lines were sensitive to etoposide, whereas MSC remained unaffected by the drug concentrations used. With the exception of ATO in RD-ES cells, all drugs induced apoptosis in the ES cell lines, indicated by caspase-3 and PARP cleavage. Combination of the agents potentiated the reduction of viability as well as the inhibitory effect on clonal growth. In addition, cell death induction was obviously enhanced in RD-ES and SK-N-MC cells by a combination of ATO and etoposide compared to single application. Summarised, the combination of low dose, physiologically easily tolerable ATO with commonly used etoposide and doxorubicin concentrations efficiently and selectively suppressed viability and colony formation in ES cell lines, whereas a combination of ATO and etoposide was favourable for cell death induction. In addition to an increase of the effectiveness of the cytostatic drugs and prevention of potential drug resistance, this approach may also reduce toxicity effects, since the individual doses can be reduced.
Collapse
Affiliation(s)
- Karen A Boehme
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Juliane Nitsch
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Rosa Riester
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Rupert Handgretinger
- Department of Haematology and Oncology, Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Sabine B Schleicher
- Department of Haematology and Oncology, Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Torsten Kluba
- Department of Orthopaedic Surgery, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Frank Traub
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
20
|
Meister MT, Boedicker C, Graab U, Hugle M, Hahn H, Klingebiel T, Fulda S. Arsenic trioxide induces Noxa-dependent apoptosis in rhabdomyosarcoma cells and synergizes with antimicrotubule drugs. Cancer Lett 2016; 381:287-95. [PMID: 27521572 DOI: 10.1016/j.canlet.2016.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022]
Abstract
The prognosis of metastatic or relapsed rhabdomyosarcoma (RMS) is poor, highlighting the need of new treatment options. In the present study, we evaluated the in vitro efficacy of arsenic trioxide (ATO) in RMS, a FDA-approved drug used in pediatric leukemia. Here, we report that ATO exerts antitumor activity against RMS cells both as single agent and in combination with microtubule-targeting drugs. Monotherapy with ATO reduces cell viability, triggers apoptosis and suppresses clonogenic survival of RMS cells, at least in part, by transcriptional induction of the proapoptotic BH3-only protein Noxa. siRNA-mediated knockdown of Noxa significantly rescues ATO-mediated cell death, demonstrating that Noxa is required for cell death. Also, ATO suppresses endogenous Hedgehog (Hh) signaling, as it significantly reduces Gli1 transcriptional activity and expression levels of several Hh target genes. Furthermore, we identify synergistic induction of apoptosis by ATO together with several antimicrotubule agents including vincristine (VCR), vinblastine and eribulin. The addition of the broad-range caspase inhibitor zVAD.fmk or overexpression of the antiapoptotic protein Bcl-2 significantly reduce ATO/VCR-induced cell death, indicating that the ATO/VCR combination triggers caspase-dependent apoptosis via the mitochondrial pathway. In summary, ATO exerts antitumor activity against RMS, especially in combination with antimicrotubule drugs. These findings have important implications for the development of novel therapeutic strategies for RMS.
Collapse
Affiliation(s)
- Michael Torsten Meister
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, 60528 Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Cathinka Boedicker
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, 60528 Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrike Graab
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, 60528 Frankfurt, Germany
| | - Manuela Hugle
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, 60528 Frankfurt, Germany
| | - Heidi Hahn
- Department of Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Thomas Klingebiel
- German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, 60528 Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
21
|
Colia V, Provenzano S, Hindi N, Casali PG, Stacchiotti S. Systemic therapy for selected skull base sarcomas: Chondrosarcoma, chordoma, giant cell tumour and solitary fibrous tumour/hemangiopericytoma. Rep Pract Oncol Radiother 2016; 21:361-9. [PMID: 27330421 DOI: 10.1016/j.rpor.2015.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/10/2015] [Accepted: 12/18/2015] [Indexed: 12/14/2022] Open
Abstract
This review highlights the data currently available on the activity of systemic therapy in chondrosarcoma, chordoma, giant cell tumour of the bone (GCTB) and solitary fibrous tumour, i.e., four rare sarcomas amongst mesenchymal malignancy arising from the skull base.
Collapse
Affiliation(s)
- Vittoria Colia
- Adult Mesenchymal Tumour & Rare Cancer Medical Oncology Unit, Cancer Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Provenzano
- Adult Mesenchymal Tumour & Rare Cancer Medical Oncology Unit, Cancer Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Hindi
- Adult Mesenchymal Tumour & Rare Cancer Medical Oncology Unit, Cancer Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo G Casali
- Adult Mesenchymal Tumour & Rare Cancer Medical Oncology Unit, Cancer Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Stacchiotti
- Adult Mesenchymal Tumour & Rare Cancer Medical Oncology Unit, Cancer Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
22
|
Pantziarka P, Sukhatme V, Bouche G, Meheus L, Sukhatme VP. Repurposing Drugs in Oncology (ReDO)-diclofenac as an anti-cancer agent. Ecancermedicalscience 2016; 10:610. [PMID: 26823679 PMCID: PMC4720497 DOI: 10.3332/ecancer.2016.610] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 12/16/2022] Open
Abstract
Diclofenac (DCF) is a well-known and widely used non-steroidal anti-inflammatory drug (NSAID), with a range of actions which are of interest in an oncological context. While there has long been an interest in the use of NSAIDs in chemoprevention, there is now emerging evidence that such drugs may have activity in a treatment setting. DCF, which is a potent inhibitor of COX-2 and prostaglandin E2 synthesis, displays a range of effects on the immune system, the angiogenic cascade, chemo- and radio-sensitivity and tumour metabolism. Both pre-clinical and clinical evidence of these effects, in multiple cancer types, is assessed and summarised and relevant mechanisms of action outlined. Based on this evidence the case is made for further clinical investigation of the anticancer effects of DCF, particularly in combination with other agents - with a range of possible multi-drug and multi-modality combinations outlined in the supplementary materials accompanying the main paper.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium
- The George Pantziarka TP53 Trust, London, UK
| | | | | | - Lydie Meheus
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium
| | - Vikas P Sukhatme
- GlobalCures, Inc; Newton MA 02459, USA
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
23
|
Boehme KA, Zaborski JJ, Riester R, Schweiss SK, Hopp U, Traub F, Kluba T, Handgretinger R, Schleicher SB. Targeting hedgehog signalling by arsenic trioxide reduces cell growth and induces apoptosis in rhabdomyosarcoma. Int J Oncol 2015; 48:801-12. [PMID: 26676886 DOI: 10.3892/ijo.2015.3293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/12/2015] [Indexed: 11/06/2022] Open
Abstract
Rhabdomyosarcomas (RMS) are soft tissue tumours treated with a combination of surgery and chemotherapy. However, mortality rates remain high in case of recurrences and metastatic disease due to drug resistance and failure to undergo apoptosis. Therefore, innovative approaches targeting specific signalling pathways are urgently needed. We analysed the impact of different hedgehog (Hh) pathway inhibitors on growth and survival of six RMS cell lines using MTS assay, colony formation assay, 3D spheroid cultures, flow cytometry and western blotting. Especially the glioma-associated oncogene family (GLI) inhibitor arsenic trioxide (ATO) effectively reduced viability as well as clonal growth and induced cell death in RMS cell lines of embryonal, alveolar and sclerosing, spindle cell subtype, whereas normal skeletal muscle cells were hardly compromised by ATO. Combination of ATO with itraconazole potentiated the reduction of colony formation and spheroid size. These results show that ATO is a promising substance for treatment of relapsed and refractory RMS by directly targeting GLI transcription factors. The combination with itraconazole or other chemotherapeutic drugs has the opportunity to enforce the treatment efficiency of resistant and recurrent RMS.
Collapse
Affiliation(s)
- Karen A Boehme
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Julian J Zaborski
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Rosa Riester
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Sabrina K Schweiss
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ulrike Hopp
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Frank Traub
- Department of Orthopaedic Surgery, Eberhard Karls University, Tuebingen, Germany
| | - Torsten Kluba
- Department of Orthopaedic Surgery, Eberhard Karls University, Tuebingen, Germany
| | - Rupert Handgretinger
- Department of Haematology and Oncology, Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Sabine B Schleicher
- Department of Haematology and Oncology, Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
24
|
Harwood JL, Alexander JH, Mayerson JL, Scharschmidt TJ. Targeted Chemotherapy in Bone and Soft-Tissue Sarcoma. Orthop Clin North Am 2015; 46:587-608. [PMID: 26410647 DOI: 10.1016/j.ocl.2015.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Historically surgical intervention has been the mainstay of therapy for bone and soft-tissue sarcomas, augmented with adjuvant radiation for local control. Although cytotoxic chemotherapy revolutionized the treatment of many sarcomas, classic treatment regimens are fraught with side effects while outcomes have plateaued. However, since the approval of imatinib in 2002, research into targeted chemotherapy has increased exponentially. With targeted therapies comes the potential for decreased side effects and more potent, personalized treatment options. This article reviews the evolution of medical knowledge regarding sarcoma, the basic science of sarcomatogenesis, and the major targets and pathways now being studied.
Collapse
Affiliation(s)
- Jared L Harwood
- Department of Orthopaedics, The Ohio State University, 725 Prior Hall, 376 West 10 Avenue, Columbus, OH 43210, USA
| | - John H Alexander
- Department of Orthopaedics, The Ohio State University, 725 Prior Hall, 376 West 10 Avenue, Columbus, OH 43210, USA
| | - Joel L Mayerson
- Department of Orthopaedics, The Ohio State University, 725 Prior Hall, 376 West 10 Avenue, Columbus, OH 43210, USA.
| | - Thomas J Scharschmidt
- Department of Orthopaedics, The Ohio State University, 725 Prior Hall, 376 West 10 Avenue, Columbus, OH 43210, USA
| |
Collapse
|
25
|
Rivera-Valentin RK, Zhu L, Hughes DPM. Bone Sarcomas in Pediatrics: Progress in Our Understanding of Tumor Biology and Implications for Therapy. Paediatr Drugs 2015; 17:257-71. [PMID: 26002157 PMCID: PMC4516866 DOI: 10.1007/s40272-015-0134-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pediatric bone sarcomas osteosarcoma and Ewing sarcoma represent a tremendous challenge for the clinician. Though less common than acute lymphoblastic leukemia or brain tumors, these aggressive cancers account for a disproportionate amount of the cancer morbidity and mortality in children, and have seen few advances in survival in the past decade, despite many large, complicated, and expensive trials of various chemotherapy combinations. To improve the outcomes of children with bone sarcomas, a better understanding of the biology of these cancers is needed, together with informed use of targeted therapies that exploit the unique biology of each disease. Here we summarize the current state of knowledge regarding the contribution of receptor tyrosine kinases, intracellular signaling pathways, bone biology and physiology, the immune system, and the tumor microenvironment in promoting and maintaining the malignant phenotype. These observations are coupled with a review of the therapies that target each of these mechanisms, focusing on recent or ongoing clinical trials if such information is available. It is our hope that, by better understanding the biology of osteosarcoma and Ewing sarcoma, rational combination therapies can be designed and systematically tested, leading to improved outcomes for a group of children who desperately need them.
Collapse
Affiliation(s)
- Rocio K. Rivera-Valentin
- Department of Pediatrics-Research, The Children’s Cancer Hospital at MD Anderson Cancer Center, Unit 853, MOD 1.021d, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Limin Zhu
- Department of Pediatrics-Research, The Children’s Cancer Hospital at MD Anderson Cancer Center, Unit 853, MOD 1.021d, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Dennis P. M. Hughes
- Department of Pediatrics-Research, The Children’s Cancer Hospital at MD Anderson Cancer Center, Unit 853, MOD 1.021d, 1515 Holcombe Blvd, Houston, TX 77030 USA
| |
Collapse
|
26
|
Kumar RMR, Fuchs B. Hedgehog signaling inhibitors as anti-cancer agents in osteosarcoma. Cancers (Basel) 2015; 7:784-94. [PMID: 25985215 PMCID: PMC4491684 DOI: 10.3390/cancers7020784] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 04/30/2015] [Accepted: 05/07/2015] [Indexed: 12/31/2022] Open
Abstract
Osteosarcoma is a rare type of cancer associated with a poor clinical outcome. Even though the pathologic characteristics of OS are well established, much remains to be understood, particularly at the molecular signaling level. The molecular mechanisms of osteosarcoma progression and metastases have not yet been fully elucidated and several evolutionary signaling pathways have been found to be linked with osteosarcoma pathogenesis, especially the hedgehog signaling (Hh) pathway. The present review will outline the importance and targeting the hedgehog signaling (Hh) pathway in osteosarcoma tumor biology. Available data also suggest that aberrant Hh signaling has pro-migratory effects and leads to the development of osteoblastic osteosarcoma. Activation of Hh signaling has been observed in osteosarcoma cell lines and also in primary human osteosarcoma specimens. Emerging data suggests that interference with Hh signal transduction by inhibitors may reduce osteosarcoma cell proliferation and tumor growth thereby preventing osteosarcomagenesis. From this perspective, we outline the current state of Hh pathway inhibitors in osteosarcoma. In summary, targeting Hh signaling by inhibitors promise to increase the efficacy of osteosarcoma treatment and improve patient outcome.
Collapse
Affiliation(s)
- Ram Mohan Ram Kumar
- Laboratory for Orthopaedic Research, Balgrist University Hospital, Sarcoma Center-UZH University of Zurich, Zurich 8008, Switzerland.
| | - Bruno Fuchs
- Laboratory for Orthopaedic Research, Balgrist University Hospital, Sarcoma Center-UZH University of Zurich, Zurich 8008, Switzerland.
| |
Collapse
|
27
|
Pantziarka P, Sukhatme V, Bouche G, Meheus L, Sukhatme VP. Repurposing Drugs in Oncology (ReDO)-itraconazole as an anti-cancer agent. Ecancermedicalscience 2015; 9:521. [PMID: 25932045 PMCID: PMC4406527 DOI: 10.3332/ecancer.2015.521] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 12/12/2022] Open
Abstract
Itraconazole, a common triazole anti-fungal drug in widespread clinical use, has evidence of clinical activity that is of interest in oncology. There is evidence that at the clinically relevant doses, itraconazole has potent anti-angiogenic activity, and that it can inhibit the Hedgehog signalling pathway and may also induce autophagic growth arrest. The evidence for these anticancer effects, in vitro, in vivo, and clinical are summarised, and the putative mechanisms of their action outlined. Clinical trials have shown that patients with prostate, lung, and basal cell carcinoma have benefited from treatment with itraconazole, and there are additional reports of activity in leukaemia, ovarian, breast, and pancreatic cancers. Given the evidence presented, a case is made that itraconazole warrants further clinical investigation as an anti- cancer agent. Additionally, based on the properties summarised previously, it is proposed that itraconazole may synergise with a range of other drugs to enhance the anti-cancer effect, and some of these possible combinations are presented in the supplementary materials accompanying this paper.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, 1853 Strombeek-Bever, Belgium ; The George Pantziarka TP53 Trust, London, KT1 2JP, UK
| | | | | | | | - Vikas P Sukhatme
- GlobalCures, Inc; Newton MA 02459, USA ; Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
28
|
Abstract
For the past 30 years, improvements in the survival of patients with osteosarcoma have been mostly incremental. Despite evidence of genomic instability and a high frequency of chromothripsis and kataegis, osteosarcomas carry few recurrent targetable mutations, and trials of targeted agents have been generally disappointing. Bone has a highly specialized immune environment and many immune signalling pathways are important in bone homeostasis. The success of the innate immune stimulant mifamurtide in the adjuvant treatment of non-metastatic osteosarcoma suggests that newer immune-based treatments, such as immune checkpoint inhibitors, may substantially improve disease outcome.
Collapse
Affiliation(s)
- Maya Kansara
- 1] Research Division, Peter MacCallum Cancer Centre, Melbourne, 3002, Victoria, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, 3010, Victoria, Australia
| | - Michele W Teng
- 1] Immunology in Cancer and Infection Laboratory and Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Queensland, Australia. [2] School of Medicine, University of Queensland, Herston, 4006, Queensland, Australia
| | - Mark J Smyth
- 1] Immunology in Cancer and Infection Laboratory and Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Queensland, Australia. [2] School of Medicine, University of Queensland, Herston, 4006, Queensland, Australia
| | - David M Thomas
- 1] Research Division, Peter MacCallum Cancer Centre, Melbourne, 3002, Victoria, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, 3010, Victoria, Australia. [3] The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, 2010, New South Wales, Australia
| |
Collapse
|
29
|
Liu S, Zhang Z, Chen TY. Transfection with small interfering RNA targeting smoothened promotes cell apoptosis in human esophageal carcinoma cell line CAES-17. Shijie Huaren Xiaohua Zazhi 2014; 22:2671-2678. [DOI: 10.11569/wcjd.v22.i19.2671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of transfection with small interfering RNA (siRNA) targeting smoothened (Smo) on the expression of Bcl-2 in esophageal cancer CAES-17 cells.
METHODS: Smo siRNA was transfected into CAES-17 cells. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the levels of Smo and Bcl-2 mRNAs and proteins. TUNEL assay and flow cytometry were used to detect cell apoptosis.
RESULTS: Compared with the control groups, after transfection with Smo siRNA for 24, 48 and 72 h, the levels of Smo mRNA were significantly down-regulated (0.524 ± 0.011, 0.422 ± 0.008, 0.332 ± 0.019, P < 0.05 for all). After transfection with Smo siRNA for 72 h, the levels of Smo and Bcl-2 proteins were also significantly lower compared with the control groups (0.330 ± 0.016, 0.391 ± 0.019, P < 0.05 for all). The number of apoptotic cells was greatly increased after Smo siRNA transfection.
CONCLUSION: Smo gene may play an important role in the apoptosis of esophageal cancer cells. Smo may be used as a novel biomarker for the treatment of esophageal carcinoma.
Collapse
|
30
|
Palmerini E, Paioli A, Ferrari S. Emerging therapeutic targets for synovial sarcoma. Expert Rev Anticancer Ther 2014; 14:791-806. [DOI: 10.1586/14737140.2014.901155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Radaelli S, Stacchiotti S, Casali PG, Gronchi A. Emerging therapies for adult soft tissue sarcoma. Expert Rev Anticancer Ther 2014; 14:689-704. [DOI: 10.1586/14737140.2014.885840] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Hoogstraat M, de Pagter MS, Cirkel GA, van Roosmalen MJ, Harkins TT, Duran K, Kreeftmeijer J, Renkens I, Witteveen PO, Lee CC, Nijman IJ, Guy T, van ’t Slot R, Jonges TN, Lolkema MP, Koudijs MJ, Zweemer RP, Voest EE, Cuppen E, Kloosterman WP. Genomic and transcriptomic plasticity in treatment-naive ovarian cancer. Genome Res 2014; 24:200-11. [PMID: 24221193 PMCID: PMC3912411 DOI: 10.1101/gr.161026.113] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 10/17/2013] [Indexed: 12/23/2022]
Abstract
Intra-tumor heterogeneity is a hallmark of many cancers and may lead to therapy resistance or interfere with personalized treatment strategies. Here, we combined topographic mapping of somatic breakpoints and transcriptional profiling to probe intra-tumor heterogeneity of treatment-naïve stage IIIC/IV epithelial ovarian cancer. We observed that most substantial differences in genomic rearrangement landscapes occurred between metastases in the omentum and peritoneum versus tumor sites in the ovaries. Several cancer genes such as NF1, CDKN2A, and FANCD2 were affected by lesion-specific breakpoints. Furthermore, the intra-tumor variability involved different mutational hallmarks including lesion-specific kataegis (local mutation shower coinciding with genomic breakpoints), rearrangement classes, and coding mutations. In one extreme case, we identified two independent TP53 mutations in ovary tumors and omentum/peritoneum metastases, respectively. Examination of gene expression dynamics revealed up-regulation of key cancer pathways including WNT, integrin, chemokine, and Hedgehog signaling in only subsets of tumor samples from the same patient. Finally, we took advantage of the multilevel tumor analysis to understand the effects of genomic breakpoints on qualitative and quantitative gene expression changes. We show that intra-tumor gene expression differences are caused by site-specific genomic alterations, including formation of in-frame fusion genes. These data highlight the plasticity of ovarian cancer genomes, which may contribute to their strong capacity to adapt to changing environmental conditions and give rise to the high rate of recurrent disease following standard treatment regimes.
Collapse
Affiliation(s)
- Marlous Hoogstraat
- Department of Medical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Netherlands Center for Personalized Cancer Treatment, 3584 CG Utrecht, The Netherlands
| | - Mirjam S. de Pagter
- Department of Medical Genetics, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Geert A. Cirkel
- Department of Medical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Netherlands Center for Personalized Cancer Treatment, 3584 CG Utrecht, The Netherlands
| | - Markus J. van Roosmalen
- Department of Medical Genetics, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | | | - Karen Duran
- Department of Medical Genetics, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Jennifer Kreeftmeijer
- Department of Medical Genetics, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Ivo Renkens
- Department of Medical Genetics, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Petronella O. Witteveen
- Department of Medical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - Isaac J. Nijman
- Netherlands Center for Personalized Cancer Treatment, 3584 CG Utrecht, The Netherlands
- Department of Medical Genetics, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Tanisha Guy
- Department of Medical Genetics, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Ruben van ’t Slot
- Department of Medical Genetics, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Trudy N. Jonges
- Department of Pathology, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Martijn P. Lolkema
- Department of Medical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Netherlands Center for Personalized Cancer Treatment, 3584 CG Utrecht, The Netherlands
| | - Marco J. Koudijs
- Department of Medical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Netherlands Center for Personalized Cancer Treatment, 3584 CG Utrecht, The Netherlands
| | - Ronald P. Zweemer
- Department of Reproductive Medicine and Gynaecology, Division Woman and Baby, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Emile E. Voest
- Department of Medical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Netherlands Center for Personalized Cancer Treatment, 3584 CG Utrecht, The Netherlands
| | - Edwin Cuppen
- Netherlands Center for Personalized Cancer Treatment, 3584 CG Utrecht, The Netherlands
- Department of Medical Genetics, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Wigard P. Kloosterman
- Department of Medical Genetics, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
33
|
Samuel AM, Costa J, Lindskog DM. Genetic alterations in chondrosarcomas - keys to targeted therapies? Cell Oncol (Dordr) 2014; 37:95-105. [PMID: 24458248 DOI: 10.1007/s13402-014-0166-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chondrosarcomas are malignant tumors of chondrocytes and represent the second most common type of primary bone tumors. Within the context of normal chondrogenesis, this review summarizes results from recent research outlining the key molecular changes that occur during the development of this sarcoma type. RESULTS Current data support the notion that a two-hit scenario, common to many tumors, also underlies chondrosarcoma formation. First, early-stage mutations alter the normal proliferation and differentiation of chondrocytes, thereby predisposing them to malignant transformation. These early-stage mutations, found in both benign cartilaginous lesions and chondrosarcomas, include alterations affecting the IHH/PTHrP and IDH1/IDH2 pathways. As they are not observed in malignant cells, mutations in the EXT1 and EXT2 genes are considered early-stage events providing an environment that alters IHH/PTHrP signaling, thereby inducing mutations in adjacent cells. Due to normal cell cycle control that remains active, a low rate of malignant transformation is seen in benign cartilaginous lesions with early-stage mutations. In contrast, late-stage mutations, seen in most malignant chondrosarcomas, appear to induce malignant transformation as they are not found in benign cartilaginous lesions. These late-stage mutations primarily involve cell cycle pathway regulators including p53 and pRB, two genes that are also known to be implicated in numerous other human tumor types. CONCLUSIONS Now the key genetic alterations involved in both early and late stages of chondrosarcoma development have been identified, focus should be shifted to the identification of druggable molecular targets for the design of novel chondrosarcoma-specific therapies.
Collapse
Affiliation(s)
- Andre M Samuel
- Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA,
| | | | | |
Collapse
|
34
|
Levard A, Tassy L, Cassier PA. Emerging Therapies for Soft-Tissue Sarcomas. Hematol Oncol Clin North Am 2013; 27:1063-78. [DOI: 10.1016/j.hoc.2013.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Chowdhury S, Pradhan RN, Sarkar RR. Structural and logical analysis of a comprehensive hedgehog signaling pathway to identify alternative drug targets for glioma, colon and pancreatic cancer. PLoS One 2013; 8:e69132. [PMID: 23935937 PMCID: PMC3720582 DOI: 10.1371/journal.pone.0069132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/04/2013] [Indexed: 12/19/2022] Open
Abstract
Hedgehog is an evolutionarily conserved developmental pathway, widely implicated in controlling various cellular responses such as cellular proliferation and stem cell renewal in human and other organisms, through external stimuli. Aberrant activation of this pathway in human adult stem cell line may cause different types of cancers. Hence, targeting this pathway in cancer therapy has become indispensable, but the non availability of detailed molecular interactions, complex regulations by extra- and intra-cellular proteins and cross talks with other pathways pose a serious challenge to get a coherent understanding of this signaling pathway for making therapeutic strategy. This motivated us to perform a computational study of the pathway and to identify probable drug targets. In this work, from available databases and literature, we reconstructed a complete hedgehog pathway which reports the largest number of molecules and interactions to date. Using recently developed computational techniques, we further performed structural and logical analysis of this pathway. In structural analysis, the connectivity and centrality parameters were calculated to identify the important proteins from the network. To capture the regulations of the molecules, we developed a master Boolean model of all the interactions between the proteins and created different cancer scenarios, such as Glioma, Colon and Pancreatic. We performed perturbation analysis on these cancer conditions to identify the important and minimal combinations of proteins that can be used as drug targets. From our study we observed the under expressions of various oncoproteins in Hedgehog pathway while perturbing at a time the combinations of the proteins GLI1, GLI2 and SMO in Glioma; SMO, HFU, ULK3 and RAS in Colon cancer; SMO, HFU, ULK3, RAS and ERK12 in Pancreatic cancer. This reconstructed Hedgehog signaling pathway and the computational analysis for identifying new combinatory drug targets will be useful for future in-vitro and in-vivo analysis to control different cancers.
Collapse
Affiliation(s)
- Saikat Chowdhury
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Rachana N. Pradhan
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
36
|
Hedgehog signaling inhibitor cyclopamine induces apoptosis by decreasing Gli2 and Bcl2 expression in human salivary pleomorphic adenoma cells. Biomed Rep 2013; 1:325-329. [PMID: 24648943 DOI: 10.3892/br.2013.61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/07/2013] [Indexed: 12/20/2022] Open
Abstract
Pleomorphic adenoma is the most common benign neoplasm of the salivary gland. Few studies are currently available on pleomorphic adenoma cell apoptosis. The aim of this study was to investigate the effect of cyclopamine induction apoptosis in human salivary pleomorphic adenoma (HSPA) cells and the impact on Gli2 and Bcl2 mRNA levels. Cells were quantified and cell morphology was visualized under microscope. Flow cytometry was used to detect the apoptotic rate. Cyclopamine is considered an efficient blocker of the hedgehog (Hh) signaling pathway. Following treatment with 10 μmol/l cyclopamine for 48 h, the number of cells were reduced, and nuclear pycnosis or fragmentation, as well as chromatospherite disfiguration apoptotic morphology were observed under microscope. One-way ANOVA test results revealed a significantly greater decrease (P<0.01) of Gli2 and Bcl2 mRNA levels in the cyclopamine-treated group as compared to the blank control group and dimethyl sulfoxide (DMSO)-treated group. Following treatment with 10 μmol/l cyclopamine for 24 h, the apoptotic rate of the cyclopamine-treated group was significantly higher than that of the blank control and DMSO-treated group (P<0.01). Findings of this study showed that cyclopamine affected the mechanism of HSPA cell apoptosis, which may be associated with the downregulation of Gli2 and Bcl2 mRNA expression levels and the activation of the mitochondrial apoptotic pathways.
Collapse
|