1
|
Tiwari PK, Chaudhary AA, Gupta S, Chouhan M, Singh HN, Rustagi S, Khan SUD, Kumar S. Extracellular vesicles in triple-negative breast cancer: current updates, challenges and future prospects. Front Mol Biosci 2025; 12:1561464. [PMID: 40297849 PMCID: PMC12034555 DOI: 10.3389/fmolb.2025.1561464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/25/2025] [Indexed: 04/30/2025] Open
Abstract
Breast cancer (BC) remains a complex and widespread problem, affecting millions of women worldwide, Among the various subtypes of BC, triple-negative breast cancer (TNBC) is particularly challenging, representing approximately 20% of all BC cases, and the survival rate of TNBC patients is generally worse than other subtypes of BC. TNBC is a heterogeneous disease characterized by lack of expression of three receptors: estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER2), resulting conventional hormonal therapies are ineffective for its management. Despite various therapeutic approaches have been explored, but no definitive solution has been found yet for TNBC. Current treatments options are chemotherapy, immunotherapy, radiotherapy and surgery, although, these therapies have some limitations, such as the development of resistance to anti-cancer drugs, and off-target toxicity, which remain primary obstacles and significant challenges for TNBC. Several findings have shown that EVs exhibit significant therapeutic promise in many diseases, and a similar important role has been observed in various types of tumor. Studies suggest that EVs may offer a potential solution for the management of TNBC. This review highlights the multifaceted roles of EVs in TNBC, emphasizing their involvement in disease progression, diagnosis and therapeutic approach, as well as their potential as biomarkers and drug delivery.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life science, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Ou S, Nie X, Qiu X, Jin X, Wu G, Zhang R, Zhu J. Deciphering the mechanisms of long non-coding RNAs in ferroptosis: insights into its clinical significance in cancer progression and immunology. Cell Death Discov 2025; 11:14. [PMID: 39827195 PMCID: PMC11743196 DOI: 10.1038/s41420-025-02290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
A new type of nonapoptotic, iron-dependent cell death induced by lipid peroxidation is known as ferroptosis. Numerous pathological processes, including inflammation and cancer, have been demonstrated to be influenced by changes in the ferroptosis-regulating network. Long non-coding RNAs (LncRNAs) are a group of functional RNA molecules that are not translated into proteins, which can regulate gene expression in various manners. An increasing number of studies have shown that lncRNAs can interfere with the progression of ferroptosis by modulating ferroptosis-related genes directly or indirectly. Despite evidence implicating lncRNAs in cancer and inflammation, studies on their mechanisms and therapeutic potential remain scarce. We investigate the mechanisms of lncRNA-mediated regulation of inflammation and cancer immunity, assessing the feasibility and challenges of lncRNAs as therapeutic targets in these conditions.
Collapse
Affiliation(s)
- Shengming Ou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoya Nie
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiangyu Qiu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin Jin
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Geyan Wu
- Biomedicine Research Centre, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provicial Clinical Research Center for Obsterics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Rongxin Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Jinrong Zhu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
3
|
Lin F, Li H, Liu H, Shen J, Zheng L, Huang S, Chen Y. Identification of lysine lactylation (kla)-related lncRNA signatures using XGBoost to predict prognosis and immune microenvironment in breast cancer patients. Sci Rep 2024; 14:20432. [PMID: 39227722 PMCID: PMC11371909 DOI: 10.1038/s41598-024-71482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
Breast cancer (BC) stands as a predominant global malignancy, significantly contributing to female mortality. Recently uncovered, histone lysine lactylation (kla) has assumed a crucial role in cancer progression. However, the correlation with lncRNAs remains ambiguous. Scrutinizing lncRNAs associated with Kla not only improves clinical breast cancer management but also establishes a groundwork for antitumor drug development. We procured breast tissue samples, encompassing both normal and cancerous specimens, from The Cancer Genome Atlas (TCGA) database. Utilizing Cox regression and XGBoost methods, we developed a prognostic model using identified kla-related lncRNAs. The model's predictive efficacy underwent validation across training, testing, and the overall cohort. Functional analysis concerning kla-related lncRNAs ensued. We identified and screened 8 kla-related lncRNAs to formulate the risk model. Pathway analysis disclosed the connection between immune-related pathways and the risk model of kla-related lncRNAs. Significantly, the risk scores exhibited a correlation with both immune cell infiltration and immune function, indicating a clear association. Noteworthy is the observation that patients with elevated risk scores demonstrated an increased tumor mutation burden (TMB) and decreased tumor immune dysfunction and exclusion (TIDE) scores, suggesting heightened responses to immune checkpoint blockade. Our study uncovers a potential link between Kla-related lncRNAs and BC, providing innovative therapeutic guidelines for BC management.
Collapse
Affiliation(s)
- Feng Lin
- School of Clinical Medicine, Fujian Medical University, No. 1 Xuefu North Road, University New District, Fuzhou, 350122, Fujian, China
- Department of Breast Surgery, Affiliated Hospital of Putian University, Putian, 351100, Fujian Province, China
| | - Hang Li
- Department of Breast Surgery, Affiliated Hospital of Putian University, Putian, 351100, Fujian Province, China
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianlin Shen
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing, 100191, China
| | - Shunyi Huang
- Fudan University Shanghai Cancer Center Xiamen Hospital, Xiamen, China
| | - Yu Chen
- Department of Breast Surgery, Affiliated Hospital of Putian University, Putian, 351100, Fujian Province, China.
| |
Collapse
|
4
|
Arshi A, Mahmoudi E, Raeisi F, Dehghan Tezerjani M, Bahramian E, Ahmed Y, Peng C. Exploring potential roles of long non-coding RNAs in cancer immunotherapy: a comprehensive review. Front Immunol 2024; 15:1446937. [PMID: 39257589 PMCID: PMC11384988 DOI: 10.3389/fimmu.2024.1446937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Cancer treatment has long been fraught with challenges, including drug resistance, metastasis, and recurrence, making it one of the most difficult diseases to treat effectively. Traditional therapeutic approaches often fall short due to their inability to target cancer stem cells and the complex genetic and epigenetic landscape of tumors. In recent years, cancer immunotherapy has revolutionized the field, offering new hope and viable alternatives to conventional treatments. A particularly promising area of research focuses on non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), and their role in cancer resistance and the modulation of signaling pathways. To address these challenges, we performed a comprehensive review of recent studies on lncRNAs and their impact on cancer immunotherapy. Our review highlights the crucial roles that lncRNAs play in affecting both innate and adaptive immunity, thereby influencing the outcomes of cancer treatments. Key observations from our review indicate that lncRNAs can modify the tumor immune microenvironment, enhance immune cell infiltration, and regulate cytokine production, all of which contribute to tumor growth and resistance to therapies. These insights suggest that lncRNAs could serve as potential targets for precision medicine, opening up new avenues for developing more effective cancer immunotherapies. By compiling recent research on lncRNAs across various cancers, this review aims to shed light on their mechanisms within the tumor immune microenvironment.
Collapse
Affiliation(s)
- Asghar Arshi
- Department of Biology, York University, Toronto, ON, Canada
| | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Islamic Azad University, Shahrekord, Iran
| | | | - Masoud Dehghan Tezerjani
- Department of bioinformatics, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bahramian
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Yeasin Ahmed
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
5
|
Sweef O, Mahfouz R, Taşcıoğlu T, Albowaidey A, Abdelmonem M, Asfar M, Zaabout E, Corcino YL, Thomas V, Choi ES, Furuta S. Decoding LncRNA in COPD: Unveiling Prognostic and Diagnostic Power and Their Driving Role in Lung Cancer Progression. Int J Mol Sci 2024; 25:9001. [PMID: 39201688 PMCID: PMC11354875 DOI: 10.3390/ijms25169001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer represent formidable challenges in global health, characterized by intricate pathophysiological mechanisms and multifaceted disease progression. This comprehensive review integrates insights from diverse perspectives to elucidate the intricate roles of long non-coding RNAs (lncRNAs) in the pathogenesis of COPD and lung cancer, focusing on their diagnostic, prognostic, and therapeutic implications. In the context of COPD, dysregulated lncRNAs, such as NEAT1, TUG1, MALAT1, HOTAIR, and GAS5, emerge as pivotal regulators of genes involved in the disease pathogenesis and progression. Their identification, profiling, and correlation with the disease severity present promising avenues for prognostic and diagnostic applications, thereby shaping personalized disease interventions. These lncRNAs are also implicated in lung cancer, underscoring their multifaceted roles and therapeutic potential across both diseases. In the domain of lung cancer, lncRNAs play intricate modulatory roles in disease progression, offering avenues for innovative therapeutic approaches and prognostic indicators. LncRNA-mediated immune responses have been shown to drive lung cancer progression by modulating the tumor microenvironment, influencing immune cell infiltration, and altering cytokine production. Their dysregulation significantly contributes to tumor growth, metastasis, and chemo-resistance, thereby emphasizing their significance as therapeutic targets and prognostic markers. This review summarizes the transformative potential of lncRNA-based diagnostics and therapeutics for COPD and lung cancer, offering valuable insights into future research directions for clinical translation and therapeutic development.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Reda Mahfouz
- Core Laboratory, University Hospital Cleveland Medical Center, Department of Pathology, School of Medicine, Case Western Reserve University, 1100 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Clinical Pathology, Faculty of Medicine, Menofia University, Shebin-Elkom 32511, Egypt
| | - Tülin Taşcıoğlu
- Department of Molecular Biology and Genetics, Demiroglu Bilim University, Esentepe Central Campus, Besiktas, 34394 Istanbul, Turkey
| | - Ali Albowaidey
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Mohamed Abdelmonem
- Department of Pathology, Transfusion Medicine Service, Stanford Healthcare, Stanford, CA 94305, USA
| | - Malek Asfar
- Department of Pathology, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Elsayed Zaabout
- Department of Therapeutics & Pharmacology, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
| | - Yalitza Lopez Corcino
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Venetia Thomas
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Eun-Seok Choi
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| |
Collapse
|
6
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
7
|
Luo H, Jing H, Chen W. An extensive overview of the role of lncRNAs generated from immune cells in the etiology of cancer. Int Immunopharmacol 2024; 133:112063. [PMID: 38677091 DOI: 10.1016/j.intimp.2024.112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Long non-coding RNAs (lncRNAs) are involved in the control of critical tumor-suppressor and oncogenic pathways in cancer. These types of non-coding RNAs could affect both immune and cancer cells. The thorough analysis of lncRNAs derived from immune cells and the incorporation of new findings significantly advance our understanding of the complex role of lncRNAs in the context of cancer. This work highlights the promise of lncRNAs for translational therapeutic approaches while also establishing a solid foundation for comprehending the complex link between lncRNAs and cancer through a coherent narrative. The main findings of this article are that types of lncRNAs derived from immune cells, such as MM2P and MALAT1, can affect the behaviors of cancer cells, like invasion, angiogenesis, and proliferation. As research in this area grows, the therapeutic potential of targeting these lncRNAs offers promising opportunities for expanding our understanding of cancer biology and developing cutting-edge, precision-based therapies for cancer therapy.
Collapse
Affiliation(s)
- Hong Luo
- Department of Oncology, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu Province, China.
| | - Hailiang Jing
- Department of Integrative Medicine, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu Province, China
| | - Wei Chen
- Department of Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
8
|
Yin C, Liufu C, Zhu T, Ye S, Jiang J, Wang M, Wang Y, Shi B. Bladder Cancer in Exosomal Perspective: Unraveling New Regulatory Mechanisms. Int J Nanomedicine 2024; 19:3677-3695. [PMID: 38681092 PMCID: PMC11048230 DOI: 10.2147/ijn.s458397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024] Open
Abstract
Bladder cancer, a prevalent malignant neoplasm of the urinary tract, exhibits escalating morbidity and mortality rates. Current diagnosis standards rely on invasive and costly cystoscopy and histopathology, underscoring the urgency for non-invasive, high-throughput, and cost-effective novel diagnostic techniques to ensure timely detection and standardized treatment. Recent years have witnessed the rise of exosome research in bladder cancer studies. Exosomes contain abundant bioactive molecules that can help elucidate the intricate mechanisms underlying bladder cancer pathogenesis and metastasis. Exosomes hold potential as biomarkers for early bladder cancer diagnosis while also serving as targeted drug delivery vehicles to enhance treatment efficacy and mitigate adverse effects. Furthermore, exosome analyses offer insights into the complex molecular signaling networks implicated in bladder cancer progression, revealing novel therapeutic targets. This review provides a comprehensive overview of prevalent exosome isolation techniques and highlights the promising clinical utility of exosomes in both diagnostic and therapeutic applications in bladder cancer management.
Collapse
Affiliation(s)
- Cong Yin
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| | - Cen Liufu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
- Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Tao Zhu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
- Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Shuai Ye
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| | - Jiahao Jiang
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Clinical College of Anhui Medical University, Shenzhen, People’s Republic of China
| | - Mingxia Wang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
| | - Yan Wang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
| | - Bentao Shi
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
9
|
Tian W, Tan S, Wang J, Shen P, Qin Q, Zi D. Immune-related LncRNAs scores predicts chemotherapeutic responses and prognosis in cervical cancer patients. Discov Oncol 2024; 15:119. [PMID: 38615287 PMCID: PMC11016529 DOI: 10.1007/s12672-024-00979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) regulating the immune microenvironment of cancer is a hot spot. But little is known about the influence of the immune-related lncRNA (IRlncRs) on the chemotherapeutic responses and prognosis of cervical cancer (CC) patients. The purpose of the study was to identify an immune-related lncRNAs (IRlncRs)-based model for the prospective prediction of clinical outcomes in CC patients. METHODS CC patients' relevant data was acquired from The Cancer Genome Atlas (TCGA). Correlation analysis and Cox regression analyses were applied. A risk score formula was formulated. Prognostic factors were combined into a nomogram, while sensitivity for chemotherapy drugs was analyzed using the OncoPredict algorithm. RESULTS Eight optimal IRlncRs(ATP2A1-AS1, LINC01943, AL158166.1, LINC00963, AC009065.8, LIPE-AS1, AC105277.1, AC098613.1.) were incorporated in the IRlncRs model. The overall survival (OS) of the high-risk group of the model was inferior to those in the low-risk group. Further analysis demonstrated this eight-IRlncRs model as a useful prognostic marker. The Nomogram had a concordance index of survival prediction of 0.763(95% CI 0.746-0.780) and more robust predictive accuracy. Furthermore, patients in the low-risk group were found to be more sensitive to chemotherapy, including Paclitaxel, Rapamycin, Epirubicin, Vincristine, Docetaxel and Vinorelbine. CONCLUSIONS An eight-IRlncRs-based prediction model was identified that has the potential to be an important tool to predict chemotherapeutic responses and prognosis for CC patients.
Collapse
Affiliation(s)
- Weijie Tian
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Songsong Tan
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Jun Wang
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Ping Shen
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Qingfen Qin
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China.
| | - Dan Zi
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
10
|
Zhang L, Li Y, Cai B, Chen J, Zhao K, Li M, Lang J, Wang K, Pan S, Zhu K. A Notch signaling-related lncRNA signature for predicting prognosis and therapeutic response in clear cell renal cell carcinoma. Sci Rep 2023; 13:21141. [PMID: 38036719 PMCID: PMC10689792 DOI: 10.1038/s41598-023-48596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Increasing evidence has confirmed the vital role of Notch signaling in the tumorigenesis of clear cell renal cell carcinoma (ccRCC). The underlying function of long non-coding RNA (lncRNA) related to Notch signaling in ccRCC remains unclear. In present study, the prognostic value and therapeutic strategy of Notch signaling-related lncRNA are comprehensively explored in ccRCC. In total, we acquired 1422 NSRlncRNAs, of which 41 lncRNAs were identified the key NSRlncRNAs associated with the occurrence of ccRCC. The prognostic signature containing five NSRlncRNAs (AC092611.2, NNT-AS1, AGAP2-AS1, AC147651.3, and AC007406.3) was established and validated, and the ccRCC patients were clustered into the high- and low-risk groups. The overall survival of patients in the low-risk group were much more favorable than those in the high-risk group. Multivariate Cox regression analysis indicated that the risk score was an independent prognostic biomarker. Based on the risk score and clinical variables, a nomogram for predicting prognosis of ccRCC patients was constructed, and the calibration curves and DCA curves showed the superior predictive ability of nomogram. The risk score was correlated with immune cell infiltration, targeted therapy or chemotherapy sensitivity, and multiple oncogenic pathways. Additionally, consensus clustering analysis stratified the ccRCC patients into four clusters with obvious different outcomes, immune microenvironments, and expression of immune checkpoints. The constructed NSRlncRNA-based signature might serve as a potential biomarker for predicting prognosis and response to immunotherapy or targeted therapy in patients with ccRCC.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Medical Research Center, Shaoxing People's Hospital, No.568, Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Yulei Li
- Department of Urology, Shaoxing People's Hospital, No.568, Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Bin Cai
- Shaoxing People's Hospital, No.568, Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Jiajun Chen
- Department of Urology, Shaoxing People's Hospital, No.568, Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Keyuan Zhao
- Department of Urology, Shaoxing People's Hospital, No.568, Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Mengyao Li
- Department of Pathology, Shaoxing People's Hospital, No.568, Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Juan Lang
- Department of Pathology, Shaoxing People's Hospital, No.568, Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Kaifang Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Shouhua Pan
- Department of Urology, Shaoxing People's Hospital, No.568, Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China.
| | - Ke Zhu
- Nanchang People's Hospital, No.1268 Jiuzhou Street, Xihu District, Nanchang City, China.
| |
Collapse
|
11
|
Zhang M, Zuo Y, Guo J, Yang L, Wang Y, Tan M, Guo X. A novel signature for predicting prognosis and immune landscape in cutaneous melanoma based on anoikis-related long non-coding RNAs. Sci Rep 2023; 13:16332. [PMID: 37770477 PMCID: PMC10539372 DOI: 10.1038/s41598-023-39837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/31/2023] [Indexed: 09/30/2023] Open
Abstract
Anoikis is a unique form of apoptosis associated with vascularization and distant metastasis in cancer. Eliminating anoikis resistance in tumor cells could be a promising target for improving the prognosis of terminal cancer patients. However, current studies have not elaborated on the prognosis effect of anoikis-related long non-coding RNAs (lncRNAs) in cutaneous melanoma. Pre-processed data, including RNA sequences and clinical information, were retrieved from TCGA and GTEx databases. After a series of statistical analyses, anoikis-related lncRNAs with prognostic significance were identified, and a unique risk signature was constructed. Risk scores were further analyzed in relation to the tumor microenvironment, tumor immune dysfunction and exclusion, immune checkpoint genes, and RNA methylation genes. The indicators were also used to predict the potentially sensitive anti-cancer drugs. An anoikis-related lncRNAs risk signature consisting of LINC01711, POLH-AS1, MIR205HG, and LINC02416 was successfully established in cutaneous melanoma. Overall survival and progression-free survival of patients were strongly linked with the risk score, independently of other clinical factors. The low-risk group exhibited a more beneficial immunological profile, was less affected by RNA methylation, and was more sensitive to the majority of anti-cancer drugs, all of which indicated a better prognostic outcome. The 4 hub lncRNAs may be fundamental to studying the mechanism of anoikis in cutaneous melanoma and provide personalized therapy for salvaging drug resistance.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuzhi Zuo
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Guo
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lushan Yang
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yizhi Wang
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Meiyun Tan
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Xing Guo
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Center of Ambulatory Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
12
|
González‐Moro I, Garcia‐Etxebarria K, Mendoza LM, Fernández‐Jiménez N, Mentxaka J, Olazagoitia‐Garmendia A, Arroyo MN, Sawatani T, Moreno‐Castro C, Vinci C, Op de Beek A, Cnop M, Igoillo‐Esteve M, Santin I. LncRNA ARGI Contributes to Virus-Induced Pancreatic β Cell Inflammation Through Transcriptional Activation of IFN-Stimulated Genes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300063. [PMID: 37382191 PMCID: PMC10477904 DOI: 10.1002/advs.202300063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/30/2023] [Indexed: 06/30/2023]
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disease that develops in genetically susceptible individuals. Most T1D-associated single nucleotide polymorphisms (SNPs) are located in non-coding regions of the human genome. Interestingly, SNPs in long non-coding RNAs (lncRNAs) may result in the disruption of their secondary structure, affecting their function, and in turn, the expression of potentially pathogenic pathways. In the present work, the function of a virus-induced T1D-associated lncRNA named ARGI (Antiviral Response Gene Inducer) is characterized. Upon a viral insult, ARGI is upregulated in the nuclei of pancreatic β cells and binds to CTCF to interact with the promoter and enhancer regions of IFNβ and interferon-stimulated genes, promoting their transcriptional activation in an allele-specific manner. The presence of the T1D risk allele in ARGI induces a change in its secondary structure. Interestingly, the T1D risk genotype induces hyperactivation of type I IFN response in pancreatic β cells, an expression signature that is present in the pancreas of T1D patients. These data shed light on the molecular mechanisms by which T1D-related SNPs in lncRNAs influence pathogenesis at the pancreatic β cell level and opens the door for the development of therapeutic strategies based on lncRNA modulation to delay or avoid pancreatic β cell inflammation in T1D.
Collapse
Affiliation(s)
- Itziar González‐Moro
- Department of Biochemistry and Molecular BiologyUniversity of the Basque CountryLeioa48940Spain
- Biocruces Bizkaia Health Research InstituteBarakaldo48903Spain
| | - Koldo Garcia‐Etxebarria
- Biodonostia Health Research InstituteGastrointestinal Genetics GroupSan Sebastián20014Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Barcelona08036Spain
| | - Luis Manuel Mendoza
- Department of Biochemistry and Molecular BiologyUniversity of the Basque CountryLeioa48940Spain
| | - Nora Fernández‐Jiménez
- Biocruces Bizkaia Health Research InstituteBarakaldo48903Spain
- Department of GeneticsPhysical Anthropology and Animal PhysiologyUniversity of the Basque CountryLeioa48940Spain
| | - Jon Mentxaka
- Department of Biochemistry and Molecular BiologyUniversity of the Basque CountryLeioa48940Spain
- Biocruces Bizkaia Health Research InstituteBarakaldo48903Spain
| | - Ane Olazagoitia‐Garmendia
- Department of Biochemistry and Molecular BiologyUniversity of the Basque CountryLeioa48940Spain
- Biocruces Bizkaia Health Research InstituteBarakaldo48903Spain
| | - María Nicol Arroyo
- ULB Center for Diabetes ResearchUniversité Libre de BruxellesBrussels1070Belgium
| | - Toshiaki Sawatani
- ULB Center for Diabetes ResearchUniversité Libre de BruxellesBrussels1070Belgium
| | | | - Chiara Vinci
- ULB Center for Diabetes ResearchUniversité Libre de BruxellesBrussels1070Belgium
| | - Anne Op de Beek
- ULB Center for Diabetes ResearchUniversité Libre de BruxellesBrussels1070Belgium
| | - Miriam Cnop
- ULB Center for Diabetes ResearchUniversité Libre de BruxellesBrussels1070Belgium
- Division of EndocrinologyErasmus HospitalUniversité Libre de BruxellesBrussels1070Belgium
| | | | - Izortze Santin
- Department of Biochemistry and Molecular BiologyUniversity of the Basque CountryLeioa48940Spain
- Biocruces Bizkaia Health Research InstituteBarakaldo48903Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadrid28029Spain
| |
Collapse
|
13
|
Hu P, Wang Y, Chen X, Zhao L, Qi C, Jiang G. Development and verification of a newly established cuproptosis-associated lncRNA model for predicting overall survival in uterine corpus endometrial carcinoma. Transl Cancer Res 2023; 12:1963-1979. [PMID: 37701111 PMCID: PMC10493807 DOI: 10.21037/tcr-23-61] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/01/2023] [Indexed: 09/14/2023]
Abstract
Background Uterine corpus endometrial carcinoma (UCEC) is a prevalent gynecologic malignant tumor with high recurrence and mortality rates. This study aimed to develop and validate a prognostic model for patients with UCEC based on cuproptosis-related long non-coding RNA (lncRNA) signature. Methods Transcriptome and clinical UCEC data were obtained from The Cancer Genome Atlas (TCGA) database. Correlation analysis was conducted to screen out the cuproptosis-related lncRNAs, and univariate regression analysis was performed to determine prognostic factors associated with overall survival (OS). A cuproptosis-related lncRNA risk model was constructed through least absolute shrinkage and selection operator (LASSO) regression and cross-validation. The accuracy and reliability of the model were verified through Kaplan-Meier (KM), proportional hazards model (Cox) regression, nomogram, principal component analysis (PCA), and stage analysis. Gene Ontology (GO) enrichment, immune function, and tumor mutation burden (TMB) analyses were conducted between low-risk and high-risk groups, and antineoplastic drugs were predicted. Results By correlation analysis, 155 cuproptosis-related lncRNAs were acquired, and 9 lncRNAs were identified as independent prognostic factors. A 6-cuproptosis-related lncRNA model was established. The results revealed that patients in the high-risk group were more inclined to have a poor OS than those in the low-risk group. Risk score was an independent prognostic factor and had a high accuracy and predictive value. The extracellular structure and anchored components of membrane-related GO terms were significantly enriched. Immune function and TMB results were assumed to be different from each other, which might explain a better outcome in the low-risk group than that in the high-risk group. Eighteen compounds were predicted as chemotherapy drugs with high half maximal inhibitory concentration (IC50) in the high-risk group. Conclusions We successfully developed a cuproptosis-related lncRNA risk model for the prediction of prognosis, while simultaneously providing insights on new approaches for immunotherapy and chemotherapy for patients with UCEC.
Collapse
Affiliation(s)
- Panwei Hu
- Department of Gynaecology and Obstetrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongxiang Wang
- Department of Gynaecology and Obstetrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiuhui Chen
- Department of Gynaecology and Obstetrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijie Zhao
- Department of Gynaecology and Obstetrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cong Qi
- Department of Gynaecology and Obstetrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guojing Jiang
- Department of Gynaecology and Obstetrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Zhang M, Yang L, Wang Y, Zuo Y, Chen D, Guo X. Comprehensive prediction of immune microenvironment and hot and cold tumor differentiation in cutaneous melanoma based on necroptosis-related lncRNA. Sci Rep 2023; 13:7299. [PMID: 37147395 PMCID: PMC10163022 DOI: 10.1038/s41598-023-34238-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
As per research, causing cancer cells to necroptosis might be used as a therapy to combat cancer drug susceptibility. Long non-coding RNA (lncRNA) modulates the necroptosis process in Skin Cutaneous Melanoma (SKCM), even though the precise mechanism by which it does so has yet been unknown. RNA sequencing and clinical evidence of SKCM patients were accessed from The Cancer Genome Atlas database, and normal skin tissue sequencing data was available from the Genotype-Tissue Expression database. Person correlation analysis, differential screening, and univariate Cox regression were successively utilized to identify necroptosis-related hub lncRNAs. Following this, we adopt the least absolute shrinkage and selection operator regression analysis to construct a risk model. The model was evaluated on various clinical characteristics using many integrated approaches to ensure it generated accurate predictions. Through risk score comparisons and consistent cluster analysis, SKCM patients were sorted either high-risk or low-risk subgroups as well as distinct clusters. Finally, the effect of immune microenvironment, m7G methylation, and viable anti-cancer drugs in risk groups and potential clusters was evaluated in further detail. Included USP30-AS1, LINC01711, LINC00520, NRIR, BASP1-AS1, and LINC02178, the 6 necroptosis-related hub lncRNAs were utilized to construct a novel prediction model with excellent accuracy and sensitivity, which was not influenced by confounding clinical factors. Immune-related, necroptosis, and apoptosis pathways were enhanced in the model structure, as shown by Gene Set Enrichment Analysis findings. TME score, immune factors, immune checkpoint-related genes, m7G methylation-related genes, and anti-cancer drug sensitivity differed significantly between the high-risk and low-risk groups. Cluster 2 was identified as a hot tumor with a better immune response and therapeutic effect. Our study may provide potential biomarkers for predicting prognosis in SKCM and provide personalized clinical therapy for patients based on hot and cold tumor classification.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lushan Yang
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yizhi Wang
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuzhi Zuo
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Dengdeng Chen
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xing Guo
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
15
|
Han C, Qi Y, She Y, Zhang M, Xie H, Zhang J, Zhao Z, Peng C, Liu Y, Lin Y, Wang J, Zeng D. Long noncoding RNA SENCR facilitates the progression of acute myeloid leukemia through the miR-4731-5p/IRF2 pathway. Pathol Res Pract 2023; 245:154483. [PMID: 37120908 DOI: 10.1016/j.prp.2023.154483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a type of hematological tumor caused by malignant clone hematopoietic stem cells. The relationship between lncRNAs and tumor occurrence and progression has been gaining attention. Research has shown that Smooth muscle and endothelial cell-enriched migration/differentiation-associated lncRNA (SENCR) is abnormally expressed in various diseases, whereas its role in AML is still poorly understood. METHODS The expression of SENCR, microRNA-4731-5p (miR-4731-5p) and Interferon regulatory factor 2 (IRF2) were measured using qRT-PCR. The proliferation, cycle and apoptosis of AML cells with or without knockdown of SENCR were detected by CCK-8 assay, EdU assay, flow cytometry, western blotting and TUNEL assay, respectively. Consistently, SENCR knockdown was impaired the AML progression in immunodeficient mice. In addition, the binding of miR-4731-5p to SENCR or IRF2 was confirmed by luciferase reporter genes assay. Finally, rescue experiments were conducted to confirm the role of SENCR/miR-4731-5p/IRF2 axis in AML. RESULTS SENCR is highly expressed in AML patients and cell lines. The patients with high SENCR expression had poorer prognosis compared with those with low SENCR expression. Interestingly, knockdown of SENCR inhibits the growth of AML cells. Further results demonstrated that the reduction of SENCR slows the progression of AML in vivo. SENCR could function as a competing endogenous RNA (ceRNA) to negatively regulate miR-4731-5p in AML cells. Furthermore, IRF2 was validated as a direct target gene of miR-4731-5p in AML cells. CONCLUSIONS Our findings underscore the important role of SENCR in regulating the malignant phenotype of AML cells by targeting the miR-4731-5p/IRF2 axis.
Collapse
Affiliation(s)
- Changhao Han
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yan Qi
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yuanting She
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Meijuan Zhang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Huan Xie
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Jing Zhang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Zhongyue Zhao
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Cuicui Peng
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yu Liu
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yizhang Lin
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Jin Wang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Dongfeng Zeng
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China.
| |
Collapse
|
16
|
Identification of cuproptosis-related long noncoding RNA signature for predicting prognosis and immunotherapy response in bladder cancer. Sci Rep 2022; 12:21386. [PMID: 36496537 PMCID: PMC9741610 DOI: 10.1038/s41598-022-25998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Bladder cancer (BC) is the most common malignant tumour of the urinary system and one of the leading causes of cancer-related death. Cuproptosis is a novel form of programmed cell death, and its mechanism in tumours remains unclear. This study aimed to establish the prognostic signatures of cuproptosis-related lncRNAs and determine their clinical prognostic value. RNA sequencing data from The Cancer Genome Atlas were used to detect the expression levels of cuproptosis-related genes in BC. Cuproptosis-related lncRNAs linked to survival were identified using co-expression and univariate Cox regression. Furthermore, consensus cluster analysis divided the lncRNAs into two subtypes. Subsequently, we established a signature model consisting of seven cuproptosis-related lncRNAs (AC073534.2, AC021321.1, HYI-AS1, PPP1R26-AS1, AC010328.1, AC012568.1 and MIR4435-2Hg) using least absolute shrinkage and selection operator regression. Survival analysis based on risk score showed that the overall survival and progression-free survival of patients in the high-risk group were worse than those in the low-risk group. Multivariate Cox analysis demonstrated the independent prognostic potential of this signature model for patients with BC. Moreover, age and clinical stage were also significantly correlated with prognosis. The constructed nomogram plots revealed good predictive power for the prognosis of patients with BC and were validated using calibration plots. Additionally, enrichment analysis, Single sample gene set enrichment analysis and immune infiltration abundance analysis revealed significant differences in immune infiltration between the two risk groups, with high levels of immune cell subset infiltrations observed in the high-risk group accompanied by various immune pathway activation. Moreover, almost all the immune checkpoint genes showed high expression levels in the high-risk group. Moreover, TIDE analysis suggested that the high-risk group was more responsive to immunotherapy. Finally, eight drugs with low IC50 values were screened, which may prove to be beneficial for patients in the high-risk group.
Collapse
|
17
|
LINC00472 inhibits cell migration by enhancing intercellular adhesion and regulates H3K27ac level via interacting with P300 in renal clear cell carcinoma. Cell Death Dis 2022; 8:454. [PMID: 36371410 PMCID: PMC9653443 DOI: 10.1038/s41420-022-01243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/14/2022]
Abstract
Renal clear cell carcinoma (RCCC) is the most common type of renal cell carcinoma, which is also difficult to diagnose and easy to metastasize. Currently, there is still a lack of effective clinical diagnostic indicators and treatment targets. This study aims to find effective diagnostic markers and therapeutic targets from the perspective of noncoding RNA. In this study, we found that the expression of Long noncoding RNA LINC00472 was significantly decreased in RCCC and showed a downward trend with the progression of cancer stage. Patients with low LINC00472 expression have poor prognosis. Inhibition of LINC00472 significantly increased cell proliferation and migration, while overexpression of LINC00472 obviously inhibited cell proliferation and enhanced intercellular adhesion. Transcriptome sequencing analysis demonstrated that LINC00472 was highly correlated with extracellular matrix and cell metastasis-related pathways, and the consistent results were obtained by The Cancer Genome Atlas (TCGA) data analysis. Additionally, we discovered that the integrin family protein ITGB8 is a potential target gene of LINC00472. Mechanistically, we found that the change of LINC00472 affected the acetylation level of H3K27 site in cells, and we speculate that this effect is likely to be generated through the interaction with acetyltransferase P300. In conclusion, LINC00472 has an important impact on the proliferation and metastasis of renal clear cells, and probably participate in the regulation of histone modification, and it may be used as a potential diagnostic marker of RCCC.
Collapse
|
18
|
Lv W, Tan Y, Zhou X, Zhang Q, Zhang J, Wu Y. Landscape of prognosis and immunotherapy responsiveness under tumor glycosylation-related lncRNA patterns in breast cancer. Front Immunol 2022; 13:989928. [PMID: 36189319 PMCID: PMC9520571 DOI: 10.3389/fimmu.2022.989928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant glycosylation, a post-translational modification of proteins, is regarded to engage in tumorigenesis and malignant progression of breast cancer (BC). The altered expression of glycosyltransferases causes abnormal glycan biosynthesis changes, which can serve as diagnostic hallmarks in BC. This study attempts to establish a predictive signature based on glycosyltransferase-related lncRNAs (GT-lncRNAs) in BC prognosis and response to immune checkpoint inhibitors (ICIs) treatment. We firstly screened out characterized glycosyltransferase-related genes (GTGs) through NMF and WGCNA analysis and identified GT-lncRNAs through co-expression analysis. By using the coefficients of 8 GT-lncRNAs, a risk score was calculated and its median value divided BC patients into high- and low-risk groups. The analyses unraveled that patients in the high-risk group had shorter survival and the risk score was an independent predictor of BC prognosis. Besides, the predictive efficacy of our risk score was higher than other published models. Moreover, ESTIMATE analysis, immunophenoscore (IPS), and SubMAP analysis showed that the risk score could stratify patients with distinct immune infiltration, and patients in the high-risk group might benefit more from ICIs treatment. Finally, the vitro assay showed that MIR4435-2HG might promote the proliferation and migration of BC cells, facilitate the polarization of M1 into M2 macrophages, enhance the migration of macrophages and increase the PD-1/PD-L1/CTLA4 expression. Collectively, our well-constructed prognostic signature with GT-lncRNAs had the ability to identify two subtypes with different survival state and responses to immune therapy, which will provide reliable tools for predicting BC outcomes and making rational follow-up strategies.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomei Zhou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qi Zhang, ; Jun Zhang, ; Yiping Wu,
| | - Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
- *Correspondence: Qi Zhang, ; Jun Zhang, ; Yiping Wu,
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qi Zhang, ; Jun Zhang, ; Yiping Wu,
| |
Collapse
|
19
|
Chen J, Sun M, Huang L, Fang Y. The Long noncoding RNA LINC00200 Promotes the Malignant Progression of MYCN-Amplified Neuroblastoma via Binding to Insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) to Enhance the Stability of of Zic family member 2 (ZIC2) mRNA. Pathol Res Pract 2022; 237:154059. [DOI: 10.1016/j.prp.2022.154059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 12/09/2022]
|
20
|
Dysregulated Immune and Metabolic Microenvironment Is Associated with the Post-Operative Relapse in Stage I Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14133061. [PMID: 35804832 PMCID: PMC9265031 DOI: 10.3390/cancers14133061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The underlying mechanism of post-operative relapse of non-small cell lung cancer (NSCLC) remained poorly understood. This study highlights that both tumors and adjacent tissues from stage I NSCLC with relapse show a dysregulated immune and metabolic environment. Immune response shifts from an active state in primary tumors to a suppressive state in recurrent tumors. A model based on the enriched biological features in the primary tumors with relapse could effectively predict recurrence for stage I NSCLC. These results provide insights into the underpinning of the post-operative relapse and suggest that identifying NSCLC patients with a high risk of relapse could help the clinical decision of applying appropriate therapeutic interventions. Abstract The underlying mechanism of post-operative relapse of non-small cell lung cancer (NSCLC) remains poorly understood. We enrolled 57 stage I NSCLC patients with or without relapse and performed whole-exome sequencing (WES) and RNA sequencing (RNA-seq) on available primary and recurrent tumors, as well as on matched tumor-adjacent tissues (TATs). The WES analysis revealed that primary tumors from patients with relapse were enriched with USH2A mutation and 2q31.1 amplification. RNA-seq data showed that the relapse risk was associated with aberrant immune response and metabolism in the microenvironment of primary lesions. TATs from the patients with relapse showed an immunosuppression state. Moreover, recurrent lesions exhibited downregulated immune response compared with their paired primary tumors. Genomic and transcriptomic features were further subjected to build a prediction model classifying patients into groups with different relapse risks. We show that the recurrence risk of stage I NSCLC could be ascribed to the altered immune and metabolic microenvironment. TATs might be affected by cancer cells and facilitate the invasion of tumors. The immune microenvironment in the recurrent lesions is suppressed. Patients with a high risk of relapse need active post-operative intervention.
Collapse
|
21
|
Xue Q, Wang Y, Zheng Q, Chen L, Jin Y, Shen X, Li Y. Construction of a prognostic immune-related lncRNA model and identification of the immune microenvironment in middle- or advanced-stage lung squamous carcinoma patients. Heliyon 2022; 8:e09521. [PMID: 35663751 PMCID: PMC9157204 DOI: 10.1016/j.heliyon.2022.e09521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Qianqian Xue
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Yue Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Qiang Zheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Lijun Chen
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Yan Jin
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Xuxia Shen
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Yuan Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Corresponding author.
| |
Collapse
|
22
|
Shan DD, Zheng QX, Wang J, Chen Z. Small nucleolar RNA host gene 3 functions as a novel biomarker in liver cancer and other tumour progression. World J Gastroenterol 2022; 28:1641-1655. [PMID: 35581965 PMCID: PMC9048787 DOI: 10.3748/wjg.v28.i16.1641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer has become the most life-threatening disease in the world. Mutations in and aberrant expression of genes encoding proteins and mutations in noncoding RNAs, especially long noncoding RNAs (lncRNAs), have significant effects in human cancers. LncRNAs have no protein-coding ability but function extensively in numerous physiological and pathological processes. Small nucleolar RNA host gene 3 (SNHG3) is a novel lncRNA and has been reported to be differentially expressed in various tumors, such as liver cancer, gastric cancer, and glioma. However, the interaction mechanisms for the regulation between SNHG3 and tumor progression are poorly understood. In this review, we summarize the results of SNHG3 studies in humans, animal models, and cells to underline the expression and role of SNHG3 in cancer. SNHG3 expression is upregulated in most tumors and is detrimental to patient prognosis. SNHG3 expression in lung adenocarcinoma remains controversial. Concurrently, SNHG3 affects oncogenes and tumor suppressor genes through various mechanisms, including competing endogenous RNA effects. A deeper understanding of the contribution of SNHG3 in clinical applications and tumor development may provide a new target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dan-Dan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qiu-Xian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
23
|
Chen D, Wang M, Jiang X, Xiong Z. Comprehensive analysis of ZFPM2-AS1 prognostic value, immune microenvironment, drug sensitivity, and co-expression network: from gastric adenocarcinoma to pan-cancers. Discov Oncol 2022; 13:24. [PMID: 35416526 PMCID: PMC9008104 DOI: 10.1007/s12672-022-00487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/07/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND ZFPM2-AS1, as an oncogenic lncRNA, plays an essential role in the progression of several tumors. However, the prognostic significance, biological function, and molecular mechanism of ZFPM2-AS1 in most tumors have not been fully elucidated. METHODS We analyzed differentially expressed immune-related lncRNAs (IRlncRNAs) and clustered gastric adenocarcinoma (GAC) samples based on these lncRNAs expression. Then, WGCNA and survival analysis were performed to determine key IRlncRNA (ZFPM2-AS1) in GAC. The comprehensive analysis was performed to evaluate the association between ZFPM2-AS1 expression and survival, tumor microenvironment (TME), immune-related factors, and related signal pathways in pan-cancers. Furthermore, we constructed a co-expression network of ZFPM2-AS1, and NUP107 and C8orf76 were identified as target mRNAs. We further evaluated the role of NUP107 and C8orf76 in the GAC microenvironment. More importantly, real-time polymerase chain reaction (qRT-PCR) was employed to validate ZFPM2-AS1, NUP107 and C8orf76 expression. RESULTS ZFPM2-AS1 was remarkably overexpressed and correlated with poor overall survival in most tumors. Further analysis showed that ZFPM2-AS1 was related to various immune cells infiltrated in the microenvironment of most tumors. GSEA revealed that ZFPM2-AS1 in GAC was primarily involved in immune-related pathways. Furthermore, NUP107 and C8orf76 were identified as potential target mRNAs of ZFPM2-AS1, which was related to infiltrating immune cells in the GAC microenvironment. qRT-PCR verified that ZFPM2-AS, NUP107 and C8orf76 were highly expressed in gastric cancer cells. CONCLUSION ZFPM2-AS1 could be a potential biomarker for cancer prognosis, and a promising immune target for cancer therapy. Furthermore, ZFPM2-AS1 might play an immunosuppressive role in the GAC microenvironment.
Collapse
Affiliation(s)
- Di Chen
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430061, China
| | - Mengmeng Wang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430061, China
| | - Xin Jiang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430061, China
| | - Zhifan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430061, China.
| |
Collapse
|
24
|
Xu Y, Yu X, Sun Z, He Y, Guo W. Roles of lncRNAs Mediating Wnt/β-Catenin Signaling in HCC. Front Oncol 2022; 12:831366. [PMID: 35356220 PMCID: PMC8959654 DOI: 10.3389/fonc.2022.831366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is considered the second most deadly cancer worldwide. Due to the absence of early diagnostic markers and effective therapeutic approaches, distant metastasis and increasing recurrence rates are major difficulties in the clinical treatment of HCC. Further understanding of its pathogenesis has become an urgent goal in HCC research. Recently, abnormal expression of long noncoding RNAs (lncRNAs) was identified as a vital regulator involved in the initiation and development of HCC. Activation of the Wnt/β-catenin pathway has been reported to obviously impact cell proliferation, invasion, and migration of HCC. This article reviews specific interactions, significant mechanisms and molecules related to HCC initiation and progression to provide promising strategies for treatment.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| |
Collapse
|
25
|
Dong M, Liu Q, Xu Y, Zhang Q. Extracellular Vesicles: The Landscape in the Progression, Diagnosis, and Treatment of Triple-Negative Breast Cancer. Front Cell Dev Biol 2022; 10:842898. [PMID: 35300426 PMCID: PMC8920975 DOI: 10.3389/fcell.2022.842898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancer (BC) with diverse biological behavior, high aggressiveness, and poor prognosis. Extracellular vesicles (EVs) are nano-sized membrane-bound vesicles secreted by nearly all cells, and are involved in physiological and pathological processes. EVs deliver multiple functional cargos into the extracellular space, including proteins, lipids, mRNAs, non-coding RNAs (ncRNAs), and DNA fragments. Emerging evidence confirms that EVs enable pro-oncogenic secretome delivering and trafficking for long-distance cell-to-cell communication in shaping the tumor microenvironment (TME). The transferred tumor-derived EVs modify the capability of invasive behavior and organ-specific metastasis in recipient cells. In addition, TNBC cell-derived EVs have been extensively investigated due to their promising potential as valuable biomarkers for diagnosis, monitoring, and treatment evaluation. Here, the present review will discuss the recent progress of EVs in TNBC growth, metastasis, immune regulation, as well as the potential in TNBC diagnosis and treatment application, hoping to decipher the advantages and challenges of EVs for combating TNBC.
Collapse
Affiliation(s)
- Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Liu
- Department of Thyroid and Breast Surgery, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Yi Xu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Li L, Li Z, Qu J, Wei X, Suo F, Xu J, Liu X, Chen C, Zheng S. Novel long non‐coding RNA CYB561‐5 promotes aerobic glycolysis and tumorigenesis by interacting with basigin in non‐small cell lung cancer. J Cell Mol Med 2022; 26:1402-1412. [PMID: 35064752 PMCID: PMC8899181 DOI: 10.1111/jcmm.17057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Abnormally expressed long non‐coding RNAs (lncRNAs) have been recognized as potential diagnostic biomarkers or therapeutic targets in non‐small cell lung cancer (NSCLC). The role of the novel lnc‐CYB561‐5 in NSCLC and its specific biological activity remain unknown. In this study, lncRNAs highly expressed in NSCLC tissue samples compared with paired adjacent normal tissue samples and atypical adenomatous hyperplasia were identified by RNA‐seq analysis. Lnc‐CYB561‐5 is highly expressed in human NSCLC and is associated with a poor prognosis in lung adenocarcinoma. In vivo, downregulation of lnc‐CYB561‐5 significantly decreases tumour growth and metastasis. In vitro, lnc‐CYB561‐5 knockdown treatment inhibits cell migration, invasion and proliferation ability, as well as glycolysis rates. In addition, RNA pulldown and RNA immunoprecipitation (RIP) assays show that basigin (Bsg) protein interacts with lnc‐CYB561‐5. Overall, this study demonstrates that lnc‐CYB561‐5 is an oncogene in NSCLC, which is involved in the regulation of cell proliferation and metastasis. Lnc‐CYB561‐5 interacts with Bsg to promote the expression of Hk2 and Pfk1 and further lead to metabolic reprogramming of NSCLC cells.
Collapse
Affiliation(s)
- Longfei Li
- Department of Thoracic Surgery The First Affiliated Hospital of Soochow University Suzhou China
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Zhimin Li
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Jingming Qu
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Xiangju Wei
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Feng Suo
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Jilei Xu
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Xiucheng Liu
- Department of Thoracic Surgery Shanghai Pulmonary HospitalTongji University School of Medicine Shanghai China
| | - Chang Chen
- Department of Thoracic Surgery Shanghai Pulmonary HospitalTongji University School of Medicine Shanghai China
| | - Shiying Zheng
- Department of Thoracic Surgery The First Affiliated Hospital of Soochow University Suzhou China
| |
Collapse
|
27
|
Liu Q. The Emerging Landscape of Long Non-Coding RNAs in Wilms Tumor. Front Oncol 2022; 11:780925. [PMID: 35127486 PMCID: PMC8807488 DOI: 10.3389/fonc.2021.780925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Long noncoding RNAs (LncRNAs) are transcripts of nucleic acid sequences with a length of more than 200 bp, which have only partial coding capabilities. Recent studies have shown that lncRNAs located in the nucleus or cytoplasm can be used as gene expression regulatory elements due to their important regulatory effects in a variety of biological processes. Wilms tumor (WT) is a common abdominal tumor in children whose pathogenesis remains unclear. In recent years, many specifically expressed lncRNAs have been found in WT, which affect the occurrence and development of WT. At the same time, lncRNAs may have the capacity to become novel biomarkers for the diagnosis and prognosis of WT. This article reviews related research progress on the relationship between lncRNAs and WT, to provide a new direction for clinical diagnosis and treatment of WT.
Collapse
|
28
|
Liu Q. The emerging roles of exosomal long non-coding RNAs in bladder cancer. J Cell Mol Med 2022; 26:966-976. [PMID: 34981655 PMCID: PMC8831985 DOI: 10.1111/jcmm.17152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), especially exosomes, have been reported to play essential roles as extracellular messengers by transporting goods in various diseases, while their potential roles in bladder cancer (BC) still remain to be further studied. BC exhibits a high degree of chemoresistance and metastatic ability, which may be affected by cancer‐derived exosomes that carry proteins, lipids and RNA. To date, the most studied exosomal molecular cargo is long non‐coding RNA (lncRNA). Although there is increasing interest in its role and function, there is relatively little knowledge about it compared with other RNA transcripts. Nevertheless, in the past ten years, we have witnessed increasing interest in the role and function of lncRNA. For example, lncRNAs have been studied as potential biomarkers for the diagnosis of BC. They may play a role as a therapeutic target in precision medicine, but they may also be directly involved in the characteristics of tumour progression, such as metastasis, epithelial‐mesenchymal transition and drug resistance. Cancer cells are on chemotherapy acting. The function of lncRNA in various cancer exosomes has not yet been determined. In this review, we summarize the current studies about the prominent roles of exosomal lncRNAs in genome integrity, BC progression and carcinogenic features.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
29
|
Ma B, Jiang H, Luo Y, Liao T, Xu W, Wang X, Dong C, Ji Q, Wang Y. Tumor-Infiltrating Immune-Related Long Non-Coding RNAs Indicate Prognoses and Response to PD-1 Blockade in Head and Neck Squamous Cell Carcinoma. Front Immunol 2021; 12:692079. [PMID: 34737735 PMCID: PMC8562720 DOI: 10.3389/fimmu.2021.692079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) in immune cells play critical roles in tumor cell–immune cell interactions. This study aimed to characterize the landscape of tumor-infiltrating immune-related lncRNAs (Ti-lncRNAs) and reveal their correlations with prognoses and immunotherapy response in head and neck squamous cell carcinoma (HNSCC). We developed a computational model to identify Ti-lncRNAs in HNSCC and analyzed their associations with clinicopathological features, molecular alterations, and immunotherapy response. A signature of nine Ti-lncRNAs demonstrated an independent prognostic factor for both overall survival and disease-free survival among the cohorts from Fudan University Shanghai Cancer Center, The Cancer Genome Atlas, GSE41613, and GSE42743. The Ti-lncRNA signature scores in immune cells showed significant associations with TP53 mutation, CDKN2A mutation, and hypoxia. Inferior signature scores were enriched in patients with high levels of PDCD1 and CTLA4 and high expanded immune gene signature (IGS) scores, who displayed good response to PD-1 blockade in HNSCC. Consistently, superior clinical response emerged in melanoma patients with low signature scores undergoing anti-PD-1 therapy. Moreover, the Ti-lncRNA signature was a prognostic factor independent of PDCD1, CTLA4, and the expanded IGS score. In conclusion, tumor-infiltrating immune profiling identified a prognostic Ti-lncRNA signature indicative of clinical response to PD-1 blockade in HNSCC.
Collapse
Affiliation(s)
- Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyi Jiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Luo
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weibo Xu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chuanpeng Dong
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Biohealth Informatics, School of Informatics and Computing, Indiana University, Indianapolis, IN, United States
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Xiong J, Wu L, Huang L, Wu C, Liu Z, Deng W, Ma S, Zhou Z, Yu H, Cao K. LncRNA FOXP4-AS1 Promotes Progression of Ewing Sarcoma and Is Associated With Immune Infiltrates. Front Oncol 2021; 11:718876. [PMID: 34765540 PMCID: PMC8577041 DOI: 10.3389/fonc.2021.718876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
Ewing sarcoma (ES) is a highly malignant primary bone tumor with poor prognosis. Studies have shown that abnormal expression of lncRNA influences the prognosis of tumor patients. Herein, we established that FOXP4-AS1 was up-regulated in ES and this correlated with poor prognosis. Further analysis illustrated that FOXP4-AS1 down-regulation repression growth, migration, along with invasion of ES. On the contrary, up-regulation of FOXP4-AS1 promoted the growth, migration, as well as invasion of ES. To explore the mechanism of FOXP4-AS1, Spearman correlation analysis was carried out to determine genes that were remarkably linked to FOXP4-AS1 expression. The potential functions and pathways involving FOXP4-AS1 were identified by GO analysis, Hallmark gene set enrichment analysis, GSEA, and GSVA. The subcellular fractionation results illustrated that FOXP4-AS1 was primarily located in the cytoplasm of ES cells. Then a ceRNA network of FOXP4-AS1 was constructed. Analysis of the ceRNA network and GSEA yielded two candidate mRNAs for FOXP4-AS1. Results of the combined survival analysis led us to speculate that FOXP4-AS1 may affect the expression of TMPO by sponging miR-298, thereby regulating the malignant phenotype of ES. Finally, we found that FOXP4-AS1 may modulates the tumor immune microenvironment in an extracellular vesicle-mediated manner. In summary, FOXP4-AS1 correlates with poor prognosis of ES. It promotes the growth, migration, as well as invasion of ES cells and may modulate the tumor immune microenvironment.
Collapse
Affiliation(s)
- Jiachao Xiong
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang Wu
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lu Huang
- Child Health Department of the Maternal and Children Health Hospital of Jiangxi Province, Nanchang, China
| | - Chunyang Wu
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiming Liu
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenqiang Deng
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengbiao Ma
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenhai Zhou
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honggui Yu
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Cao
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
31
|
Mao X, Ji T, Liu A, Weng Y. ELK4-mediated lncRNA SNHG22 promotes gastric cancer progression through interacting with EZH2 and regulating miR-200c-3p/Notch1 axis. Cell Death Dis 2021; 12:957. [PMID: 34663788 PMCID: PMC8523719 DOI: 10.1038/s41419-021-04228-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Long non-coding RNAs (lncRNAs) play important regulatory roles in the initiation and progression of various cancers. However, the biological roles and the potential mechanisms of lncRNAs in gastric cancers remain unclear. Here, we report that the expression of lncRNA SNHG22 (small nucleolar RNA host gene 22) was significantly increased in GC (Gastric Cancer) tissues and cells, which confers poor prognosis of patients. Knockdown of SNHG22 inhibited the proliferation and invasion ability of GC cells. Moreover, we identified that the transcriptional factor, ELK4 (ETS transcription factor ELK4), could promote SNHG22 expression in GC cells. In addition, using RNA pull-down followed MS assay, we found that SNHG22 directly bound to EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) to suppress the expression of tumor suppressor genes. At the same time, SNHG22 sponged miR-200c-3p to increase Notch1 (notch receptor 1) expression. Taken together, our findings demonstrated the role of SNHG22 on promoting proliferation and invasion of GC cells. And we revealed a new regulatory mechanism of SNHG22 in GC cells. SNHG22 is a promising lncRNA biomarker for diagnosis and prognosis and a potential target for GC treatment.
Collapse
Affiliation(s)
- Xiaqiong Mao
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Ji
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aiguo Liu
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunqi Weng
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
32
|
Long non-coding RNA DLX6-AS1 accelerates lipopolysaccharides-induced human AC16 cardiomyocytes apoptosis by regulating miR-497/CaSR axis. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Xu Y, Qiu M, Shen M, Dong S, Ye G, Shi X, Sun M. The emerging regulatory roles of long non-coding RNAs implicated in cancer metabolism. Mol Ther 2021; 29:2209-2218. [PMID: 33775912 PMCID: PMC8261164 DOI: 10.1016/j.ymthe.2021.03.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/19/2021] [Accepted: 03/21/2021] [Indexed: 01/05/2023] Open
Abstract
Compared to normal cells, cancer cells exhibit specific metabolic characteristics that facilitate the growth and metastasis of cancer. It is now widely appreciated that long non-coding RNAs (lncRNAs) exert extensive regulatory effects on a spectrum of biological processes through diverse mechanisms. In this review, we focus on the rapidly advancing field of lncRNAs and summarize the relationship between the dysregulation of lncRNAs and cancer metabolism, with a particular emphasis on the specific roles of lncRNAs in glycolysis, mitochondrial function, glutamine, and lipid metabolism. These investigations reveal that lncRNAs are a key factor in the complexity of malignant cancer metabolism. Only through understanding the relevance between lncRNAs and cancer metabolic reprogramming can we open a new chapter in the history of carcinogenesis, one that promises to alter the methods of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yongcan Xu
- Department of General Surgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, People's Republic of China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Minmin Shen
- Drug Clinical Trial Institution Office, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, People's Republic of China
| | - Shunli Dong
- Department of Central Laboratory, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, People's Republic of China
| | - Guochao Ye
- Department of General Surgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, People's Republic of China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou 313000, People's Republic of China.
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, People's Republic of China; Suzhou Cancer Center, Gusu School of Nanjing Medical University Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Liu T, Yang C, Wang W, Liu C. LncRNA SGMS1-AS1 regulates lung adenocarcinoma cell proliferation, migration, invasion, and EMT progression via miR-106a-5p/MYLI9 axis. Thorac Cancer 2021; 12:2104-2112. [PMID: 34061466 PMCID: PMC8287014 DOI: 10.1111/1759-7714.14043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Lung cancer mainly includes non-small cell lung cancer (NSCLC). Lung adenocarcinoma (LUAD) is the main subtype of NSCLC. Long non-coding RNAs (LncRNAs) had been found to exert numerous functions on the progressions of cancers. MicroRNAs often exist as the target of LncRNAs to regulate a series of signaling pathways in human. We explored the effects and molecular mechanism of LncRNA SGMS1-AS1 on the procedures of LUAD cells. METHODS The ENCORI and GEPIA databases were used to analyze the differences in SGMS1, miR-106a-5p, and MYLIP between LUAD and normal tissue. Their expression levels were examined by RT-PCR. CCK8, colony formation, migration, and invasion assay were conducted in LUAD cells which had silenced SGMS1-AS1. To verify the relationship between SGMS1-AS1, miR-106a-5p, and MYLIP, we overexpressed miR-106a-5p inhibitor or MYLIP in LUAD cells after decreasing SGMS1-AS1 and repeated the above assays. RESULTS SGMS1-AS1 was downregulated in LUAD tissue as well as cells, which was related to good prognosis of patients with lung adenocarcinoma. Additionally, knockdown of SGMS1-AS1 promoted proliferation, migration, invasion, and epithelial mesenchymal transition (EMT) progression of LUAD cells, which meant that SGMS1-AS1 inhibited the progression of LUAD cells. Furthermore, miR-106a-5p was the direct target of SGMS1-AS1 and transfecting miR-106a-5p inhibitor could reversed the impact induced by knockdown of SGMS1-AS1. Subsequently, we found that MYLIP was the target of miR-106a-5p, which was negatively correlated with miR-106a-5p, but had high positive correlation with SGMS1-AS1. Consistently, overexpression MYLIP partly eliminated the effects on A549 cells induced by silencing of SGMS1-AS1. CONCLUSION LncRNA SGMS1-AS1 inhibits the proliferation, invasion, migration and EMT progression of LUAD cells via targeting miR-106a-5p/MYLIP axis.
Collapse
Affiliation(s)
- Ting Liu
- Department of Plumonary and Critical Care Medicine, Weifang People's Hospital, Weifang, China
| | - Chunli Yang
- Department of Plumonary and Critical Care Medicine, Weifang People's Hospital, Weifang, China
| | - Weizhen Wang
- Department of Plumonary and Critical Care Medicine, Weifang People's Hospital, Weifang, China
| | - Chunmei Liu
- Department of Plumonary and Critical Care Medicine, Weifang People's Hospital, Weifang, China
| |
Collapse
|
35
|
Wang Y, Bao D, Wan L, Zhang C, Hui S, Guo H. Long non-coding RNA small nucleolar RNA host gene 7 facilitates the proliferation, migration, and invasion of esophageal cancer cells by regulating microRNA-625. J Gastrointest Oncol 2021; 12:423-432. [PMID: 34012636 DOI: 10.21037/jgo-21-147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Esophageal cancer (EC) is a highly aggressive malignant tumor, of which esophageal squamous cell carcinoma (ESCC) constitutes the main subtype. Long non-coding RNA (lncRNA) small nucleolar RNA host gene 7 (SNHG7) has been extensively studied in many tumors and has been confirmed to be an oncogene; however, it has yet to be investigated in an ESCC study. Therefore, this study intended to uncover the role of SNHG7 in ESCC. Methods Quantitative real-time polymerase chain reaction was applied to measure the expression levels of SNHG7 and miR-625 in ESCC tumor tissues and cell lines. Cell Counting Kit-8 assay, 5-Ethynyl-2'-deoxyuridine assay, scratch assay, and Transwell assay were conducted to assess the proliferation, migration, and invasion ESCC cell. We verified the interaction between SNHG7 and miR-625 by performing the dual luciferase reporter gene experiment. Results Compared to that in adjacent normal tissues and HET1A cell lines, the expression level of SNHG7 in ESCC tumor tissues and ESCC cell lines was up-regulated, while the expression level of miR-625 was down-regulated. ESCC cell proliferation, migration, and invasion were significantly promoted by SNHG7 overexpression but inhibited by silencing of SNHG7. Further, luciferase reporter gene experiments confirmed that SNHG7 interacted with miR-625, and rescue experiments showed that SNHG7 promoted the malignant phenotype by inhibiting miR-625. Conclusions SNHG7 is up-regulated in ESCC tumor tissues and cell lines, while miR-625 is expressed at a low level. SNHG7 is able to facilitate the proliferation, migration, and invasion of ESCC cells by targeting miR-625.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Oncology, Nanyang Central Hospital Affiliated Hospital of Henan University, Nanyang, China
| | - Dengke Bao
- College of Pharmacy, Henan University, Zhengzhou, China
| | - Lixin Wan
- Department of Oncology, Nanyang Central Hospital Affiliated Hospital of Henan University, Nanyang, China
| | - Chenghui Zhang
- Department of Oncology, Nanyang Central Hospital Affiliated Hospital of Henan University, Nanyang, China
| | - Shuang Hui
- Department of Oncology, Nanyang Central Hospital Affiliated Hospital of Henan University, Nanyang, China
| | - Hongqiang Guo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
36
|
Zhao GY, Ning ZF, Wang R. LncRNA SNHG19 Promotes the Development of Non-Small Cell Lung Cancer via Mediating miR-137/E2F7 Axis. Front Oncol 2021; 11:630241. [PMID: 33842336 PMCID: PMC8027471 DOI: 10.3389/fonc.2021.630241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/21/2021] [Indexed: 01/10/2023] Open
Abstract
Objective Non-small cell lung cancer (NSCLC) is a common malignant tumor, which has high incidence and low the 5-year survival rate. Long non-coding RNAs (lncRNAs) play critical roles in carcinoma occurrence and metastasis. Herein, our aim was to investigate the effects of lncRNA SNHG19 in NSCLC progression. Materials and Methods Long non-coding RNA Small Nucleolar RNA Host Gene 19 (lncRNA SNHG19) expression level was measured by bioinformatics and qRT-PCR. Edu, Transwell, and scratch assays were performed to explore the role of si-SNHG19 or SNHG19 on NSCLC progression. Luciferase assay was used to verify the relationship between SNHG19/E2F7 and miR-137. The experiment of Xenograft was used for exploring the function of SNHG19 in vivo. Results SNHG19 was upregulated in cancer tissues, patients plasma and cell lines of NSCLC. Knockdown of SNHG19 inhibited cell proliferation, migration, and invasion. Luciferase assay confirmed that SNHG19 regulated E2F7 expression via interacting with miR-137. Overexpression of SNHG19 accelerated NSCLC tumor progression via miR-137/E2F7 axis both in vitro and in vivo. Conclusions Our results clarified the SNHG19 function for the first time, and SNHG19 promoted the progression of NSCLC, which was mediated by the miR-137/E2F7 axis. This study might provide new understanding and targets for NSCLC diagnosis and treatment.
Collapse
Affiliation(s)
- Guang-Yin Zhao
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Rui Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Miao C, Bai L, Yang Y, Huang J. Dysregulation of lncRNAs in Rheumatoid Arthritis: Biomarkers, Pathogenesis and Potential Therapeutic Targets. Front Pharmacol 2021; 12:652751. [PMID: 33776780 PMCID: PMC7994855 DOI: 10.3389/fphar.2021.652751] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease of unknown etiology, mainly manifested by persistent abnormal proliferation of fibroblast-like synoviocytes (FLSs), inflammation, synovial hyperplasia and cartilage erosion, accompanied by joint swelling and joint destruction. Abnormal expression or function of long noncoding RNAs (lncRNAs) are closely related to human diseases, including cancers, mental diseases, autoimmune diseases and others. The abnormal sequence and spatial structure of lncRNAs, the disorder expression and the abnormal interaction with the binding protein will lead to the change of gene expression in the way of epigenetic modification. Increasing evidence demonstrated that lncRNAs were involved in the activation of FLSs, which played a key role in the pathogenesis of RA. In this review, the research progress of lncRNAs in the pathogenesis of RA was systematically summarized, including the role of lncRNAs in the diagnosis of RA, the regulatory mechanism of lncRNAs in the pathogenesis of RA, and the intervention role of lncRNAs in the treatment of RA. Furthermore, the activated signal pathways, the role of DNA methylation and other mechanism have also been overview in this review.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Anhui Provincial Key Laboratory of Chinese Medicine Compound, Anhui University of Chinese Medicine, Hefei, China.,Department of Pharmacy, School of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, China
| | - Liangliang Bai
- Department of Biomedical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Yaru Yang
- Department of Pharmacy, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jinling Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
38
|
Xu D, Song Q, Liu Y, Chen W, Lu L, Xu M, Fang X, Zhao W, Zhou H. LINC00665 promotes Ovarian Cancer progression through regulating the miRNA-34a-5p/E2F3 axis. J Cancer 2021; 12:1755-1763. [PMID: 33613764 PMCID: PMC7890326 DOI: 10.7150/jca.51457] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/24/2020] [Indexed: 01/22/2023] Open
Abstract
Objective: To clarify the role of LINC00665 in ovarian cancer (OC) progression and the possible mechanism. Methods: LINC00665 levels in OC tissues and cell lines were detected by qRT-PCR. The correlation between LINC00665 and clinicopathologic characteristics of OC patients was assessed. Biological functions of OC cell phenotypes influenced by LINC00665 were examined by CCK-8, colony formation and Transwell assay. Dual-luciferase reporter assay and RIP assay were conducted to verify the interaction between LINC00665 and its downstream target. Results: LINC00665 was upregulated in OC and linked to poor prognosis. Knockdown of LINC00665 blocked malignant proliferative, migratory and invasive functions of OC cells. By competitively binding miRNA-34a-5p, LINC00665 abolished the inhibitory effect of miR-34a-3p on its downstream gene E2F3, thus promoting OC progression. Conclusion: LINC00665/miRNA-34a-5p/E2F3 axis is involved in OC progression, providing novel insights into the clinical treatment of OC.
Collapse
Affiliation(s)
- Dan Xu
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China.,Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingxia Song
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Ying Liu
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Wansu Chen
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Lijuan Lu
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Min Xu
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Xiaohui Fang
- Department of clinical laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Wenjie Zhao
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Huifang Zhou
- Department of Gynaecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.,Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
39
|
Novel lncRNA UPLA1 mediates tumorigenesis and prognosis in lung adenocarcinoma. Cell Death Dis 2020; 11:999. [PMID: 33221813 PMCID: PMC7680460 DOI: 10.1038/s41419-020-03198-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
With the development of molecular biotechnology and sequencing techniques, long non-coding RNAs (lncRNAs) have been shown to play a vital role in a variety of cancers including lung cancer. In our previous study, we used RNA sequencing and high-content screening proliferation screening data to identify lncRNAs that were significantly associated with tumour biological functions such as LINC01426. Herein, based on previous work, we report a novel lncRNA UPLA1 (upregulation promoting LUAD-associated transcript-1), which has not been explored or reported in any previous studies. Our results showed that UPLA1 is highly expressed and regulates important biological functions in lung adenocarcinoma. In vitro experiments revealed that UPLA1 promoted the migration, invasion, and proliferation abilities, and is related to cell cycle arrest, in lung adenocarcinoma cells. Moreover, the upregulation of UPLA1 significantly improved the growth of tumours in vivo. We identified that UPLA1 was mainly located in the nucleus using fluorescence in situ hybridisation, and that it promoted Wnt/β-catenin signalling by binding to desmoplakin using RNA pulldown assay and mass spectrometry. Additionally, luciferase reporter assay revealed that YY1 is the transcription factor of UPLA1 and suppressed the expression of UPLA1 as a transcriptional inhibitor. This finding provides important evidence regarding the two roles of YY1 in cancer. Furthermore, in situ hybridisation assay results showed that UPLA1 was closely related to the prognosis and tumour, node, metastasis (TNM) stage of lung adenocarcinoma. In summary, our results suggest that the novel lncRNA UPLA1 promotes the progression of lung adenocarcinoma and may be used as a prognostic marker, and thus, has considerable clinical significance.
Collapse
|
40
|
Chai Y, Wu HT, Liang CD, You CY, Xie MX, Xiao SW. Exosomal lncRNA ROR1-AS1 Derived from Tumor Cells Promotes Glioma Progression via Regulating miR-4686. Int J Nanomedicine 2020; 15:8863-8872. [PMID: 33204092 PMCID: PMC7667171 DOI: 10.2147/ijn.s271795] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Glioma is one of the most common central nervous system malignant tumors, accounting for 45%–60% of adult intracranial tumors. However, the clinical treatment of glioma is limited. It is of great significance to seek new therapeutic methods for glioma via gene therapy. Materials and Methods Microarray is used to identify the lncRNAs that are differentially expressed in glioma. The expression of long non-coding RNA (lncRNA) ROR1-AS1 and miR-4686 was detected by qRT-PCR. Exosomes were isolated from the supernatant of normal and cancerous cells, and TEM was used for exosomes identification. MTT assay, wound healing assay, transwell assay, and colony formation assay were used to detect the exo-ROR1-AS1 function on proliferation, migration, and invasion in glioma cells. Luciferase assay and RIP assay were used to identify the relationship between lncRNA ROR1-AS1 and miR-4686. The effect of exo-ROR1-AS1 on tumorigenesis of glioma was confirmed by the xenograft nude mice model. Results ROR1-AS1 was up-regulated in glioma tissues, and the high expression of ROR1-AS1 indicated a poor prognosis in glioma patients. Interestingly, ROR1-AS1 was packaged into exosomes and derived from tumor cells. Functional analysis showed exo-ROR1-AS1 promoted the progression of glioma cell lines SHG44 and U251. Furthermore, ROR1-AS1 acted as a sponge of miR-4686 and inhibited its expression. Functionally, forced expression of miR-4686 removed the promoted effects of lncRNA ROR1-AS1 on glioma development. In vivo tumorigenesis experiments showed that exo-ROR1-AS1 promoted glioma development via miR-4686 axis. Conclusion Our study suggested tumor cells derived exo-ROR1-AS1 promoted glioma progression by inhibiting miR-4686, which might be a potential therapeutic target for glioma clinical treatment.
Collapse
Affiliation(s)
- Yang Chai
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Hai-Tao Wu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Chuan-Dong Liang
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Chun-Yue You
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Ming-Xiang Xie
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Shun-Wu Xiao
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| |
Collapse
|
41
|
Long noncoding RNA: a dazzling dancer in tumor immune microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:231. [PMID: 33148302 PMCID: PMC7641842 DOI: 10.1186/s13046-020-01727-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a class of endogenous, non-protein coding RNAs that are highly linked to various cellular functions and pathological process. Emerging evidence indicates that lncRNAs participate in crosstalk between tumor and stroma, and reprogramming of tumor immune microenvironment (TIME). TIME possesses distinct populations of myeloid cells and lymphocytes to influence the immune escape of cancer, the response to immunotherapy, and the survival of patients. However, hitherto, a comprehensive review aiming at relationship between lncRNAs and TIME is missing. In this review, we focus on the functional roles and molecular mechanisms of lncRNAs within the TIME. Furthermore, we discussed the potential immunotherapeutic strategies based on lncRNAs and their limitations.
Collapse
|
42
|
Duan W, Kong X, Li J, Li P, Zhao Y, Liu T, Binang HB, Wang Y, Du L, Wang C. LncRNA AC010789.1 Promotes Colorectal Cancer Progression by Targeting MicroRNA-432-3p/ZEB1 Axis and the Wnt/β-Catenin Signaling Pathway. Front Cell Dev Biol 2020; 8:565355. [PMID: 33178684 PMCID: PMC7593606 DOI: 10.3389/fcell.2020.565355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating literatures have indicated that long non-coding RNAs (lncRNAs) are crucial molecules in tumor progression in various human cancers, including colorectal cancer (CRC). However, the clinical significance and regulatory mechanism of a vast majority of lncRNAs in CRC remain to be determined. The current study aimed to explore the function and molecular mechanism of lncRNA AC010789.1 in CRC progression. AC010789.1 found to be overexpressed in CRC tissues and cells. High expression of AC010789.1 was associated with lymph node metastasis and poor prognosis. Moreover, AC010789.1 silencing inhibited proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro as well as tumorigenesis and metastasis in vivo. Mechanistically, we demonstrated that repression of AC010789.1 promoted miR-432-3p expression, and miR-432-3p directly binds to ZEB1. We then proved the anti-tumor role of miR-432-3p in CRC, showing that the inhibitory effect of AC010789.1 knockdown on CRC cells was achieved by the upregulation of miR-432-3p but downregulation of ZEB1. We also established that silencing AC010789.1 suppressed the Wnt/β-catenin signaling pathway. However, this inhibitory effect was partially counteracted by inhibition of miR-432-3p. In summary, these results reveal that silencing AC010789.1 suppresses CRC progression via miR-432-3p-mediated ZEB1 downregulation and suppression of the Wnt/β-catenin signaling pathway, highlighting a potentially promising strategy for CRC treatment.
Collapse
Affiliation(s)
- Weili Duan
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue Kong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tong Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Helen Barong Binang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, China.,The Clinical Research Center of Shandong Province for Clinical Laboratory, Jinan, China
| |
Collapse
|
43
|
Li S, Wang X. The potential roles of exosomal noncoding RNAs in osteosarcoma. J Cell Physiol 2020; 236:3354-3365. [PMID: 33044018 DOI: 10.1002/jcp.30101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
Clinically, it is difficult to efficaciously screen and diagnose osteosarcoma (OS) in advance due to the low sensitivity and poor specificity of the existing tumor markers. Exosomes (Exos) are nanoscale vesicles containing RNAs, lipids, and proteins with a diameter of 30-100 nm. They are multivesicular bodies formed during the invagination of lysosomal particles in cells and released extracellularly after fusing with cell membranes. Besides, Exos are important carriers of cell-to-cell communication signals and genetic materials in the tumor microenvironment. During tumorigenesis, the tumor cells interplay with immune cells, endothelial cells, and related fibroblasts through Exos and boost cancer development. After altering the surrounding microenvironment, the Exos drive tumor cells to proliferate, speed up angiogenesis, and boost cancers to develop along with body fluid transportation. Currently, Exos are becoming novel noninvasive tumor diagnostic markers with high sensitivity, exerting pivotal impacts in fundamental research and clinical applications. Here, we review the existing literature on the roles of exosomal noncoding RNAs in OS progression and their potential clinical applications as novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China.,School of Fundamental Sciences, Center of 3D Printing and Organ Manufacturing, China Medical University (CMU), Shenyang, China
| | - Xiaohong Wang
- School of Fundamental Sciences, Center of 3D Printing and Organ Manufacturing, China Medical University (CMU), Shenyang, China.,Department of Mechanical Engineering, Center of Organ Manufacturing, Tsinghua University, Beijing, China
| |
Collapse
|