1
|
Dassen MG, Neijndorff B, Betgen A, Wiersema L, de Ruiter P, van der Linden J, Janssen T, Abbenhuis L, van Kollenburg P, Reijnen C, Pos F, Smeenk RJ, van der Heide UA, Brunenberg E. Simulation of Focal Boosting in Online Adaptive MRI-Guided SBRT for Patients With Locally Advanced Prostate Cancer With Seminal Vesicle Involvement. Pract Radiat Oncol 2025; 15:196-204. [PMID: 39510409 DOI: 10.1016/j.prro.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE To evaluate the feasibility and accuracy of focal boosting in online adaptive MRI-guided stereotactic body radiation therapy (SBRT) for patients with prostate cancer (PCa) with seminal vesicle invasion (T3b) by analyzing the impact of intrafraction motion on the dose planned for the gross tumor volume (GTV) and clinical target volume (CTV). METHODS AND MATERIALS Data from 23 patients with T1-T3a PCa who received focal boosting SBRT on a 1.5T MR-Linac was used. A radiation oncologist replaced clinical GTVs with artificial GTVs representative for T3b tumor(s). For each MRI used for daily adaptation (MRIadapt), an automated treatment plan was generated (Df1-5) using the adapted contours. Patients were planned to receive 35 Gy to the CTV, with an isotoxic focal boost to the GTV up to 50 Gy. During each fraction, an additional MRI was acquired to assess intrafraction motion (MRIduring). Dose accumulation of all fractions was performed by deformable registration of MRIadapt, f2-5 to MRIadapt, f1 (DACC, planned). The Df1-5 were projected to their corresponding MRIduring, which were used to reconstruct DACC, delivered, likewise. Our results were compared to patients with tumor(s) without seminal vesicle invasion (T1-T3a). RESULTS The median (10th-90th percentile) D98%ACC, planned to the GTV, which correlates most strongly with outcome, was 41.1 Gy (40.1-43.0 Gy) in the plans for patients with artificial T3b tumors, compared to 43.0 Gy (40.4-47.2 Gy) in the plans for patients with T1-T3a tumors. The D98%ACC, delivered to the GTV, taking into account intrafraction motion, was 41.0 Gy (39.3-42.6 Gy) and 42.5 Gy (40.0-46.6 Gy) in the plans for the artificial and clinical GTVs, respectively. CONCLUSIONS MRI-guidance can ensure high accuracy of focal boosting in patients with T3b disease. Because of the unfavorable location of the GTV, a lower boost dose was feasible compared to patients with T1-T3a PCa.
Collapse
Affiliation(s)
- Mathijs G Dassen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ben Neijndorff
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anja Betgen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa Wiersema
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Peter de Ruiter
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joeke van der Linden
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tomas Janssen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leontien Abbenhuis
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter van Kollenburg
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Casper Reijnen
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris Pos
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Robert J Smeenk
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ellen Brunenberg
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Liu X, Chen X, Chen D, Liu Y, Quan H, Gao L, Yan L, Dai J, Men K. A patient-specific auto-planning method for MRI-guided adaptive radiotherapy in prostate cancer. Radiother Oncol 2024; 200:110525. [PMID: 39245067 DOI: 10.1016/j.radonc.2024.110525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND AND PURPOSE Fast and automated generation of treatment plans is desirable for magnetic resonance imaging (MRI)-guided adaptive radiotherapy (MRIgART). This study proposed a novel patient-specific auto-planning method and validated its feasibility in improving the existing online planning workflow. MATERIALS AND METHODS Data from 40 patients with prostate cancer were collected retrospectively. A patient-specific auto-planning method was proposed to generate adaptive treatment plans. First, a population dose-prediction model (M0) was trained using data from previous patients. Second, a patient-specific model (Mps) was created for each new patient by fine-tuning M0 with the patient's data. Finally, an auto plan was optimized using the parameters derived from the predicted dose distribution by Mps. The auto plans were compared with manual plans in terms of plan quality, efficiency, dosimetric verification, and clinical evaluation. RESULTS The auto plans improved target coverage, reduced irradiation to the rectum, and provided comparable protection to other organs-at-risk. Target coverage for the planning target volume (+0.61 %, P = 0.023) and clinical target volume 4000 (+1.60 %, P < 0.001) increased. V2900cGy (-1.06 %, P = 0.004) and V1810cGy (-2.49 %, P < 0.001) to the rectal wall and V1810cGy (-2.82 %, P = 0.012) to the rectum were significantly reduced. The auto plans required less planning time (-3.92 min, P = 0.001), monitor units (-46.48, P = 0.003), and delivery time (-0.26 min, P = 0.004), and their gamma pass rates (3 %/2 mm) were higher (+0.47 %, P = 0.014). CONCLUSION The proposed patient-specific auto-planning method demonstrated a robust level of automation and was able to generate high-quality treatment plans in less time for MRIgART in prostate cancer.
Collapse
Affiliation(s)
- Xiaonan Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xinyuan Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Deqi Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuxiang Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hong Quan
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Linrui Gao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lingling Yan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianrong Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Kuo Men
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
3
|
Jagt TZ, Janssen TM, Sonke JJ. Evaluating the effect of higher Monte Carlo statistical uncertainties on accumulated doses after daily adaptive fractionated radiotherapy in prostate cancer. Phys Imaging Radiat Oncol 2024; 32:100636. [PMID: 39295957 PMCID: PMC11405816 DOI: 10.1016/j.phro.2024.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Background and purpose Monte Carlo (MC) based dose calculations are widely used in radiotherapy with a low statistical uncertainty, being accurate but slow. Increasing the uncertainty accelerates the calculation, but reduces quality. In online adaptive planning, however, dose is recalculated every treatment fraction, potentially decreasing the cumulative calculation error. This study aimed to evaluate the effect of higher MC statistical uncertainty in the context of daily online plan adaptation. Materials and methods For twenty prostate cancer patients, daily plans were simulated for 5 fractions and three modes of variation: rigid whole body translations, local-rigid prostate translations and local-rigid prostate rotations. For each mode and fraction, adaptive plans were generated from a clinical reference plan using three MC uncertainty values: 1 % (standard), 2 % and 3 % per plan. Dose-volume criteria were evaluated for accumulated doses, checking plan acceptability and comparing higher uncertainty plans to the standard. Results Increasing the statistical uncertainty setting from 1 % to 2-3 % caused an accumulated median target D98 % reduction of 0.1 Gy, with interquartile ranges (IQRs) up to 0.12 Gy. Rectum V35Gy increased in median up to 0.16 cm3 with IQRs up to 0.33 cm3. The bladder V28Gy and V32Gy showed median increases up to 0.24 %-point, with IQRs up to 0.54 %-point. Using 2 % uncertainty reduced calculation times by more than a minute for all modes of variation, with no further time gain when increasing to 3 %. Conclusion A 2-3 % MC statistical uncertainty was clinically feasible. Using a 2 % uncertainty setting reduced calculation times at the cost of limited relative dose-volume differences.
Collapse
Affiliation(s)
- Thyrza Z Jagt
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tomas M Janssen
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Abstract
Magnetic resonance imaging-guided radiation therapy (MRIgRT) has improved soft tissue contrast over computed tomography (CT) based image-guided RT. Superior visualization of the target and surrounding radiosensitive structures has the potential to improve oncological outcomes partly due to safer dose-escalation and adaptive planning. In this review, we highlight the workflow of adaptive MRIgRT planning, which includes simulation imaging, daily MRI, identifying isocenter shifts, contouring, plan optimization, quality control, and delivery. Increased utilization of MRIgRT will depend on addressing technical limitations of this technology, while addressing treatment efficacy, cost-effectiveness, and workflow training.
Collapse
Affiliation(s)
- Cecil M Benitez
- Department of Radiation Oncology, UCLA Medical Center, Los Angeles, CA
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida; Miami, FL
| | - Luise A Künzel
- National Center for Tumor Diseases (NCT), Dresden; German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden Rossendorf, Dresden, Germany
| | - Daniela Thorwarth
- Department of Radiation Oncology, Section for Biomedical Physics, University of Tübingen, Tübingen, Germany..
| |
Collapse
|
5
|
Tengler B, Künzel LA, Hagmüller M, Mönnich D, Boeke S, Wegener D, Gani C, Zips D, Thorwarth D. Full daily re-optimization improves plan quality during online adaptive radiotherapy. Phys Imaging Radiat Oncol 2024; 29:100534. [PMID: 38298884 PMCID: PMC10827578 DOI: 10.1016/j.phro.2024.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Background and purpose Daily online treatment plan adaptation requires a fast workflow and planning process. Current online planning consists of adaptation of a predefined reference plan, which might be suboptimal in cases of large anatomic changes. The aim of this study was to investigate plan quality differences between the current online re-planning approach and a complete re-optimization. Material and methods Magnetic resonance linear accelerator reference plans for ten prostate cancer patients were automatically generated using particle swarm optimization (PSO). Adapted plans were created for each fraction using (1) the current re-planning approach and (2) full PSO re-optimization and evaluated overall compliance with institutional dose-volume criteria compared to (3) clinically delivered fractions. Relative volume differences between reference and daily anatomy were assessed for planning target volumes (PTV60, PTV57.6), rectum and bladder and correlated with dose-volume results. Results The PSO approach showed significantly higher adherence to dose-volume criteria than the reference approach and clinical fractions (p < 0.001). In 74 % of PSO plans at most one criterion failed compared to 56 % in the reference approach and 41 % in clinical plans. A fair correlation between PTV60 D98% and relative bladder volume change was observed for the reference approach. Bladder volume reductions larger than 50 % compared to the reference plan recurrently decreased PTV60 D98% below 56 Gy. Conclusion Complete re-optimization maintained target coverage and organs at risk sparing even after large anatomic variations. Re-planning based on daily magnetic resonance imaging was sufficient for small variations, while large variations led to decreasing target coverage and organ-at-risk sparing.
Collapse
Affiliation(s)
- Benjamin Tengler
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Luise A. Künzel
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Markus Hagmüller
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - David Mönnich
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Daniel Wegener
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| |
Collapse
|
6
|
Towards real-time radiotherapy planning: The role of autonomous treatment strategies. Phys Imaging Radiat Oncol 2022; 24:136-137. [DOI: 10.1016/j.phro.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|