1
|
Butkus M, Bastawros D, Yang Y, Cassetta R, Hytonen R, Kaderka R. Spot-optimization reduces beam delivery time in liver breath hold intensity modulated proton therapy. Phys Imaging Radiat Oncol 2025; 34:100763. [PMID: 40255417 PMCID: PMC12008587 DOI: 10.1016/j.phro.2025.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/22/2025] Open
Abstract
Background and purpose Liver irradiations with intensity-modulated proton therapy (IMPT) often require motion mitigation techniques that prolong treatment. A prototype spot-optimization algorithm was tested to evaluate whether plan delivery time could be reduced while preserving quality. Methods and materials Fifteen patients previously treated with liver IMPT using breath-hold were re-planned with nominal treatment planning system (TPS) settings and using a prototype spot-optimization algorithm in which combinations of minimum Monitor Unit (MU) and layer-spacing settings were tested: 1MU/1MeV, 3MU/3MeV, 1MU/5MeV, 5MU/3MeV. Spot-optimized and nominals plans were compared using standard dose-volume histogram (DVH) metrics for targets and organs-at-risk. A Wilcoxon signed-rank test was applied (p < 0.05). Delivery time for all plans were measured by creating and delivering IMPT quality assurance (QA) plans. Gamma analyses were performed on all plans to test deliverability. Plans were considered deliverable if >90 % of points passed a gamma criterion of 3 %/3mm. Results Minimal DVH differences were observed between nominal and spot-optimized plans. For the 3MU/3MeV setting, no DVH metrics were significantly different. Median and interquartile range (IQR) delivery times for these plans were 40 % (38 %-44 %) faster than nominal plans. 5MU/3MeV plans had median (IQR) delivery times 59 % (52 %-61 %) faster than nominal plans but had a small but significant increase in LiverEff Dmean with a median (IQR) difference of 0.2 Gy(RBE) (0.0-0.4 Gy(RBE)). QA analysis showed all spot-optimized plans were deliverable. Conclusions The spot-optimization algorithm produced clinically deliverable plans with negligible DVH differences to nominal plans and reduced delivery time of liver IMPT by over one-third.
Collapse
Affiliation(s)
- Michael Butkus
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Daniel Bastawros
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Yunze Yang
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | | | - Roni Hytonen
- Varian, A Siemens Healthineers Company, Helsinki, Finland
| | - Robert Kaderka
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
2
|
Wolter LC, Hennings F, Bokor J, Richter C, Stützer K. Validity of one-time phantomless patient-specific quality assurance in proton therapy with regard to the reproducibility of beam delivery. Med Phys 2025. [PMID: 39871091 DOI: 10.1002/mp.17637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/14/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Patient-specific quality assurance (PSQA) is a crucial yet resource-intensive task in proton therapy, requiring special equipment, expertise and additional beam time. Machine delivery log files contain information about energy, position and monitor units (MU) of all delivered spots, allowing a reconstruction of the applied dose. This raises the prospect of phantomless, log file-based QA (LFQA) as an automated replacement of current phantom-based solutions, provided that such an approach guarantees a comparable level of safety. PURPOSE To retrieve a reliable LFQA conclusion from a one-time plan delivery before treatment initiation, deviations between planned and logged parameters must either be persistent over all following treatment fractions or, in case of random fluctuations, must not have a relevant impact on the reconstructed dose distribution. We therefore investigated the reproducibility of log file parameters over multiple patient treatment fractions and compared the reconstructed dose distributions. METHODS Log file variability was examined at both spot parameter and integral dose levels. The log files of 14 patient treatment plans were analyzed retrospectively for a total of 339 delivered fractions. From the recorded x/y position and MU parameters per spot, the respective mean difference to the planned value (accuracy) and the standard deviation (reproducibility) were calculated for 108,610 planned spots. The dose distributions reconstructed from the log files of each fraction were evaluated against the planned fraction dose using 3D gamma index analysis. The dose-based gamma pass rate Γ $\Gamma$ was correlated with a new spot-based log file pass rate Λ ${\Lambda}$ . Beam timing information from the log files was used to quantify the total plan/field delivery time stability after excluding machine interlocks. RESULTS The mean spot-wise accuracy with respect to distance from planned positions and MUs was (0.6 ± 0.3) mm and (0.0001 ± 0.0023) MU, respectively. The mean reproducibility of the observed single spot deviations was (0.2 ± 0.1) mm and (0.0004 ± 0.0004) MU (mean ± standard deviation). These variations resulted in minimal changes in the reconstructed fraction dose with Γ ${{\Gamma}}$ (2 mm/2%) > 99% for all studied fractions. Results for more sensitive criteria Γ ${{\Gamma}}$ (1 mm/1%) were plan-specific, but on average > 92.6% per plan and correlated with Λ ${{\Lambda}}$ (1 mm) pass rates (0.51 ≤ rPearson ≤ 0.99). Field delivery times were reproducible within ± 4 s (2σ) and no treatment interruptions were observed in 92.8% of cases. CONCLUSIONS The log file records of plan-relevant spot parameters are well-reproducible over multiple fractions and deviations have no dosimetrically relevant impact on the reconstructed fraction doses. Results of a one-time pre-treatment LFQA are considered as valid for the entire treatment course and there is no concern in this regard to replace state-of-the-art phantom measurements in the current PSQA workflow.
Collapse
Affiliation(s)
- Lukas Cornelius Wolter
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Oncology, Dresden, Germany
| | - Fabian Hennings
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Oncology, Dresden, Germany
| | - Jozef Bokor
- Ion Beam Applications Particle Therapy GmbH, c/o Universitätsklinikum Dresden, Dresden, Germany
| | - Christian Richter
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Oncology, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristin Stützer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Oncology, Dresden, Germany
| |
Collapse
|
3
|
Takaoka T, Yanagi T, Takahashi S, Shibamoto Y, Imai Y, Okazaki D, Niwa M, Torii A, Kita N, Takano S, Tomita N, Hiwatashi A. Comparing different boost concepts and beam configurations for proton therapy of pancreatic cancer. Phys Imaging Radiat Oncol 2024; 30:100583. [PMID: 38711921 PMCID: PMC11070341 DOI: 10.1016/j.phro.2024.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024] Open
Abstract
Background and Purpose Interfractional geometrical and anatomical variations impact the accuracy of proton therapy for pancreatic cancer. This study investigated field-in-field (FIF) and simultaneous integrated boost (SIB) concepts for scanned proton therapy treatment with different beam configurations. Materials and Methods Robustly optimized treatment plans for fifteen patients were generated using FIF and SIB techniques with two, three, and four beams. The prescribed dose in 20 fractions was 60 Gy(RBE) for the internal gross tumor volume (IGTV) and 46 Gy(RBE) for the internal clinical target volume. Verification computed tomography (vCT) scans was performed on treatment days 1, 7, and 16. Initial treatment plans were recalculated on the rigidly registered vCTs. V100% and D95% for targets and D2cm3 for the stomach and duodenum were evaluated. Robustness evaluations (range uncertainty of 3.5 %) were performed to evaluate the stomach and duodenum dose-volume parameters. Results For all techniques, IGTV V100% and D95% decreased significantly when recalculating the dose on vCTs (p < 0.001). The median IGTV V100% and D95% over all vCTs ranged from 74.2 % to 90.2 % and 58.8 Gy(RBE) to 59.4 Gy(RBE), respectively. The FIF with two and three beams, and SIB with two beams maintained the highest IGTV V100% and D95%. In robustness evaluations, the ΔD2cm3 of stomach was highest in two beams plans, while the ΔD2cm3 of duodenum was highest in four beams plans, for both concepts. Conclusion Target coverage decreased when recalculating on CTs at different time for both concepts. The FIF with three beams maintained the highest IGTV coverage while sparing normal organs the most.
Collapse
Affiliation(s)
- Taiki Takaoka
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Yanagi
- Department of Radiation Oncology, Narita Memorial Proton Center, Toyohashi, Japan
| | - Shinsei Takahashi
- Department of Radiation Oncology, Narita Memorial Proton Center, Toyohashi, Japan
| | - Yuta Shibamoto
- Department of Radiation Oncology, Narita Memorial Proton Center, Toyohashi, Japan
| | - Yuto Imai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Radiation Oncology, Narita Memorial Proton Center, Toyohashi, Japan
| | - Dai Okazaki
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanari Niwa
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akira Torii
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nozomi Kita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Seiya Takano
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Natsuo Tomita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
4
|
Knäusl B, Belotti G, Bertholet J, Daartz J, Flampouri S, Hoogeman M, Knopf AC, Lin H, Moerman A, Paganelli C, Rucinski A, Schulte R, Shimizu S, Stützer K, Zhang X, Zhang Y, Czerska K. A review of the clinical introduction of 4D particle therapy research concepts. Phys Imaging Radiat Oncol 2024; 29:100535. [PMID: 38298885 PMCID: PMC10828898 DOI: 10.1016/j.phro.2024.100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Background and purpose Many 4D particle therapy research concepts have been recently translated into clinics, however, remaining substantial differences depend on the indication and institute-related aspects. This work aims to summarise current state-of-the-art 4D particle therapy technology and outline a roadmap for future research and developments. Material and methods This review focused on the clinical implementation of 4D approaches for imaging, treatment planning, delivery and evaluation based on the 2021 and 2022 4D Treatment Workshops for Particle Therapy as well as a review of the most recent surveys, guidelines and scientific papers dedicated to this topic. Results Available technological capabilities for motion surveillance and compensation determined the course of each 4D particle treatment. 4D motion management, delivery techniques and strategies including imaging were diverse and depended on many factors. These included aspects of motion amplitude, tumour location, as well as accelerator technology driving the necessity of centre-specific dosimetric validation. Novel methodologies for X-ray based image processing and MRI for real-time tumour tracking and motion management were shown to have a large potential for online and offline adaptation schemes compensating for potential anatomical changes over the treatment course. The latest research developments were dominated by particle imaging, artificial intelligence methods and FLASH adding another level of complexity but also opportunities in the context of 4D treatments. Conclusion This review showed that the rapid technological advances in radiation oncology together with the available intrafractional motion management and adaptive strategies paved the way towards clinical implementation.
Collapse
Affiliation(s)
- Barbara Knäusl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Belotti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Mischa Hoogeman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Antje C Knopf
- Institut für Medizintechnik und Medizininformatik Hochschule für Life Sciences FHNW, Muttenz, Switzerland
| | - Haibo Lin
- New York Proton Center, New York, NY, USA
| | - Astrid Moerman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Reinhard Schulte
- Division of Biomedical Engineering Sciences, School of Medicine, Loma Linda University
| | - Shing Shimizu
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kristin Stützer
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - Xiaodong Zhang
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Katarzyna Czerska
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| |
Collapse
|
5
|
Knäusl B. The role of 4D particle therapy in daily patient care and research. Phys Imaging Radiat Oncol 2024; 29:100560. [PMID: 38434207 PMCID: PMC10906392 DOI: 10.1016/j.phro.2024.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Affiliation(s)
- Barbara Knäusl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Schmitz H, Thummerer A, Kawula M, Lombardo E, Parodi K, Belka C, Kamp F, Kurz C, Landry G. ScatterNet for projection-based 4D cone-beam computed tomography intensity correction of lung cancer patients. Phys Imaging Radiat Oncol 2023; 27:100482. [PMID: 37680905 PMCID: PMC10480315 DOI: 10.1016/j.phro.2023.100482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Background and purpose: In radiotherapy, dose calculations based on 4D cone beam CTs (4DCBCTs) require image intensity corrections. This retrospective study compared the dose calculation accuracy of a deep learning, projection-based scatter correction workflow (ScatterNet), to slower workflows: conventional 4D projection-based scatter correction (CBCTcor) and a deformable image registration (DIR)-based method (4DvCT). Materials and methods: For 26 lung cancer patients, planning CTs (pCTs), 4DCTs and CBCT projections were available. ScatterNet was trained with pairs of raw and corrected CBCT projections. Corrected projections from ScatterNet and the conventional workflow were reconstructed using MA-ROOSTER, yielding 4DCBCTSN and 4DCBCTcor. The 4DvCT was generated by 4DCT to 4DCBCT DIR, as part of the 4DCBCTcor workflow. Robust intensity modulated proton therapy treatment plans were created on free-breathing pCTs. 4DCBCTSN was compared to 4DCBCTcor and the 4DvCT in terms of image quality and dose calculation accuracy (dose-volume-histogram parameters and 3 % /3 mm gamma analysis). Results: 4DCBCTSN resulted in an average mean absolute error of 87 HU and 102 HU when compared to 4DCBCTcor and 4DvCT respectively. High agreement was observed in targets with median dose differences of 0.4 Gy (4DCBCTSN-4DCBCTcor) and 0.3 Gy (4DCBCTSN-4DvCT). The gamma analysis showed high average 3 % /3 mm pass rates of 96 % for both 4DCBCTSN vs. 4DCBCTcor and 4DCBCTSN vs. 4DvCT. Conclusions: Accurate 4D dose calculations are feasible for lung cancer patients using ScatterNet for 4DCBCT correction. Average scatter correction times could be reduced from 10 min (4DCBCTcor) to 3.9 s , showing the clinical suitability of the proposed deep learning-based method.
Collapse
Affiliation(s)
- Henning Schmitz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Adrian Thummerer
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maria Kawula
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Elia Lombardo
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Florian Kamp
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Radiation Oncology, University Hospital Cologne, Cologne, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|