1
|
Chavarria X, Choi JH, Oh S, Kim M, Kang D, Lee IY, Jang YS, Yi MH, Yong TS, Kim JY. Metabarcoding for the Monitoring of the Microbiome and Parasitome of Medically Important Mosquito Species in Two Urban and Semi-urban Areas of South Korea. Curr Microbiol 2025; 82:102. [PMID: 39865193 DOI: 10.1007/s00284-025-04081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Interactions between microbial communities and the host can modulate mosquito biology, including vector competence. Therefore, future vector biocontrol measures will utilize these interactions and require extensive monitoring of the mosquito microbiome. Metabarcoding strategies will be useful for conducting vector monitoring on a large scale. We used 16S and 18S rRNA gene metabarcoding through iSeq100 sequencing to characterize the microbiome and eukaryome of Aedes albopictus (Skuse 1894) and Culex pipiens (Linnaeus 1758), two globally important vectors present in South Korea. Mosquitoes were collected from an urban and a semi-urban location in South Korea. Bacterial alpha and beta diversities varied by population. Pseudomonadota dominated the microbiomes of both species. The microbiome composition varied by population and was dominated by different taxa. At the genus level, Wolbachia sp. was the most enriched genus in Cx. pipiens, followed by Aeromonas sp. In Ae. Albopictus, the most abundant group was Enterococcus sp. The gregarine parasite Ascogregarina taiwanensis was highly prevalent in Ae. Albopictus and its absence was marked by the presence of seven bacterial taxa. To our knowledge, this is the first characterization of the microbiome of Ae. albopictus and Cx. pipiens in these regions of South Korea and contributes to the current information on the microbiome of mosquito species, which can be used in further studies to assess pathogen-microbiome and microbiome-microbiome interactions.
Collapse
Affiliation(s)
- Xavier Chavarria
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jun Ho Choi
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Singeun Oh
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Myungjun Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Dongjun Kang
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - In-Yong Lee
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Yun Soo Jang
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Myung-Hee Yi
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Tai-Soon Yong
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
- Faculty of Medicine, Eswatini Medical Christian University, Lomkiri Portion 69 of Farm 73 Zone 4, Mbabane, Eswatini
| | - Ju Yeong Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Global prevalence of dengue and chikungunya coinfection: A systematic review and meta-analysis of 43,341 participants. Acta Trop 2022; 231:106408. [PMID: 35305942 DOI: 10.1016/j.actatropica.2022.106408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/05/2022] [Accepted: 03/12/2022] [Indexed: 11/20/2022]
Abstract
Dengue and chikungunya virus are important arboviruses of public health concern. In the past decades, they have accounted for numerous outbreaks of dengue and chikungunya in different parts of the world. Several cases of concurrent infection of dengue and chikungunya have been documented. However, the true burden of this concurrent infection is unknown. Here, a systematic review and meta-analysis of published data on the prevalence of dengue and chikungunya coinfection in the human population was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis. Six electronic databases (Web of science, Embase, PubMed, ScienceDirect, Scopus, and Google Scholar) were searched without year or language restrictions for relevant studies. The study protocol was registered with PROSPERO (CRD42020175344). Eighty-three studies involving a total of 43,341 participants were included. The random-effects model was employed to calculate the summary estimates. A pooled global prevalence of 2.5% (95% CI: 1.8-3.4) was obtained for dengue and chikungunya coinfection. Males and females appear to be coinfected at a fairly similar rate. Among the regions, Asia accounted for the highest prevalence (3.3%, 95% CI: 2.3-4.6) while North America was the least (0.8%, 95% CI: 0.3-2.4). The prevalence estimates varied across different countries. A much higher prevalence rates were obtained for Colombia (37.4%, 95% CI: 9.1-78.1), Madagascar (18.2%, 95% CI: 10.1-30.6), Laos (12.5%, 95% CI: 5.3-26.7), Maldives (4.5%, 95% CI: 1.5-13.0) and Thailand (3.7%, 95% CI: 0.4-26.3). This first extensive systematic review and meta-analysis reveals dengue and chikungunya coinfection as a global problem worthy of consideration. It is therefore pertinent that both infections be assessed during diagnosis, mosquito vector control practices be implemented, and vaccine development strides be supported globally.
Collapse
|
3
|
Cadavid Restrepo A, Furuya-Kanamori L, Mayfield H, Nilles E, Lau CL. Implications of a travel connectivity-based approach for infectious disease transmission risks in Oceania. BMJ Open 2021; 11:e046206. [PMID: 34385235 PMCID: PMC8361703 DOI: 10.1136/bmjopen-2020-046206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The increase in international travel brought about by globalisation has enabled the rapid spread of emerging pathogens with epidemic and pandemic potential. While travel connectivity-based assessments may help understand patterns of travel network-mediated epidemics, such approaches are rarely carried out in sufficient detail for Oceania where air travel is the dominant method of transportation between countries. DESIGN Travel data from the Australian Bureau of Statistics, Stats NZ and the United Nations World Tourism Organization websites were used to calculate travel volumes in 2018 within Oceania and between Oceania and the rest of the world. The Infectious Disease Vulnerability Index (IDVI) was incorporated into the analysis as an indicator of each country's capacity to contain an outbreak. Travel networks were developed to assess the spread of infectious diseases (1) into and from Oceania, (2) within Oceania and (3) between each of the Pacific Island Countries and Territories (PICTs) and their most connected countries. RESULTS Oceania was highly connected to countries in Asia, Europe and North America. Australia, New Zealand and several PICTs were highly connected to the USA and the UK (least vulnerable countries for outbreaks based on the IDVI), and to China (intermediate low vulnerable country). High variability was also observed between the PICTs in the geographical distribution of their international connections. The PICTs with the highest number of international connections were Fiji, French Polynesia, Guam and Papua New Guinea. CONCLUSION Travel connectivity assessments may help to accurately stratify the risk of infectious disease importation and outbreaks in countries depending on disease transmission in other parts of the world. This information is essential to track future requirements for scaling up and targeting outbreak surveillance and control strategies in Oceania.
Collapse
Affiliation(s)
- Angela Cadavid Restrepo
- School of Public Health, The University of Queensland, Faculty of Medicine, Brisbane, Queensland, Australia
- Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Luis Furuya-Kanamori
- Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australian Capital Territory, Australia
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Helen Mayfield
- School of Public Health, The University of Queensland, Faculty of Medicine, Brisbane, Queensland, Australia
- Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Eric Nilles
- Harvard Medical Shool, Harvard University, Cambridge, Massachusetts, USA
- Harvard Humanitarian Initiative, Harvard University, Cambridge, Massachusetts, USA
| | - Colleen L Lau
- School of Public Health, The University of Queensland, Faculty of Medicine, Brisbane, Queensland, Australia
- Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
4
|
Im JH, Kim TS, Chung MH, Baek JH, Kwon HY, Lee JS. Current Status and a Perspective of Mosquito-Borne Diseases in the Republic of Korea. Vector Borne Zoonotic Dis 2020; 21:69-77. [PMID: 33136531 DOI: 10.1089/vbz.2019.2588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: Mosquito-borne diseases in the Republic of Korea have a unique epidemiology due to the rapid improvement in hygiene and economic status, occurrence of four distinct seasons, and separation from North Korea owing to the political situation. Therefore, we aimed to analyze and review the epidemiology of mosquito-borne diseases in Korea. Methods: The incidence and geographical distribution of malaria, Japanese encephalitis (JE), Zika virus infection, chikungunya fever, and dengue fever were investigated using data from the Korean Centers for Disease Control and Prevention. Lymphatic filariasis and West Nile fever, which have rarely been reported in Korea, have also been discussed in this literature review. Results and Conclusions: Malaria disappeared from Korea in 1979, but since its re-emergence in 1993 there has been constant occurrence with local transmission. In Korea, vivax malaria is the only prevailing disease, and the clinically problematic chloroquine resistance has not been reported. The incidence of JE has greatly reduced since the introduction of the national vaccination program for children in 1985. However, the incidence of JE has been increasing recently, especially in adults >40 years of age. Filariasis, which was previously endemic to Jeju Island and the southern coastal area, has not been reported since 2002. Although there are numerous imported cases with increasing overseas travel, there are still no indigenous cases of Zika, chikungunya, and dengue fever reported in Korea. The West Nile virus was isolated from migratory birds, but there has been only one imported human case to date.
Collapse
Affiliation(s)
- Jae Hyoung Im
- Division of Infectious Diseases, Department of Internal Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine and Parasitology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Moon-Hyun Chung
- Department of Internal Medicine, Seogwipo Medical Center, Jeju, Republic of Korea
| | - Ji Hyeon Baek
- Division of Infectious Diseases, Department of Internal Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Hea Yoon Kwon
- Division of Infectious Diseases, Department of Internal Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Jin-Soo Lee
- Division of Infectious Diseases, Department of Internal Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| |
Collapse
|
5
|
Development of a neutralization assay based on the pseudotyped chikungunya virus of a Korean isolate. J Microbiol 2019; 58:46-53. [PMID: 31768937 PMCID: PMC7091072 DOI: 10.1007/s12275-020-9384-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 11/05/2022]
Abstract
The Chikungunya virus (CHIKV) belongs to the Alphavirus genus of Togaviridae family and contains a positive-sense single stranded RNA genome. Infection by this virus mainly causes sudden high fever, rashes, headache, and severe joint pain that can last for several months or years. CHIKV, a mosquito-borne arbovirus, is considered a re-emerging pathogen that has become one of the most pressing global health concerns due to a rapid increase in epidemics. Because handling of CHIKV is restricted to Biosafety Level 3 (BSL-3) facilities, the evaluation of prophylactic vaccines or antivirals has been substantially hampered. In this study, we first iden-tified the whole structural polyprotein sequence of a CHIKV strain isolated in South Korea (KNIH/2009/77). Phylogenetic analysis showed that this sequence clustered within the East/ Central/South African CHIKV genotype. Using this sequence information, we constructed a CHIKV-pseudotyped lenti-virus expressing the structural polyprotein of the Korean CHIKV isolate (CHIKVpseudo) and dual reporter genes of green fluorescence protein and luciferase. We then developed a pseudovirus-based neutralization assay (PBNA) using CHIKVpseudo. Results from this assay compared to those from the conventional plaque reduction neutralization test showed that our PBNA was a reliable and rapid method to evaluate the efficacy of neutralizing antibodies. More importantly, the neutralizing activities of human sera from CHIKV-infected individuals were quantitated by PBNA using CHIKVpseudo. Taken together, these results suggest that our PBNA for CHIKV may serve as a useful and safe method for testing the neutralizing activity of antibodies against CHIKV in BSL-2 facilities.
Collapse
|
6
|
Harapan H, Michie A, Mudatsir M, Nusa R, Yohan B, Wagner AL, Sasmono RT, Imrie A. Chikungunya virus infection in Indonesia: a systematic review and evolutionary analysis. BMC Infect Dis 2019; 19:243. [PMID: 30866835 PMCID: PMC6417237 DOI: 10.1186/s12879-019-3857-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/27/2019] [Indexed: 11/13/2022] Open
Abstract
Background Despite the high number of chikungunya cases in Indonesia in recent years, comprehensive epidemiological data are lacking. The systematic review was undertaken to provide data on incidence, the seroprevalence of anti-Chikungunya virus (CHIKV) IgM and IgG antibodies, mortality, the genotypes of circulating CHIKV and travel-related cases of chikungunya in the country. In addition, a phylogenetic and evolutionary analysis of Indonesian CHIKV was conducted. Methods A systematic review was conducted to identify eligible studies from EMBASE, MEDLINE, PubMed and Web of Science as of October 16th 2017. Studies describing the incidence, seroprevalence of IgM and IgG, mortality, genotypes and travel-associated chikungunya were systematically reviewed. The maximum likelihood phylogenetic and evolutionary rate was estimated using Randomized Axelerated Maximum Likelihood (RAxML), and the Bayesian Markov chain Monte Carlo (MCMC) method identified the Time to Most Recent Common Ancestors (TMRCA) of Indonesian CHIKV. The systematic review was registered in the PROSPERO database (CRD42017078205). Results Chikungunya incidence ranged between 0.16-36.2 cases per 100,000 person-year. Overall, the median seroprevalence of anti-CHIKV IgM antibodies in both outbreak and non-outbreak scenarios was 13.3% (17.7 and 7.3% for outbreak and non-outbreak events, respectively). The median seroprevalence of IgG antibodies in both outbreak and non-outbreak settings was 18.5% (range 0.0–73.1%). There were 130 Indonesian CHIKV sequences available, of which 120 (92.3%) were of the Asian genotype and 10 (7.7%) belonged to the East/Central/South African (ECSA) genotype. The ECSA genotype was first isolated in Indonesia in 2008 and was continually sampled until 2011. All ECSA viruses sampled in Indonesia appear to be closely related to viruses that caused massive outbreaks in Southeast Asia countries during the same period. Massive nationwide chikungunya outbreaks in Indonesia were reported during 2009–2010 with a total of 137,655 cases. Our spatio-temporal, phylogenetic and evolutionary data suggest that these outbreaks were likely associated with the introduction of the ECSA genotype of CHIKV to Indonesia. Conclusions Although no deaths have been recorded, the seroprevalence of anti-CHIKV IgM and IgG in the Indonesian population have been relatively high in recent years following re-emergence in early 2001. There is sufficient evidence to suggest that the introduction of ECSA into Indonesia was likely associated with massive chikungunya outbreaks during 2009–2010. Electronic supplementary material The online version of this article (10.1186/s12879-019-3857-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia. .,School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia.
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
| | - Mudatsir Mudatsir
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia. .,Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Jl. T. Tanoeh Abe, Darussalam, Banda Aceh, 23111, Indonesia.
| | - Roy Nusa
- Vector Borne Disease Control, Research and Development Council, Ministry of Health of the Republic of Indonesia, Jakarta, Indonesia
| | | | | | | | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia. .,Pathwest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia.
| |
Collapse
|
7
|
Salam N, Mustafa S, Hafiz A, Chaudhary AA, Deeba F, Parveen S. Global prevalence and distribution of coinfection of malaria, dengue and chikungunya: a systematic review. BMC Public Health 2018; 18:710. [PMID: 29879935 PMCID: PMC5992662 DOI: 10.1186/s12889-018-5626-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Malaria, Dengue and Chikungunya are vector borne diseases with shared endemic profiles and symptoms. Coinfections with any of these diseases could have fatal outcomes if left undiagnosed. Understanding the prevalence and distribution of coinfections is necessary to improve diagnosis and designing therapeutic interventions. METHODS We have carried out a systematic search of the published literature based on PRISMA guidelines to identify cases of Malaria, Dengue and Chikungunya coinfections. We systematically reviewed the literature to identify eligible studies and extracted data regarding cases of coinfection from cross sectional studies, case reports, retrospective studies, prospective observational studies and surveillance reports. RESULTS Care full screening resulted in 104 publications that met the eligibility criteria and reported Malaria/Dengue, Dengue/Chikungunya, Malaria/Chikungunya and Malaria/Dengue/Chikungunya coinfections. These coinfections were spread over six geographical locations and 42 different countries and are reported more frequently in the last 15 years possibly due to expanding epidemiology of Dengue and Chikungunya. Few of these reports have also analysed distinguishing features of coinfections. Malaria/Dengue coinfections were the most common coinfection followed by Dengue/Chikungunya, Malaria/Chikungunya and Malaria/Dengue/Chikungunya coinfections. P. falciparum and P. vivax were the commonest species found in cases of malaria coinfections and Dengue serotype-4 commonest serotype in cases of dengue coinfections. Most studies were reported from India. Nigeria and India were the only two countries from where all possible combinations of coinfections were reported. CONCLUSION We have comprehensively reviewed the literature associated with cases of coinfections of three important vector borne diseases to present a clear picture of their prevalence and distribution across the globe. The frequency of coinfections presented in the study suggests proper diagnosis, surveillance and management of cases of coinfection to avoid poor prognosis of the underlying etiology.
Collapse
Affiliation(s)
- Nasir Salam
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Shoeb Mustafa
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdul Hafiz
- Department of Parasitology, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Anis Ahmad Chaudhary
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Farah Deeba
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| |
Collapse
|
8
|
Lo Presti A, Cella E, Angeletti S, Ciccozzi M. Molecular epidemiology, evolution and phylogeny of Chikungunya virus: An updating review. INFECTION GENETICS AND EVOLUTION 2016; 41:270-278. [PMID: 27085290 DOI: 10.1016/j.meegid.2016.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 01/08/2023]
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus belonging to the Togaviridae family, causing a febrile illness associated with severe arthralgia and rash. In this review, we summarized a series of articles published from 2013 to 2016 concerning CHIKV epidemiology, phylogeny, vaccine and therapies, to give an update of our most recent article written in 2014 (Lo Presti et al.,2014). CHIKV infection was first reported in 1952 from Makonde plateaus and since this time caused many outbreaks worldwide, involving the Indian Ocean region, African countries, American continent and Italy. CHIKV infection is still underestimated and it is normally associated with clinical symptoms overlapping with dengue virus, recurring epidemics and mutations within the viral genome. These characteristics promote the geographical spread and the inability to control vector-mediated transmission of the virus. For these reasons, the majority of studies were aimed to describe outbreaks and to enhance knowledge on CHIKV biology, pathogenesis, infection treatment, and prevention. In this review, 16 studies on CHIKV phylogenetic and phylodinamics were considered, during the years 2013-2016. Phylogenetic and phylodinamic analysis are useful tools to investigate how the genealogy of a pathogen population is influenced by pathogen's demographic history, host immunological milieu and environmental/ecological factors. Phylogenetic tools were revealed important to reconstruct the geographic spread of CHIKV during the epidemics wave and to have information on the circulating strains of the virus, that are important for the prediction and control of the epidemics, as well as for vaccines and antiviral drugs development. In conclusion, this updating review can give a critical appraisal of the epidemiology, therapeutic and phylogenesis of CHIKV, reinforcing the need to monitor the geographic spread of virus and vectors.
Collapse
Affiliation(s)
- Alessandra Lo Presti
- Department of Infectious Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Eleonora Cella
- Department of Infectious Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy; Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Silvia Angeletti
- Unit of Clinical Pathology and Microbiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Massimo Ciccozzi
- Department of Infectious Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy; Unit of Clinical Pathology and Microbiology, University Campus Bio-Medico of Rome, Rome, Italy.
| |
Collapse
|
9
|
Marcondes CB, Ximenes MDFFDM. Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Rev Soc Bras Med Trop 2015; 49:4-10. [PMID: 26689277 DOI: 10.1590/0037-8682-0220-2015] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/14/2015] [Indexed: 01/02/2023] Open
Abstract
Zika virus, already widely distributed in Africa and Asia, was recently reported in two Northeastern Brazilian: State of Bahia and State of Rio Grande do Norte, and one Southeastern: State of São Paulo. This finding adds a potentially noxious virus to a list of several other viruses that are widely transmitted by Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in Brazil. The pathology and epidemiology, including the distribution and vectors associated with Zika virus, are reviewed. This review is focused on viruses transmitted by Aedes (Stegomyia) mosquitoes, including dengue, Chikungunya, Zika, Mayaro, and yellow fever virus, to emphasize the risks of occurrence for these arboviruses in Brazil and neighboring countries. Other species of Aedes (Stegomyia) are discussed, emphasizing their involvement in arbovirus transmission and the possibility of adaptation to environments modified by human activities and introduction in Brazil.
Collapse
Affiliation(s)
- Carlos Brisola Marcondes
- Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | |
Collapse
|
10
|
Hwang JH, Lee CS. The first imported case infected with chikungunya virus in Korea. Infect Chemother 2015; 47:55-9. [PMID: 25844264 PMCID: PMC4384451 DOI: 10.3947/ic.2015.47.1.55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/13/2014] [Accepted: 05/28/2014] [Indexed: 11/24/2022] Open
Abstract
Chikungunya is caused by an arbovirus transmitted by Aedes mosquito vector. With the increase of habitat of mosquito by global warming and frequent international travel and interchange, chikungunya reemerged and showed global distribution recently. Until now there has not been reported any case infected with chikungunya virus in Korea. A 23-year-old man has been the Republic of the Philippines for 1 week, and visited our emergency center due to fever and back pain. Chikungunya viral infection was diagnosed by specific IgM for chickungunya virus by enzyme-linked immunosorbent assayin Korea Centers for Disease Control and Prevention. His clinical course was self limited. We introduce the first imported case infected with chikungunya virus in Korea.
Collapse
Affiliation(s)
- Jeong-Hwan Hwang
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Korea. ; Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, Korea
| | - Chang-Seop Lee
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Korea. ; Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
11
|
Abstract
In this chapter, we describe 73 zoonotic viruses that were isolated in Northern Eurasia and that belong to the different families of viruses with a single-stranded RNA (ssRNA) genome. The family includes viruses with a segmented negative-sense ssRNA genome (families Bunyaviridae and Orthomyxoviridae) and viruses with a positive-sense ssRNA genome (families Togaviridae and Flaviviridae). Among them are viruses associated with sporadic cases or outbreaks of human disease, such as hemorrhagic fever with renal syndrome (viruses of the genus Hantavirus), Crimean–Congo hemorrhagic fever (CCHFV, Nairovirus), California encephalitis (INKV, TAHV, and KHATV; Orthobunyavirus), sandfly fever (SFCV and SFNV, Phlebovirus), Tick-borne encephalitis (TBEV, Flavivirus), Omsk hemorrhagic fever (OHFV, Flavivirus), West Nile fever (WNV, Flavivirus), Sindbis fever (SINV, Alphavirus) Chikungunya fever (CHIKV, Alphavirus) and others. Other viruses described in the chapter can cause epizootics in wild or domestic animals: Geta virus (GETV, Alphavirus), Influenza A virus (Influenzavirus A), Bhanja virus (BHAV, Phlebovirus) and more. The chapter also discusses both ecological peculiarities that promote the circulation of these viruses in natural foci and factors influencing the occurrence of epidemic and epizootic outbreaks
Collapse
|