1
|
Nežić L, Škrbić R, Amidžić L, Gajanin R, Kuča K, Jaćević V. Simvastatin Protects Cardiomyocytes Against Endotoxin-induced Apoptosis and Up-regulates Survivin/NF-κB/p65 Expression. Sci Rep 2018; 8:14652. [PMID: 30279549 PMCID: PMC6168467 DOI: 10.1038/s41598-018-32376-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
This study is aimed to investigate whether simvastatin induces cardiomyocytes survival signaling in endotoxin (lipopolysaccharide, LSP)-induced myocardial injury, and if so, further to determine a role of survivin in simvastatin-anti-apoptotic effect. Wistar rats were pretreated with simvastatin (10–40 mg/kg po) before a single non-lethal dose of LPS. In myocardial tissue, LPS induced structural disorganization of myofibrils with significant inflammatory infiltrate (cardiac damage score, CDS = 3.87 ± 0.51, p < 0.05), whereas simvastatin dose-dependently abolished structural changes induced by LPS (p < 0.01). Simvastatin in 20 mg/kg and 40 mg/kg pretreatment, dose dependently, attenuated myocardial apoptosis determined as apoptotic index (28.8 ± 4.5% and 18.9 ± 3.5, p < 0.05), decreased cleaved caspase-3 expression (32.1 ± 5.8%, p < 0.01), along with significant Bcl-xL expression in the simvastatin groups (p < 0.01). Interestingly, in the simvastatin groups were determined significantly increased expression of survivin (p < 0.01), but in negative correlation with cleaved caspase-3 and apoptotic indices (p < 0.01). Simvastatin has a cardioprotective effects against LPS induced apoptosis. The effect may be mediated by up-regulation of survivin via activation of NF-κB, which leads to reduced activation of caspase-3 and consequent apoptosis of cardiomyocytes in experimental sepsis.
Collapse
Affiliation(s)
- Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, School of Medicine, University of Banja Luka, 14 Save Mrkalja St, 78000, Banja Luka, Bosnia and Herzegovina
| | - Ranko Škrbić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, School of Medicine, University of Banja Luka, 14 Save Mrkalja St, 78000, Banja Luka, Bosnia and Herzegovina
| | - Ljiljana Amidžić
- Institute of Pathology, University Clinical Center of Republic of Srpska, School of Medicine, University of Banja Luka, 12 Beba St, 78000, Banja Luka, Bosnia and Herzegovina
| | - Radoslav Gajanin
- Institute of Pathology, University Clinical Center of Republic of Srpska, School of Medicine, University of Banja Luka, 12 Beba St, 78000, Banja Luka, Bosnia and Herzegovina
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03, Hradec Králové, Czech Republic.
| | - Vesna Jaćević
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03, Hradec Králové, Czech Republic.,National Poison Control Centre, Military Medical Academy, 11 Crnotravska St, 11000, Belgrade, Serbia.,Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, 1 Pavla Jurišića-Šturma St, 11000, Belgrade, Serbia
| |
Collapse
|
2
|
The role of vasopressin and the vasopressin type V1a receptor agonist selepressin in septic shock. J Crit Care 2017; 40:41-45. [PMID: 28319910 DOI: 10.1016/j.jcrc.2017.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/28/2017] [Accepted: 03/09/2017] [Indexed: 11/21/2022]
Abstract
Septic shock remains one of the major causes of morbidity and mortality in the critically ill. Despite early goal therapy and administration of cathecholaminergic agents, up to 30% of patients succumb to the disease. In this manuscript, we first summarize the standard of care of patients with septic shock and current guidelines. We review the physiologic role of vasopressin and its role in septic shock management. We then review the most up-to-date evidence on the potential role of V1a receptor agonists such as Selepressin, in septic shock. Exciting new trials are being completed in order to elucidate the role of V1a receptor agonists as potential first-line vasopressor alternatives in the therapy of circulatory shock in septic patients.
Collapse
|
3
|
Wang Y, Wang Y, Yang D, Yu X, Li H, Lv X, Lu D, Wang H. β₁-adrenoceptor stimulation promotes LPS-induced cardiomyocyte apoptosis through activating PKA and enhancing CaMKII and IκBα phosphorylation. Crit Care 2015; 19:76. [PMID: 25887954 PMCID: PMC4383083 DOI: 10.1186/s13054-015-0820-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/18/2015] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Caspase activation and cardiomyocyte apoptosis have been implicated in lipopolysaccharide (LPS)-induced cardiac contractile dysfunction. We have recently demonstrated that β1-adrenoceptor (AR) activation by endogenous norepinephrine contributes to cardiomyocyte apoptosis in endotoxemic mice. Here, we further investigated the molecular mechanisms for the enhancing effect of β₁-AR activation on LPS-induced cardiomyocyte apoptosis. METHODS The adult mouse ventricular myocytes were exposed to LPS, dobutamine, protein kinase A (PKA) inhibitor or/and nifedipine, an L-type Ca(2+) channel blocker. Male BALB/c mice were treated with LPS or/ and β₁-AR antagonist, atenolol. Cardiomyocyte apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL) assay and apoptosis-associated molecules were detected. RESULTS LPS induced apoptosis in adult mouse ventricular myocytes, dobutamine (DOB), a β₁-AR agonist, promoted apoptosis, caspase-8, 9 and 3 activation and increased cytosolic Ca(2+) concentration in LPS-challenged cardiomyocytes. DOB also up-regulated TNF-α expression, decreased Bcl-2 levels, promoted Bax translocation to mitochondria, mitochondrial membrane potential loss and cytochrome c release as well as IκBα, p38 MAPK, JNK and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) phosphorylation in LPS-treated cardiomyocytes. PKA inhibitor abolished the effects of DOB on caspase-9 activation, Bcl-2 levels as well as JNK and p38 MAPK phosphorylation, but not on IκBα phosphorylation, TNF-α expression and caspase-8 activation in LPS-stimulated cardiomyocytes. Pretreatment with nifedipine not only significantly blocked the enhancing effects of DOB on LPS-induced elevation in cytosolic Ca(2+) concentration and CaMKII phosphorylation in cardiomyocytes, but also partly reversed the effects of DOB on caspase-9 and caspase-3/7 activities in LPS-treated cardiomyocytes. Furthermore, atenolol suppressed TNF-α expression, JNK, p38 MAPK and CaMKII phosphorylation, increased Bcl-2 expression, and inhibited cytochrome c release and cardiomyocyte apoptosis in the myocardium of endotoxemic mice. CONCLUSIONS β1-AR activation promotes LPS-induced apoptosis through activating PKA, increasing CaMKII phosphorylation as well as enhancing IκBα phosphorylation and TNF-α expression in cardiomyocytes.
Collapse
Affiliation(s)
- Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Yuan Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Duomeng Yang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Xiaohui Yu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Hongmei Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
- Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Xiuxiu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
- Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Daxiang Lu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
- Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Huadong Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
- Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
4
|
Wang Y, Yu X, Wang F, Wang Y, Wang Y, Li H, Lv X, Lu D, Wang H. Yohimbine promotes cardiac NE release and prevents LPS-induced cardiac dysfunction via blockade of presynaptic α2A-adrenergic receptor. PLoS One 2013; 8:e63622. [PMID: 23691077 PMCID: PMC3653853 DOI: 10.1371/journal.pone.0063622] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/04/2013] [Indexed: 02/08/2023] Open
Abstract
Myocardial depression is an important contributor to mortality in sepsis. We have recently demonstrated that α2-adrenoceptor (AR) antagonist, yohimbine (YHB), attenuates lipopolysaccharide (LPS)-induced myocardial depression. However, the mechanisms for this action of YHB are unclear. Here, we demonstrated that YHB decreased nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) levels in the myocardium and plasma, attenuated cardiac and hepatic dysfunction, but not kidney and lung injuries in endotoxemic mice. Immunohistochemical analysis revealed that cardiac α2A-AR was mostly located in sympathetic nerve presynaptic membrane; YHB decreased cardiac α2A-AR level and promoted cardiac norepinephrine (NE) release in endotoxemic mice. Reserpine that exhausted cardiac NE without markedly decreasing plasma NE level abrogated the inhibitory effects of YHB on cardiac TNF-α and iNOS expression as well as cardiac dysfunction, but not the suppressive effects of YHB on plasma TNF-α and NO elevation in LPS-challenged mice. Furthermore, both reserpine and YHB significantly inhibited LPS-induced myocardial apoptosis. α1-AR, β2-AR, but not β1-AR antagonists reversed the inhibitory effect of YHB on LPS-stimulated myocardial apoptosis. However, β1-AR antagonist attenuated LPS-caused cardiomyocyte apoptosis, partly abolished the protective effect of YHB on the left ventricular ejection fraction in endotoxemic mice. Altogether, these findings indicate that YHB attenuates LPS-induced cardiac dysfunction, at least in part, through blocking presynaptic α2A-AR and thus increasing cardiac NE release. YHB-elevated cardiac NE improves cardiac function via suppressing cardiac iNOS and TNF-α expression, activating β1-AR and inhibiting cardiomyocyte apoptosis through α1- and β2-AR in endotoxemic mice. However, cardiac β1-AR activation promotes LPS-induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiaohui Yu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Faqiang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yuan Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yanping Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hongmei Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiuxiu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Huadong Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
5
|
Bangash MN, Kong ML, Pearse RM. Use of inotropes and vasopressor agents in critically ill patients. Br J Pharmacol 2012; 165:2015-33. [PMID: 21740415 DOI: 10.1111/j.1476-5381.2011.01588.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inotropes and vasopressors are biologically and clinically important compounds that originate from different pharmacological groups and act at some of the most fundamental receptor and signal transduction systems in the body. More than 20 such agents are in common clinical use, yet few reviews of their pharmacology exist outside of physiology and pharmacology textbooks. Despite widespread use in critically ill patients, understanding of the clinical effects of these drugs in pathological states is poor. The purpose of this article is to describe the pharmacology and clinical applications of inotropic and vasopressor agents in critically ill patients.
Collapse
Affiliation(s)
- Mansoor N Bangash
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | | | | |
Collapse
|
6
|
Modulation of myocardial mitochondrial mechanisms during severe polymicrobial sepsis in the rat. PLoS One 2011; 6:e21285. [PMID: 21712982 PMCID: PMC3119671 DOI: 10.1371/journal.pone.0021285] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 05/24/2011] [Indexed: 01/13/2023] Open
Abstract
Background We tested the hypothesis that 5-Hydroxydecanoic acid (5HD), a putative mitoKATP channel blocker, will reverse sepsis-induced cardiodynamic and adult rat ventricular myocyte (ARVM) contractile dysfunction, restore mitochondrial membrane permeability alterations and improve survival. Methodology/Principal Findings Male Sprague-Dawley rats (350–400 g) were made septic using 400 mg/kg cecal inoculum, ip. Sham animals received 5% dextrose water, ip. The Voltage Dependent Anion Channels (VDAC1), Bax and cytochrome C levels were determined in isolated single ARVMs obtained from sham and septic rat heart. Mitochondria and cytosolic fractions were isolated from ARVMs treated with norepinephrine (NE, 10 µmoles) in the presence/absence of 5HD (100 µmoles). A continuous infusion of 5HD using an Alzet pump reversed sepsis-induced mortality when administered at the time of induction of sepsis (−40%) and at 6 hr post-sepsis (−20%). Electrocardiography revealed that 5HD reversed sepsis-induced decrease in the average ejection fraction, Simpsons+m Mode (53.5±2.5 in sepsis and 69.2±1.2 at 24 hr in sepsis+5HD vs. 79.9±1.5 basal group) and cardiac output (63.3±1.2 mL/min sepsis and 79.3±3.9 mL/min at 24 hr in sepsis+5HD vs. 85.8±1.5 mL/min basal group). The treatment of ARVMs with 5HD also reversed sepsis-induced depressed contractility in both the vehicle and NE-treated groups. Sepsis produced a significant downregulation of VDAC1, and upregulation of Bax levels, along with mitochondrial membrane potential collapse in ARVMs. Pretreatment of septic ARVMs with 5HD blocked a NE-induced decrease in the VDAC1 and release of cytochrome C. Conclusion The data suggest that Bax activation is an upstream event that may precede the opening of the mitoKATP channels in sepsis. We concluded that mitoKATP channel inhibition via decreased mitochondrial membrane potential and reduced release of cytochrome C provided protection against sepsis-induced ARVM and myocardial contractile dysfunction.
Collapse
|
7
|
Chopra M, Das P, Golden H, Dostal DE, Watson LE, Sharma AC. Norepinephrine induces systolic failure and inhibits antiapoptotic genes in a polymicrobial septic rat model. Life Sci 2010; 87:672-8. [PMID: 20933523 DOI: 10.1016/j.lfs.2010.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/08/2010] [Accepted: 09/27/2010] [Indexed: 11/26/2022]
Abstract
AIMS We examined the effect of norepinephrine (NE) infusion on left ventricular function and apoptotic genes during progression of polymicrobial sepsis. METHODS Male Sprague-Dawley rats (350-400 g) were made septic by intraperitoneal (i.p.) administration of 200mg/kg cecal inoculum. Sham animals received 5% dextrose water, i.p. Echocardiography was performed at baseline, 3 days and 7 days post-sepsis/sham. NE (0.6 μgkg(-1)h(-1)) was infused for 2h, before the end of day 3 of echocardiography. At the end of day 7, rats were euthanized and heart tissues harvested for isolation of total RNA. PCR was performed using RT(2) profiler™ PCR array PARN-012 (Rat apoptosis array; SuperArray, MD) using RT(2) Real-Time™ SYBR Green PCR master mix PA-012. KEY FINDINGS NE-infusion resulted in a significant decrease in the left ventricular ejection fraction (EF) (62.56±2.07 from the baseline 71.11±3.23, p<0.05) and fractional shortening (FS) (39.90±2.64 from the sham group 54.41±2.19, p<0.05) at 7 days post-sepsis, respectively. Super Array data revealed that during sepsis, tumor necrosis factor (TNF-α) (2.85±0.07 fold, p<0.0001), anti-apoptotic molecules, Prok2 (16.07±0.48 fold, p<0.0001) and interleukin-10 (IL-10) (23.5±0.57 fold, p<0.0001) were up regulated at day 1. At 7-days post-sepsis, CD40l g (2.49±0.54 fold, p<0.08) and Birc1b (17.8±0.58 fold, p<0.0001) were up regulated compared to the sham, 1 and 3-days post-sepsis groups. SIGNIFICANCE The data suggest that upregulation of a series of pro-apoptotic molecules could be responsible for systolic and diastolic dysfunction during 3 and 7 days post sepsis.
Collapse
Affiliation(s)
- Mani Chopra
- Department of Biomedical Sciences, Texas A&M Health Science Center Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | | | | | | | | | | |
Collapse
|
8
|
Chopra M, Das P, Sharma AC. Caspase-3 knock-down reverses contractile dysfunction induced by sepsis in adult rat ventricular myocytes. Br J Pharmacol 2010; 160:93-100. [PMID: 20331606 DOI: 10.1111/j.1476-5381.2010.00686.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The present study tested the hypothesis that selective caspase-3 (C-3) knock-out would regulate the contractile actions of noradrenaline (NA) in the dysfunction of adult rat ventricular myocytes (ARVMs) induced by sepsis. Here, we have studied the contractile response of ARVMs, transfected with C-3 small interfering RNA (C-3 siRNA), to NA. EXPERIMENTAL APPROACH Single ARVMs were isolated from the hearts of male Sprague-Dawley rats 3 days after induction of sepsis, and from sham-treated rats. The sham and septic ARVMs were treated with NA (10 microM) alone or after transfection with C-3 siRNA or non-silencing RNA (2 microM). Mechanical properties were measured digitally, and immunoblotting and immunocytochemical analyses were carried out. KEY RESULTS The NA-induced increase in peak shortening (PS) was less in septic ARVMs and transfection with C-3 siRNA produced a significant increase in this PS. Immunocytochemical and immunoblot analyses revealed that NA exacerbated sepsis-induced up-regulation of C-3. Transfection of septic ARVMs with C-3 siRNA exhibited a decreased expression of C-3 fluorescence after NA. In septic ARVMs, we also observed a down-regulation of contractile proteins (alpha-actin, myosin light chain-1 and tropomyosin) along with DNA damage. Transfection of septic ARVMs with C-3 siRNA produced an increase in the expression of contractile proteins, and a decrease in DNA damage. CONCLUSIONS AND IMPLICATIONS These data suggest that C-3 knock-down improved the loss of contractile response to NA in septic ARVMs, suggesting that C-3 regulated contractile dysfunction induced by sepsis in ARVMs.
Collapse
Affiliation(s)
- Mani Chopra
- Cardionome Laboratory, Department of Biomedical Sciences, Texas A&M Health Science Center Baylor College of Dentistry, Dallas, TX, USA
| | | | | |
Collapse
|