1
|
Provitera L, Amelio GS, Tripodi M, Raffaeli G, Macchini F, Amodeo I, Gulden S, Cortesi V, Manzoni F, Cervellini G, Tomaselli A, Zuanetti G, Lonati C, Battistin M, Kamel S, Parente V, Pravatà V, Villa S, Villamor E, Mosca F, Cavallaro G. Veno-Arterial Extracorporeal Membrane Oxygenation (ECMO) Impairs Bradykinin-Induced Relaxation in Neonatal Porcine Coronary Arteries. Biomedicines 2022; 10:biomedicines10092083. [PMID: 36140183 PMCID: PMC9495700 DOI: 10.3390/biomedicines10092083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a lifesaving support for respiratory and cardiovascular failure. However, ECMO induces a systemic inflammatory response syndrome that can lead to various complications, including endothelial dysfunction in the cerebral circulation. We aimed to investigate whether ECMO-associated endothelial dysfunction also affected coronary circulation. Ten-day-old piglets were randomized to undergo either 8 h of veno-arterial ECMO (n = 5) or no treatment (Control, n = 5). Hearts were harvested and coronary arteries were dissected and mounted as 3 mm rings in organ baths for isometric force measurement. Following precontraction with the thromboxane prostanoid (TP) receptor agonist U46619, concentration−response curves to the endothelium-dependent vasodilator bradykinin (BK) and the nitric oxide (NO) donor (endothelium-independent vasodilator) sodium nitroprusside (SNP) were performed. Relaxation to BK was studied in the absence or presence of the NO synthase inhibitor Nω-nitro-L-arginine methyl ester HCl (L-NAME). U46619-induced contraction and SNP-induced relaxation were similar in control and ECMO coronary arteries. However, BK-induced relaxation was significantly impaired in the ECMO group (30.4 ± 2.2% vs. 59.2 ± 2.1%; p < 0.0001). When L-NAME was present, no differences in BK-mediated relaxation were observed between the control and ECMO groups. Taken together, our data suggest that ECMO exposure impairs endothelium-derived NO-mediated coronary relaxation. However, there is a NO-independent component in BK-induced relaxation that remains unaffected by ECMO. In addition, the smooth muscle cell response to exogenous NO is not altered by ECMO exposure.
Collapse
Affiliation(s)
- Livia Provitera
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giacomo S. Amelio
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Matteo Tripodi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Genny Raffaeli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
- Correspondence:
| | - Francesco Macchini
- Department of Pediatric Surgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pediatric Surgery, ASST Grande Ospedale Metropolitano (GOM) Niguarda, 20162 Milan, Italy
| | - Ilaria Amodeo
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Silvia Gulden
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valeria Cortesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Francesca Manzoni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Gaia Cervellini
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Andrea Tomaselli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Gabriele Zuanetti
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Caterina Lonati
- Center for Preclinical Investigation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Michele Battistin
- Center for Preclinical Investigation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Shady Kamel
- Betamed Perfusion Service, 00192 Rome, Italy
| | | | - Valentina Pravatà
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefania Villa
- Transfusion Center and Blood Component Bank of Rare Groups, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Reproduction (GROW), University of Maastricht, 6229 Maastricht, The Netherlands
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
2
|
Kapil V, Khambata RS, Jones DA, Rathod K, Primus C, Massimo G, Fukuto JM, Ahluwalia A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol Rev 2020; 72:692-766. [PMID: 32576603 DOI: 10.1124/pr.120.019240] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
In contrast to nitric oxide, which has well established and important roles in the regulation of blood flow and thrombosis, neurotransmission, the normal functioning of the genitourinary system, and the inflammation response and host defense, its oxidized metabolites nitrite and nitrate have, until recently, been considered to be relatively inactive. However, this view has been radically revised over the past decade and more. Much evidence has now accumulated demonstrating that nitrite serves as a storage form of nitric oxide, releasing nitric oxide preferentially under acidic and/or hypoxic conditions but also occurring under physiologic conditions: a phenomenon that is catalyzed by a number of distinct mammalian nitrite reductases. Importantly, preclinical studies demonstrate that reduction of nitrite to nitric oxide results in a number of beneficial effects, including vasodilatation of blood vessels and lowering of blood pressure, as well as cytoprotective effects that limit the extent of damage caused by an ischemia/reperfusion insult, with this latter issue having been translated more recently to the clinical setting. In addition, research has demonstrated that the other main metabolite of the oxidation of nitric oxide (i.e., nitrate) can also be sequentially reduced through processing in vivo to nitrite and then nitrite to nitric oxide to exert a range of beneficial effects-most notably lowering of blood pressure, a phenomenon that has also been confirmed recently to be an effective method for blood pressure lowering in patients with hypertension. This review will provide a detailed description of the pathways involved in the bioactivation of both nitrate and nitrite in vivo, their functional effects in preclinical models, and their mechanisms of action, as well as a discussion of translational exploration of this pathway in diverse disease states characterized by deficiencies in bioavailable nitric oxide. SIGNIFICANCE STATEMENT: The past 15 years has seen a major revision in our understanding of the pathways for nitric oxide synthesis in the body with the discovery of the noncanonical pathway for nitric oxide generation known as the nitrate-nitrite-nitric oxide pathway. This review describes the molecular components of this pathway, its role in physiology, potential therapeutics of targeting this pathway, and their impact in experimental models, as well as the clinical translation (past and future) and potential side effects.
Collapse
Affiliation(s)
- V Kapil
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - R S Khambata
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - D A Jones
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - K Rathod
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - C Primus
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - G Massimo
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - J M Fukuto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - A Ahluwalia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| |
Collapse
|
3
|
Bautista-Niño PK, van der Stel M, Batenburg WW, de Vries R, Roks AJ, Danser AJ. Endothelium-derived hyperpolarizing factor and protein kinase G Iα activation: H 2 O 2 versus S -nitrosothiols. Eur J Pharmacol 2018; 827:112-116. [DOI: 10.1016/j.ejphar.2018.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 01/18/2023]
|
4
|
Tare M, Kalidindi RSR, Bubb KJ, Parkington HC, Boon WM, Li X, Sobey CG, Drummond GR, Ritchie RH, Kemp-Harper BK. Vasoactive actions of nitroxyl (HNO) are preserved in resistance arteries in diabetes. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:397-408. [PMID: 28074232 DOI: 10.1007/s00210-016-1336-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
Abstract
Endothelial dysfunction is a major risk factor for the vascular complications of diabetes. Increased reactive oxygen species (ROS) generation, a hallmark of diabetes, reduces the bioavailability of endothelial vasodilators, including nitric oxide (NO·). The vascular endothelium also produces the one electron reduced and protonated form of NO·, nitroxyl (HNO). Unlike NO·, HNO is resistant to scavenging by superoxide anions (·O2─). The fate of HNO in resistance arteries in diabetes is unknown. We tested the hypothesis that the vasodilator actions of endogenous and exogenous HNO are preserved in resistance arteries in diabetes. We investigated the actions of HNO in small arteries from the mesenteric and femoral beds as they exhibit marked differences in endothelial vasodilator function following 8 weeks of streptozotocin (STZ)-induced diabetes mellitus. Vascular reactivity was assessed using wire myography and ·O2─ generation using lucigenin-enhanced chemiluminescence. The HNO donor, Angeli's salt, and the NO· donor, DEA/NO, evoked relaxations in both arteries of control rats, and these responses were unaffected by diabetes. Nox2 oxidase expression and ·O2─ generation were upregulated in mesenteric, but unchanged, in femoral arteries of diabetic rats. Acetylcholine-induced endothelium-dependent relaxation was impaired in mesenteric but not femoral arteries in diabetes. The HNO scavenger, L-cysteine, reduced this endothelium-dependent relaxation to a similar extent in femoral and mesenteric arteries from control and diabetic animals. In conclusion, HNO and NO· contribute to the NO synthase (NOS)-sensitive component of endothelium-dependent relaxation in mesenteric and femoral arteries. The role of HNO is sustained in diabetes, serving to maintain endothelium-dependent relaxation.
Collapse
Affiliation(s)
- Marianne Tare
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia.,Monash Rural Health, Monash University, Churchill, VIC, Australia
| | - Rushita S R Kalidindi
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kristen J Bubb
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia.,Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Helena C Parkington
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Wee-Ming Boon
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Xiang Li
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher G Sobey
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC, 3800, Australia
| | - Grant R Drummond
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC, 3800, Australia
| | - Rebecca H Ritchie
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Barbara K Kemp-Harper
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
5
|
Zhu G, Groneberg D, Sikka G, Hori D, Ranek MJ, Nakamura T, Takimoto E, Paolocci N, Berkowitz DE, Friebe A, Kass DA. Soluble guanylate cyclase is required for systemic vasodilation but not positive inotropy induced by nitroxyl in the mouse. Hypertension 2014; 65:385-92. [PMID: 25452469 DOI: 10.1161/hypertensionaha.114.04285] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitroxyl (HNO), the reduced and protonated form of nitric oxide (NO·), confers unique physiological effects including vasorelaxation and enhanced cardiac contractility. These features have spawned current pharmaceutical development of HNO donors as heart failure therapeutics. HNO interacts with selective redox sensitive cysteines to effect signaling but is also proposed to activate soluble guanylate cyclase (sGC) in vitro to induce vasodilation and potentially enhance contractility. Here, we tested whether sGC stimulation is required for these HNO effects in vivo and if HNO also modifies a redox-sensitive cysteine (C42) in protein kinase G-1α to control vasorelaxation. Intact mice and isolated arteries lacking the sGC-β subunit (sGCKO, results in full sGC deficiency) or expressing solely a redox-dead C42S mutant protein kinase G-1α were exposed to the pure HNO donor, CXL-1020. CXL-1020 induced dose-dependent systemic vasodilation while increasing contractility in controls; however, vasodilator effects were absent in sGCKO mice whereas contractility response remained. The CXL-1020 dose reversing 50% of preconstricted force in aortic rings was ≈400-fold greater in sGCKO than controls. Cyclic-GMP and cAMP levels were unaltered in myocardium exposed to CXL-1020, despite its inotropic-vasodilator activity. In protein kinase G-1α(C42S) mice, CXL-1020 induced identical vasorelaxation in vivo and in isolated aortic and mesenteric vessels as in littermate controls. In both groups, dilation was near fully blocked by pharmacologically inhibiting sGC. Thus, sGC and cGMP-dependent signaling are necessary and sufficient for HNO-induced vasodilation in vivo but are not required for positive inotropic action. Redox modulation of protein kinase G-1α is not a mechanism for HNO-mediated vasodilation.
Collapse
Affiliation(s)
- Guangshuo Zhu
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Dieter Groneberg
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Gautam Sikka
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Daijiro Hori
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Mark J Ranek
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Taishi Nakamura
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Eiki Takimoto
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Nazareno Paolocci
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Dan E Berkowitz
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Andreas Friebe
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - David A Kass
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD.
| |
Collapse
|