1
|
Jin S, He S, Zhang Y. In Response. Anesth Analg 2025:00000539-990000000-01347. [PMID: 40560771 DOI: 10.1213/ane.0000000000007624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2025]
Affiliation(s)
- Shiyun Jin
- Department of Anesthesiology the Second Affiliated Hospital of Anhui Medical University Hefei, China Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes Anhui Medical University Hefei, China
| | - Shufang He
- Department of Anesthesiology the Second Affiliated Hospital of Anhui Medical University Hefei, China Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes Anhui Medical University Hefei, China
| | - Ye Zhang
- Department of Anesthesiology the Second Affiliated Hospital of Anhui Medical University Hefei, China Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes Anhui Medical University Hefei, China
| |
Collapse
|
2
|
Lasch A, Celik MÖ, Schäfer M, Treskatsch S. Morphine and Cardioprotection in a Failing Heart: Are Opioids A Friend, Foe, or Both? Anesth Analg 2025:00000539-990000000-01345. [PMID: 40560774 DOI: 10.1213/ane.0000000000007623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2025]
Affiliation(s)
- Alexandra Lasch
- Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Melih Ö Celik
- Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Schäfer
- Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sascha Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Matsiras D, Ventoulis I, Verras C, Bistola V, Bezati S, Fyntanidou B, Polyzogopoulou E, Parissis JT. Proenkephalin 119-159 in Heart Failure: From Pathophysiology to Clinical Implications. J Clin Med 2025; 14:2657. [PMID: 40283487 PMCID: PMC12027756 DOI: 10.3390/jcm14082657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Heart failure (HF) is a challenging clinical syndrome with high morbidity and mortality rates. Along the spectrum of cardiovascular diseases, HF constitutes an ever-expanding area of research aiming at combating the associated mortality and improving the prognosis of patients with HF. Although natriuretic peptides have an established role among biomarkers in HF diagnosis and prognosis, several novel biomarkers reflecting the complex pathophysiology of HF are under investigation for their ability to predict adverse clinical outcomes in HF. Proenkephalin 119-159 (PENK119-159) is a non-functional peptide belonging to the enkephalin family of the endogenous opioid system and is considered a surrogate biomarker of the biologically active enkephalin peptides. PENK119-159 has demonstrated promising results in predicting short- and long-term mortality, readmission rates, and worsening renal function in patients with HF. Indeed, in the setting of HF, the levels of both active enkephalins and their surrogate PENK119-159 are elevated and are associated with a dismal prognosis. However, the biological effects of PENK119-159 remain largely unknown. Thus, it is crucial to gain a deeper insight into both the physiology of the enkephalin peptide family and the enkephalin-mediated cardiovascular regulation. In order to elucidate the complex pathophysiological mechanisms that lead to the upregulation of enkephalins in patients with HF, as well as the potential clinical implications of elevated enkephalins and PENK119-159 levels in this patient population, the present review will describe the physiology and distribution of the endogenous opioid peptides and their corresponding opioid receptors, with a particular focus on the action of enkephalins. The effects of the enkephalin peptides will be analyzed in both healthy subjects and patients with HF, especially with regard to their role in the regulation of cardiovascular and renal function. The review will also discuss the findings of recent studies that have explored the prognostic value of PENK119-159 in patients with HF.
Collapse
Affiliation(s)
- Dionysis Matsiras
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (C.V.); (V.B.); (S.B.); (E.P.); (J.T.P.)
| | - Ioannis Ventoulis
- Department of Occupational Therapy, University of Western Macedonia, Keptse Area, 50200 Ptolemaida, Greece;
| | - Christos Verras
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (C.V.); (V.B.); (S.B.); (E.P.); (J.T.P.)
| | - Vasiliki Bistola
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (C.V.); (V.B.); (S.B.); (E.P.); (J.T.P.)
| | - Sofia Bezati
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (C.V.); (V.B.); (S.B.); (E.P.); (J.T.P.)
| | - Barbara Fyntanidou
- Department of Emergency Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece;
| | - Effie Polyzogopoulou
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (C.V.); (V.B.); (S.B.); (E.P.); (J.T.P.)
| | - John T. Parissis
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (C.V.); (V.B.); (S.B.); (E.P.); (J.T.P.)
| |
Collapse
|
4
|
Obal D, Liu Y. Opioid Preconditioning in Heart Failure: New Frontier or Old Dog? Anesth Analg 2025:00000539-990000000-01152. [PMID: 39908198 DOI: 10.1213/ane.0000000000007388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Affiliation(s)
- Detlef Obal
- From the Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Yu Liu
- Stanford University School of Medicine, Stanford, California
| |
Collapse
|
5
|
Hao G, Chen X, Fang Z, He Y, Liu M, Arora V, Dua A, Sun Z, Zhou B, Zheng G, Zuo L, Chen H, Zhu H, Dong Y. Association between prescription opioid use and heart failure: Cohort studies and Mendelian randomization analysis. Int J Cardiol 2024; 413:132404. [PMID: 39074619 DOI: 10.1016/j.ijcard.2024.132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Prescription opioid use (POU) has been shown to lead to cardiovascular disease (CVD), but its association with heart failure has not been well studied. We investigated the potential causal association between POU and HF using cohort studies and Mendelian Randomization (MR) analysis. METHODS Initially, we examined the longitudinal association between POU and HF using the data from the Health and Retirement Study (HRS) and the UK biobank. Next, we employed a two-sample MR analysis using summary statistics from genome-wide association studies (GWAS) to assess the potential causal associations between POU and HF. RESULTS During a median of 3.8 and 13.8 years of follow-up, there were 441(8.04 per 1000 person-year) and 16,170 (3.96 per 1000 person-year) HF cases in the HRS and the UK biobank, respectively. After adjusting for covariates, participants who used prescription opioids had a 32% increased risk of developing HF, compared with non-users (HR = 1.32, 95%CI: 1.26-1.38, P < 0.001). In the MR analysis, summary statistics for POU were obtained from 78,808 UK Biobank study participants, and summary data for HF were obtained from 218,792 participants of a European population. A causal effect of genetic liability for POU on an increased risk of HF (OR = 1.16, 95% CI = 1.06, 1.27, P = 0.001) was suggested. The results were generally consistent in the sensitivity analysis, and no pleiotropy or heterogeneity were observed. CONCLUSIONS POU is associated with a high risk of HF. Our findings provide new insight into prescription opioid use among populations at risk of heart failure. More studies are needed to validate our results and further investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Guang Hao
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Xia Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zhenger Fang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yunbiao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Mingliang Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Vishal Arora
- Department of Medicine: Cardiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Anterpreet Dua
- Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zhuo Sun
- Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Biying Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Guangjun Zheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Lei Zuo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Haiyan Chen
- Control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Haidong Zhu
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yanbin Dong
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
6
|
The apelin/APJ signaling system and cytoprotection: Role of its cross-talk with kappa opioid receptor. Eur J Pharmacol 2022; 936:175353. [DOI: 10.1016/j.ejphar.2022.175353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
|
7
|
Dehe L, Mousa SA, Shaqura M, Shakibaei M, Schäfer M, Treskatsch S. Naltrexone-Induced Cardiac Function Improvement is Associated With an Attenuated Inflammatory Response and Lipid Perioxidation in Volume Overloaded Rats. Front Pharmacol 2022; 13:873169. [PMID: 35847039 PMCID: PMC9280420 DOI: 10.3389/fphar.2022.873169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
In previous studies, upregulation of myocardial opioid receptors as well as the precursors of their endogenous ligands were detected in the failing heart due to chronic volume overload. Moreover, opioid receptor blockade by naltrexone improved left ventricular function. In parallel, inflammatory processes through cytokines have been confirmed to play an important role in the pathogenesis of different forms of heart failure. Thus, the present study examined the systemic and myocardial inflammatory response to chronic volume overload and its modulation by chronic naltrexone therapy. Chronic volume overload was induced in male Wistar rats by applying an infrarenal aortocaval fistula (ACF) for 28 days during which the selective opioid receptor antagonist naltrexone (n = 6) or vehicle (n = 6) were administered via a subcutaneously implanted Alzet minipump. The ultrastructural, morphometric and hemodynamic characterization of ACF animals were performed using an intraventricular conductance catheter in vivo and electron microscopy in vitro. Co-localization of mu-, delta- and kappa-opioid receptor subtypes (MOR, DOR, and KOR respectively) with the voltage gated L-type Ca2+ channel (Cav1.2), the ryanodine receptor (RyR), and mitochondria in cardiomyocytes as well as IL-6, IL-12, TNF-alpha, and Malondialdehyde (MDA) were determined using double immunofluorescence confocal microscopy, RT-PCR and ELISA, respectively. In rat left ventricular myocardium, three opioid receptor subtypes MOR, DOR, and KOR colocalized with Cav1.2, RyR and mitochondria suggesting a modulatory role of the excitation-contraction coupling. In rats with ACF-induced volume overload, signs of heart failure and myocardial ultrastructural damage, chronic naltrexone therapy improved cardiac function and reversed the systemic and myocardial inflammatory cytokine expression as well as lipid peroxidation. In conclusion, antagonism of the cardiodepressive effects of the myocardial opioid system does not only improve left ventricular function but also blunts the inflammatory response and lipid peroxidation.
Collapse
Affiliation(s)
- Lukas Dehe
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Shaaban A. Mousa
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Shaaban A. Mousa,
| | - Mohammed Shaqura
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilians-Universität München, München, Germany
| | - Michael Schäfer
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sascha Treskatsch
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Cissom C, J Paris J, Shariat-Madar Z. Dynorphins in Development and Disease: Implications for Cardiovascular Disease. Curr Mol Med 2021; 20:259-274. [PMID: 31746302 DOI: 10.2174/1566524019666191028122559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
It is well-established that cardiovascular disease continues to represent a growing health problem and significant effort has been made to elucidate the underlying mechanisms. In this review, we report on past and recent high impact publications in the field of intracrine network signaling, focusing specifically on opioids and their interrelation with key modulators of the cardiovascular system and the onset of related disease. We present an overview of studies outlining the scope of cardiovascular and cerebrovascular processes that are affected by opioids, including heart function, ischemia, reperfusion, and blood flow. Specific emphasis is placed on the importance of dynorphin molecules in cerebrovascular and cardiovascular regulation. Evidence suggests that excessive or insufficient dynorphin could make an important contribution to cardiovascular physiology, yet numerous paradoxical observations frequently impede a clear understanding of the role of dynorphin. Thus, we argue that dynorphin-mediated signaling events for which an immediate regulatory effect is disputed should not be dismissed as unimportant, as they may play a role in cross-talk with other signaling networks. Finally, we consider the most recent evidence on the role of dynorphin during cardiovascular-related inflammation and on the potential value of endogenous and exogenous inhibitors of kappa-opioid receptor, a major dynorphin A receptor, to limit or prevent cardiovascular disease and its related sequelae.
Collapse
Affiliation(s)
- Cody Cissom
- William Carey College of Osteopathic Mississippi University, Medical School, Hattiesburg, Mississippi, United States
| | - Jason J Paris
- Department of Biomolecular Sciences, Division of Pharmacology, University of Mississippi, United States.,The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, United States
| | - Zia Shariat-Madar
- Department of Biomolecular Sciences, Division of Pharmacology, University of Mississippi, United States.,The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, United States.,Light Microscopy Core, University of Mississippi, University, Mississippi, United States
| |
Collapse
|
9
|
Dehe L, Shaqura M, Nordine M, Habazettl H, von Kwiatkowski P, Schluchter H, Shakibaei M, Mousa SA, Schäfer M, Treskatsch S. Chronic Naltrexone Therapy Is Associated with Improved Cardiac Function in Volume Overloaded Rats. Cardiovasc Drugs Ther 2021; 35:733-743. [PMID: 33484395 PMCID: PMC8266787 DOI: 10.1007/s10557-020-07132-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Myocardial opioid receptors were demonstrated in animals and humans and seem to colocalize with membranous and sarcolemmal calcium channels of the excitation-contraction coupling in the left ventricle (LV). Therefore, this study investigated whether blockade of the cardiac opioid system by naltrexone would affect cardiac function and neurohumoral parameters in Wistar rats with volume overload-induced heart failure. METHODS Volume overload in Wistar rats was induced by an aortocaval fistula (ACF). Left ventricular cardiac opioid receptors were identified by immunohistochemistry and their messenger ribonucleic acid (mRNA) as well as their endogenous ligand mRNA quantified by real-time polymerase chain reaction (RT-PCR). Following continuous delivery of either the opioid receptor antagonist naltrexone or vehicle via minipumps (n = 5 rats each), hemodynamic and humoral parameters were assessed 28 days after ACF induction. Sham-operated animals served as controls. RESULTS In ACF rats mu-, delta-, and kappa-opioid receptors colocalized with voltage-gated L-type Ca2+ channels in left ventricular cardiomyocytes. Chronic naltrexone treatment of ACF rats reduced central venous pressure (CVP) and left ventricular end-diastolic pressure (LVEDP), and improved systolic and diastolic left ventricular functions. Concomitantly, rat brain natriuretic peptide (rBNP-45) and angiotensin-2 plasma concentrations which were elevated during ACF were significantly diminished following naltrexone treatment. In parallel, chronic naltrexone significantly reduced mu-, delta-, and kappa-opioid receptor mRNA, while it increased the endogenous opioid peptide mRNA compared to controls. CONCLUSION Opioid receptor blockade by naltrexone leads to improved LV function and decreases in rBNP-45 and angiotensin-2 plasma levels. In parallel, naltrexone resulted in opioid receptor mRNA downregulation and an elevated intrinsic tone of endogenous opioid peptides possibly reflecting a potentially cardiodepressant effect of the cardiac opioid system during volume overload.
Collapse
Affiliation(s)
- Lukas Dehe
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Mohammed Shaqura
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Michael Nordine
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Helmut Habazettl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology Campus Charité Mitte, Chariteplatz 1, 10117, Berlin, Germany
| | - Petra von Kwiatkowski
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Helena Schluchter
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilians-Universität München, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Shaaban A Mousa
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Michael Schäfer
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Sascha Treskatsch
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|
10
|
Anderson G, Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109976. [PMID: 32470498 DOI: 10.1016/j.pnpbp.2020.109976] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
It is widely accepted that the pathophysiology and treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) could be considerably improved. The heterogeneity of ME/CFS and the confusion over its classification have undoubtedly contributed to this, although this would seem a consequence of the complexity of the array of ME/CFS presentations and high levels of diverse comorbidities. This article reviews the biological underpinnings of ME/CFS presentations, including the interacting roles of the gut microbiome/permeability, endogenous opioidergic system, immune cell mitochondria, autonomic nervous system, microRNA-155, viral infection/re-awakening and leptin as well as melatonin and the circadian rhythm. This details not only relevant pathophysiological processes and treatment options, but also highlights future research directions. Due to the complexity of interacting systems in ME/CFS pathophysiology, clarification as to its biological underpinnings is likely to considerably contribute to the understanding and treatment of other complex and poorly managed conditions, including fibromyalgia, depression, migraine, and dementia. The gut and immune cell mitochondria are proposed to be two important hubs that interact with the circadian rhythm in driving ME/CFS pathophysiology.
Collapse
Affiliation(s)
- G Anderson
- CRC Scotland & London, Eccleston Square, London, UK.
| | - M Maes
- Dept Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Dept Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria.; IMPACT Research Center, Deakin University, Geelong, Australia
| |
Collapse
|
11
|
Wang K, Liu Z, Zhao M, Zhang F, Wang K, Feng N, Fu F, Li J, Li J, Liu Y, Zhang S, Fan R, Guo H, Pei J. κ-opioid receptor activation promotes mitochondrial fusion and enhances myocardial resistance to ischemia and reperfusion injury via STAT3-OPA1 pathway. Eur J Pharmacol 2020; 874:172987. [PMID: 32032598 DOI: 10.1016/j.ejphar.2020.172987] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
Abstract
Mitochondrial dynamics, determining mitochondrial morphology, quality and abundance, have recently been implicated in myocardial ischemia and reperfusion (MI/R) injury. The roles of κ-opioid receptor activation in cardioprotection have been confirmed in our previous studies, while the underlying mechanism associated with mitochondrial dynamics remains unclear. This study aims to investigate the effect of κ-opioid receptor activation on the pathogenesis of MI/R and its underlying mechanisms. MI/R mouse model and hypoxia-reoxygenation cardiomyocyte model were established in this study. Mitochondrial dynamics were analyzed with transmission electron microscopy in vivo and confocal microscopy in vitro. STAT3 phosphorylation and OPA1 expression were detected by Western blotting. We show here that κ-opioid receptor activation with its selective receptor agonist U50,488H promoted mitochondrial fusion and enhanced myocardial resistance to MI/R injury, while these protective effects were blockaded by nor-BNI, a selective κ-opioid receptor antagonist. In addition, κ-opioid receptor activation increased STAT3 phosphorylation and OPA1 expression, which were blockaded by nor-BNI. Furthermore, inhibition of STAT3 phosphorylation by stattic, a specific STAT3 inhibitor, repressed the effects of κ-opioid receptor activation on promoting OPA1 expression and mitochondrial fusion, as well as inhibiting cell apoptosis and oxidative stress both in vivo and in vitro during MI/R injury. Overall, our data for the first time provide evidence that κ-opioid receptor activation promotes mitochondrial fusion and enhances myocardial resistance to MI/R injury via STAT3-OPA1 pathway. Targeting the pathway regulated by κ-opioid receptor activation may be a potential therapeutic strategy for MI/R injury.
Collapse
Affiliation(s)
- Kaiyan Wang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhenhua Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Fuyang Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Na Feng
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jun Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Juan Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yali Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shumiao Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Rong Fan
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Haitao Guo
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
12
|
Su JY, Zhang RF, Dong YX, Yang MH, Yin XM, Gao LJ, Li HH, Xia YL, Yang YZ. Preprodynorphin gene mutation causes progressive cardiac conduction disease: A whole-exome analysis of a pedigree. Life Sci 2019; 219:74-81. [PMID: 30611784 DOI: 10.1016/j.lfs.2018.12.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 10/27/2022]
Abstract
AIMS Progressive cardiac conduction disease (PCCD) is a rare heart disease that usually shows familial inheritance. Potential genetic risk factors for PCCD have been mostly limited to genes that encode ion channels, cardiac transcription factors, T-box transcription factors, gap junction proteins, energy metabolism regulators and structural proteins. MAIN METHODS Subjects in the present study came from a family who exhibited the autosomal dominant inheritance of PCCD. The primary proband had syncope and an electrocardiogram typical for PCCD, which started in the left bundle branch block, and passed to the atrioventricular block. The patient received a permanent pacemaker in 2013. Pathogenic mutations in the proband's family were identified using whole-exome sequencing and Sanger sequencing. KEY FINDINGS The results for the family members were verified using Sanger sequencing, while the results for healthy unrelated individuals were verified using SNaPShot. All patients in the family shared two adjacent missense mutations in the preprodynorphin (PDYN) gene (c.581A > T, c.580G > C; p.D194L). SIGNIFICANCE The PDYN double mutation c.581A > T and c.580G > C (p.D194L) may be linked to the onset of familial PCCD. The effects of these mutations on electrophysiology require further investigation.
Collapse
Affiliation(s)
- Jian-Yao Su
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Rong-Feng Zhang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Ying-Xue Dong
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Ming-Hui Yang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiao-Meng Yin
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lian-Jun Gao
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Disease, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yun-Long Xia
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Yan-Zong Yang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
13
|
Abstract
The World Health Organization suggests that the cardiovascular diseases (CVDs) are the major cause of mortality and account for two-thirds of the deaths all over the world. These diseases kill about 17 million people every year and 3 in every 10 deaths are due to these diseases. The past decade has seen considerable improvements in diagnosis as well as treatment of various heart diseases. Various new therapeutic targets are being identified through in-depth knowledge of the disease mechanisms which has favored the testing of new strategies leading to newer treatment options. Opioid peptides and G-protein-coupled opioid receptors (ORs) have been previously studied widely in terms of central nervous system actions in mitigating the pain and drug abuse. The OR agonism or antagonism induces cytoprotective states in the myocardium, rendering these receptors as an attractive target for protection of heart from the fatal heart diseases. The opioids can provide an extended window of protection of the heart from various diseases. Although the mechanisms may not be fully understood, they seem to play a crucial role in various CVDs such as hypertension, hyperlipidemia, ischemic heart disease myocardial ischemia, and congestive heart failure. Since these compounds are already being used in acute and chronic pain, soon these compounds might be approved for use as cardioprotective agents. The following review focuses on the new information acquired on the role of the ORs in various CVDs.
Collapse
Affiliation(s)
- Hemangi Rawal
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | | |
Collapse
|
14
|
He SF, Jin SY, Yang W, Pan YL, Huang J, Zhang SJ, Zhang L, Zhang Y. Cardiac μ-opioid receptor contributes to opioid-induced cardioprotection in chronic heart failure. Br J Anaesth 2018; 121:26-37. [PMID: 29935580 DOI: 10.1016/j.bja.2017.11.110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/10/2017] [Accepted: 12/23/2017] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND The therapeutic potential of cardiac μ-opioid receptors in ischaemia-reperfusion (I/R) injury during opioid-modulating diseases, such as heart failure, is unknown. We aimed to explore the changes of cardiac μ-opioid receptor expression during heart failure, and its role in opioid-induced cardioprotection. METHODS Rats received doxorubicin (DOX) or were subjected to coronary artery ligation to induce heart failure, or received normal saline (NS) as control. Hearts from NS or DOX rats were isolated and subjected to myocardial ischaemia and reperfusion in an in vitro perfusion system. The opioid [D-Ala,2N-MePhe,4 Gly-ol]-enkephalin (DAMGO), with a high μ-opioid receptor specificity, morphine, and remifentanil were administrated before I/R with or without opioid receptor antagonists, or an extracellular signal-regulated kinase (ERK) inhibitor. RESULTS Cardiac μ-opioid receptor mRNA concentrations were 3.2 times elevated in DOX-treated rats compared with NS rats, while cardiac μ-opioid receptor protein concentrations showed 6.1- and 3.5-fold increases in DOX-treated and post-infarcted rats, respectively. DAMGO reduced I/R-caused infarct size, expressed as the ratio of area at risk, from 0.50 (0.04) to 0.25 (0.03) in failing rat hearts, but had no effect on infarct size in control hearts. DAMGO promoted phosphorylation of ERK and glycogen synthase kinase (GSK)-3β only in failing hearts. DAMGO-mediated cardioprotection was blocked by an ERK inhibitor. The μ-opioid receptor antagonist D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) prevented morphine- and remifentanil-induced cardioprotection and phosphorylation of ERK and GSK-3β in failing hearts. In contrast, δ- and κ-opioid receptor selective antagonists were less potent than CTOP in the failing hearts. CONCLUSIONS Cardiac μ-opioid receptors were substantially up-regulated during heart failure, which increased DAMGO-induced cardioprotection against I/R injury.
Collapse
Affiliation(s)
- S F He
- Department of Anaesthesiology, The Second Hospital of Anhui Medical University, Hefei, China
| | - S Y Jin
- Department of Anaesthesiology, The Second Hospital of Anhui Medical University, Hefei, China
| | - W Yang
- Department of Anaesthesiology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Y L Pan
- Department of Anaesthesiology, The Second Hospital of Anhui Medical University, Hefei, China
| | - J Huang
- Department of Anaesthesiology, The Second Hospital of Anhui Medical University, Hefei, China
| | - S J Zhang
- Department of Ultrasound, The Second Hospital of Anhui Medical University, Hefei, China
| | - L Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Y Zhang
- Department of Anaesthesiology, The Second Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
15
|
Rostamzadeh F, Najafipour H, Yeganeh-Hajahmadi M, Esmaeili-Mahani S, Joukar S, Iranpour M. Heterodimerization of apelin and opioid receptors and cardiac inotropic and lusitropic effects of apelin in 2K1C hypertension: Role of pERK1/2 and PKC. Life Sci 2017; 191:24-33. [PMID: 28987634 DOI: 10.1016/j.lfs.2017.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/21/2017] [Accepted: 09/30/2017] [Indexed: 11/17/2022]
Abstract
AIMS Kappa Opioid receptors (KORs) change the impact of apelin on the phosphorylated ERK1/2 (pERK1/2). However, the role of interaction between KOR and apelin receptors (APJ) on the cardiac contractility effects of apelin and in regulation of pERK1/2 and PKC in the heart of renovascular hypertensive (2K1C) rats is unknown. MAIN METHODS Hemodynamic factors, the heterodimerization of KOR and APJ, the expression of KOR mRNA and protein and pERK1/2 in the left ventricle of 2K1C rats were measured following APJ, KOR, PKC and Gi path inhibition by F13A, nor-BNI, chelerythrine and PTX respectively. KEY FINDINGS Apelin in 40 and 60μg/kg doses increased cardiac contractility, and reduced mean arterial pressure. The cardiac impacts in both doses were reduced by F13A, nor-BNI and chelerytrine and blocked by PTX. Hypertension increased the expression of KORs and heterodimerization of APJ and KOR, and reduced pERK1/2 in the left ventricle. Apelin, in both doses reduced (normalized) heterodimerization and recovered the reduction in pERK1/2. The recovery of ERK1/2 phosphorylation was accompanied by reduction of KOR and APJ heterodimerization. SIGNIFICANCE 2K1C hypertension increased the expression of KORs and heterodimerization of APJ and KORs. The heterodimerization was associated by reduction of ERK phosphorylation and altered the cardiac inotropic and lusitropic effects of apelin. These changes may participate in pathophysiology of cardiac dysfunction in renovascular hypertension that is associated with subnormal level of serum apelin. Apelin- induced recovery of ERK1/2 phosphorylation and KOR-APJ dimerization may nominate apelin as a therapeutic goal in treatment of this kind of hypertension.
Collapse
Affiliation(s)
- Farzaneh Rostamzadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mahboobeh Yeganeh-Hajahmadi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Siyavash Joukar
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
17
|
Treskatsch S, Shaqura M, Dehe L, Roepke TK, Shakibaei M, Schäfer M, Mousa SA. Evidence for MOR on cell membrane, sarcoplasmatic reticulum and mitochondria in left ventricular myocardium in rats. Heart Vessels 2015; 31:1380-8. [PMID: 26686371 DOI: 10.1007/s00380-015-0784-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/02/2015] [Indexed: 12/20/2022]
Abstract
Cardiac function is one important determinant to maintain tissue oxygenation and is thus highly regulated. In this context, it is interesting that centrally mediated opioidergic influence on cardiac function has long been known. Only recently, KOR and DOR have been found to be expressed in healthy left ventricular myocardium in rats and colocalized with parts of the excitation-contraction-coupling system. However, several comments in literature exist doubting the existence of MOR in cardiac tissue. We, therefore, aimed to detect MOR in rat left ventricular cardiomyocytes, and to evaluate whether MOR and POMC are regulated during heart failure. After IRB approval, heart failure was induced using a modified infrarenal aortocaval fistula (ACF) in male Wistar rats. All rats of the control and ACF group were characterized by their morphometrics and hemodynamics and the existence of MOR and POMC was investigated by means of radioligand binding, double immunofluorescence confocal analysis, RT-PCR and Western blot. Membrane MOR selective binding sites were detected in the left ventricular myocardium, however, they were lower in abundance than KOR- and DOR-specific binding sites and B max of MOR could not be determined. In left ventricular cardiomyocytes, MOR colocalized with parts of the excitation-coupling mechanism, e.g., Cav1.2 of the cell membrane and invaginated T-tubules as well as the ryanodine receptor of the sarcoplasmatic reticulum. More importantly, MOR strongly colocalized with mitochondria of left ventricular cardiomyocytes. Volume overload was not associated with an altered expression of MOR and POMC on both mRNA and protein level. These findings provide evidence for the existence of MOR on the cell membrane, sarcoplasmatic reticulum and mitochondria in left ventricular cardiomyocytes in rats. However, heart failure does not result in an altered expression of the cardiac MOR-opioid system. Thus, MOR agonist treatment-commonly used in the clinical setting-might directly affect cardiac function, which needs to be evaluated in greater detail in the near future.
Collapse
Affiliation(s)
- Sascha Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Mohammed Shaqura
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lukas Dehe
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Torsten K Roepke
- Department of Cardiology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilians-Universität München, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Michael Schäfer
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Shaaban A Mousa
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|