1
|
Reynoso S, Castillo V, Katkar GD, Lopez-Sanchez I, Taheri S, Espinoza C, Rohena C, Sahoo D, Gagneux P, Ghosh P. GIV/Girdin, a non-receptor modulator for Gαi/s, regulates spatiotemporal signaling during sperm capacitation and is required for male fertility. eLife 2021; 10:69160. [PMID: 34409938 PMCID: PMC8376251 DOI: 10.7554/elife.69160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
For a sperm to successfully fertilize an egg, it must first undergo capacitation in the female reproductive tract and later undergo acrosomal reaction (AR) upon encountering an egg surrounded by its vestment. How premature AR is avoided despite rapid surges in signaling cascades during capacitation remains unknown. Using a combination of conditional knockout (cKO) mice and cell-penetrating peptides, we show that GIV (CCDC88A), a guanine nucleotide-exchange modulator (GEM) for trimeric GTPases, is highly expressed in spermatocytes and is required for male fertility. GIV is rapidly phosphoregulated on key tyrosine and serine residues in human and murine spermatozoa. These phosphomodifications enable GIV-GEM to orchestrate two distinct compartmentalized signaling programs in the sperm tail and head; in the tail, GIV enhances PI3K→Akt signals, sperm motility and survival, whereas in the head it inhibits cAMP surge and premature AR. Furthermore, GIV transcripts are downregulated in the testis and semen of infertile men. These findings exemplify the spatiotemporally segregated signaling programs that support sperm capacitation and shed light on a hitherto unforeseen cause of infertility in men.
Collapse
Affiliation(s)
- Sequoyah Reynoso
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, United States
| | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Gajanan Dattatray Katkar
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Inmaculada Lopez-Sanchez
- Department of Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Sahar Taheri
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, United States
| | - Celia Espinoza
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Cristina Rohena
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, United States.,Moore's Comprehensive Cancer Center, University of California San Diego, San Diego, United States.,Department of Pediatrics, School of Medicine, University of California San Diego, San Diego, United States
| | - Pascal Gagneux
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, United States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States.,Department of Medicine, School of Medicine, University of California San Diego, San Diego, United States.,Moore's Comprehensive Cancer Center, University of California San Diego, San Diego, United States.,Veterans Affairs Medical Center, Washington DC, United States
| |
Collapse
|
2
|
Getz M, Swanson L, Sahoo D, Ghosh P, Rangamani P. A predictive computational model reveals that GIV/girdin serves as a tunable valve for EGFR-stimulated cyclic AMP signals. Mol Biol Cell 2019; 30:1621-1633. [PMID: 31017840 PMCID: PMC6727633 DOI: 10.1091/mbc.e18-10-0630] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular levels of the versatile second messenger cyclic (c)AMP are regulated by the antagonistic actions of the canonical G protein → adenylyl cyclase pathway that is initiated by G-protein–coupled receptors (GPCRs) and attenuated by phosphodiesterases (PDEs). Dysregulated cAMP signaling drives many diseases; for example, its low levels facilitate numerous sinister properties of cancer cells. Recently, an alternative paradigm for cAMP signaling has emerged in which growth factor–receptor tyrosine kinases (RTKs; e.g., EGFR) access and modulate G proteins via a cytosolic guanine-nucleotide exchange modulator (GEM), GIV/girdin; dysregulation of this pathway is frequently encountered in cancers. In this study, we present a network-based compartmental model for the paradigm of GEM-facilitated cross-talk between RTKs and G proteins and how that impacts cellular cAMP. Our model predicts that cross-talk between GIV, Gαs, and Gαi proteins dampens ligand-stimulated cAMP dynamics. This prediction was experimentally verified by measuring cAMP levels in cells under different conditions. We further predict that the direct proportionality of cAMP concentration as a function of receptor number and the inverse proportionality of cAMP concentration as a function of PDE concentration are both altered by GIV levels. Taking these results together, our model reveals that GIV acts as a tunable control valve that regulates cAMP flux after growth factor stimulation. For a given stimulus, when GIV levels are high, cAMP levels are low, and vice versa. In doing so, GIV modulates cAMP via mechanisms distinct from the two most often targeted classes of cAMP modulators, GPCRs and PDEs.
Collapse
Affiliation(s)
- Michael Getz
- Chemical Engineering Graduate Program, University of California, San Diego, La Jolla, CA 92093
| | - Lee Swanson
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Debashish Sahoo
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093.,Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093.,Moores Comprehensive Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Moores Comprehensive Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
3
|
Elevated expression of GNAS promotes breast cancer cell proliferation and migration via the PI3K/AKT/Snail1/E-cadherin axis. Clin Transl Oncol 2019; 21:1207-1219. [PMID: 30767161 DOI: 10.1007/s12094-019-02042-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Although it has been well established that G protein plays pivotal roles in physiologic or pathologic conditions, including cancer formation, its role in breast cancer, especially specific subunits, remains largely unknown. Our work aimed to evaluate the correlation of the G protein alpha subunit (GNAS) with breast cancer and to investigate the underlying molecular mechanism. METHODS The expression of GNAS was determined by breast tumor tissue microarray of 150 patients with complete follow-up information. The correlation between GNAS expression and clinical features was assessed. CCK8, EdU incorporation, flow cytometry, wound healing, transwell, western blot and tumor formation assays were carried out in nude mice to study the biological function of GNAS and the underlying molecular mechanism in breast cancer by silencing GNAS using a specific siRNA. RESULTS High GNAS expression showed a close correlation with a reduced overall survival (p = 0.021), frequent distal metastasis (p = 0.026), advanced clinical stage (p = 0.001), stronger cell proliferation (ki67+ positive cell rate, p = 0.0351) and enhanced cancer cell migration, which was further confirmed by in vitro and in vivo assays and might be dependent on the PI3K/AKT/Snail1/E-cadherin axis. CONCLUSION The data suggested that GNAS promoted breast cancer cell proliferation and migration (EMT) through the PI3K/AKT/Snail1/E-cadherin signaling pathway. These findings also indicate that GNAS can serve as a potential prognostic indicator and novel therapeutic target in breast cancer.
Collapse
|
4
|
G protein subunit phosphorylation as a regulatory mechanism in heterotrimeric G protein signaling in mammals, yeast, and plants. Biochem J 2018; 475:3331-3357. [PMID: 30413679 DOI: 10.1042/bcj20160819] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022]
Abstract
Heterotrimeric G proteins composed of Gα, Gβ, and Gγ subunits are vital eukaryotic signaling elements that convey information from ligand-regulated G protein-coupled receptors (GPCRs) to cellular effectors. Heterotrimeric G protein-based signaling pathways are fundamental to human health [Biochimica et Biophysica Acta (2007) 1768, 994-1005] and are the target of >30% of pharmaceuticals in clinical use [Biotechnology Advances (2013) 31, 1676-1694; Nature Reviews Drug Discovery (2017) 16, 829-842]. This review focuses on phosphorylation of G protein subunits as a regulatory mechanism in mammals, budding yeast, and plants. This is a re-emerging field, as evidence for phosphoregulation of mammalian G protein subunits from biochemical studies in the early 1990s can now be complemented with contemporary phosphoproteomics and genetic approaches applied to a diversity of model systems. In addition, new evidence implicates a family of plant kinases, the receptor-like kinases, which are monophyletic with the interleukin-1 receptor-associated kinase/Pelle kinases of metazoans, as possible GPCRs that signal via subunit phosphorylation. We describe early and modern observations on G protein subunit phosphorylation and its functional consequences in these three classes of organisms, and suggest future research directions.
Collapse
|
5
|
Ghosh P, Aznar N, Swanson L, Lo IC, Lopez-Sanchez I, Ear J, Rohena C, Kalogriopoulos N, Joosen L, Dunkel Y, Sun N, Nguyen P, Bhandari D. Biochemical, Biophysical and Cellular Techniques to Study the Guanine Nucleotide Exchange Factor, GIV/Girdin. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2016; 8:265-298. [PMID: 27925669 PMCID: PMC5154557 DOI: 10.1002/cpch.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Canonical signal transduction via heterotrimeric G proteins is spatiotemporally restricted, i.e., triggered exclusively at the plasma membrane, only by agonist activation of G protein-coupled receptors via a finite process that is terminated within a few hundred milliseconds. Recently, a rapidly emerging paradigm has revealed a noncanonical pathway for activation of heterotrimeric G proteins via the nonreceptor guanidine-nucleotide exchange factor, GIV/Girdin. Biochemical, biophysical, and functional studies evaluating this pathway have unraveled its unique properties and distinctive spatiotemporal features. As in the case of any new pathway/paradigm, these studies first required an in-depth optimization of tools/techniques and protocols, governed by rationale and fundamentals unique to the pathway, and more specifically to the large multimodular GIV protein. Here we provide the most up-to-date overview of protocols that have generated most of what we know today about noncanonical G protein activation by GIV and its relevance in health and disease. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0651
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Nicolas Aznar
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Lee Swanson
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - I-Chung Lo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | | | - Jason Ear
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Cristina Rohena
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | | | - Linda Joosen
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Ying Dunkel
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Nina Sun
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Peter Nguyen
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA 90840-9507
| | - Deepali Bhandari
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA 90840-9507
| |
Collapse
|
6
|
Aznar N, Patel A, Rohena CC, Dunkel Y, Joosen LP, Taupin V, Kufareva I, Farquhar MG, Ghosh P. AMP-activated protein kinase fortifies epithelial tight junctions during energetic stress via its effector GIV/Girdin. eLife 2016; 5. [PMID: 27813479 PMCID: PMC5119889 DOI: 10.7554/elife.20795] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/03/2016] [Indexed: 02/06/2023] Open
Abstract
Loss of epithelial polarity impacts organ development and function; it is also oncogenic. AMPK, a key sensor of metabolic stress stabilizes cell-cell junctions and maintains epithelial polarity; its activation by Metformin protects the epithelial barrier against stress and suppresses tumorigenesis. How AMPK protects the epithelium remains unknown. Here, we identify GIV/Girdin as a novel effector of AMPK, whose phosphorylation at a single site is both necessary and sufficient for strengthening mammalian epithelial tight junctions and preserving cell polarity and barrier function in the face of energetic stress. Expression of an oncogenic mutant of GIV (cataloged in TCGA) that cannot be phosphorylated by AMPK increased anchorage-independent growth of tumor cells and helped these cells to evade the tumor-suppressive action of Metformin. This work defines a fundamental homeostatic mechanism by which the AMPK-GIV axis reinforces cell junctions against stress-induced collapse and also provides mechanistic insight into the tumor-suppressive action of Metformin.
Collapse
Affiliation(s)
- Nicolas Aznar
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Arjun Patel
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Cristina C Rohena
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Ying Dunkel
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Linda P Joosen
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Vanessa Taupin
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, United States
| | - Marilyn G Farquhar
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, San Diego, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.,Moores Cancer Center, University of California, San Diego, San Diego, United States
| |
Collapse
|
7
|
Dunkel Y, Diao K, Aznar N, Swanson L, Liu L, Zhu W, Mi XY, Ghosh P. Prognostic impact of total and tyrosine phosphorylated GIV/Girdin in breast cancers. FASEB J 2016; 30:3702-3713. [PMID: 27440794 DOI: 10.1096/fj.201600500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/05/2016] [Indexed: 12/27/2022]
Abstract
Gα-interacting vesicle-associated protein (GIV, aka Girdin) is a guanine exchange factor (GEF) for the trimeric G protein Gαi and a bona fide metastasis-related gene that serves as a platform for amplification of tyrosine-based signals via G-protein intermediates. Here we present the first exploratory biomarker study conducted on a cohort of 187 patients with breast cancer to evaluate the prognostic role of total GIV (tGIV) and tyrosine phosphorylated GIV (pYGIV) across the various molecular subtypes. A Kaplan-Meier analysis of recurrence-free survival showed that the presence of tGIV, either cytoplasmic or nuclear, carried poor prognosis, but that nuclear tGIV had a greater prognostic impact (P = 0.007 in early and P = 0.0048 in late clinical stages). Activated pYGIV in the cytoplasm had the greatest prognostic impact in late clinical stages (P = 0.006). Furthermore, we found that the prognostic impacts of cytoplasmic pYGIV and nuclear tGIV were additive (hazard ratio 19.0548; P = 0.0002). Surprisingly, this additive effect of nuclear tGIV/cytoplasmic pYGIV was observed in human epidermal growth factor receptor 2-positive tumors (hazard ratio 16.918; P = 0.0005) but not in triple-negative breast cancers. In triple-negative breast cancers, tGIV and cytoplasmic pYGIV had no prognostic impact; however, membrane-association of pYGIV carried a poor prognosis (P = 0.026). Both tGIV and pYGIV showed no correlation with clinical stage, tumor size, pathologic type, lymph node involvement, and BRCA1/2 status. We conclude that immunocytochemical detection of pYGIV and tGIV can serve as an effective prognosticator. On the basis of the differential prognostic impact of tGIV/pYGIV within each molecular subtype, we propose a diagnostic algorithm. Further studies on larger cohorts are essential to rigorously assess the effectiveness and robustness of this algorithm in prognosticating outcome among patients with breast cancer.-Dunkel, Y., Diao, K., Aznar, N., Swanson, L., Liu, L., Zhu, W., Mi, X.-Y., Ghosh, P. Prognostic impact of total and tyrosine phosphorylated GIV/Girdin in breast cancers.
Collapse
Affiliation(s)
- Ying Dunkel
- Department of Medicine.,Department of Cell and Molecular Medicine
| | - Kexin Diao
- Department of Pathology, China Medical University, Shenyang, China
| | - Nicolas Aznar
- Department of Medicine.,Department of Cell and Molecular Medicine
| | - Lee Swanson
- Department of Medicine.,Department of Cell and Molecular Medicine
| | - Lawrence Liu
- Department of Medicine.,Department of Cell and Molecular Medicine
| | - Wenhong Zhu
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, California, USA
| | - Xiao-Yi Mi
- Department of Pathology, China Medical University, Shenyang, China;
| | - Pradipta Ghosh
- Department of Medicine, .,Department of Cell and Molecular Medicine
| |
Collapse
|
8
|
Ghosh P, Tie J, Muranyi A, Singh S, Brunhoeber P, Leith K, Bowermaster R, Liao Z, Zhu Y, LaFleur B, Tran B, Desai J, Jones I, Croxford M, Jover R, Goel A, Waring P, Hu S, Teichgraber V, Rohr UP, Ridder R, Shanmugam K, Gibbs P. Girdin (GIV) Expression as a Prognostic Marker of Recurrence in Mismatch Repair-Proficient Stage II Colon Cancer. Clin Cancer Res 2016; 22:3488-98. [PMID: 27029492 DOI: 10.1158/1078-0432.ccr-15-2290] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/08/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE Prognostic markers that identify patients with stage II colon cancers who are at the risk of recurrence are essential to personalize therapy. We evaluated the potential of GIV/Girdin as a predictor of recurrence risk in such patients. EXPERIMENTAL DESIGN Expression of full-length GIV was evaluated by IHC using a newly developed mAb together with a mismatch repair (MMR)-specific antibody panel in three stage II colon cancer patient cohorts, that is, a training (n = 192), test (n = 317), and validation (n = 181) cohort, with clinical follow-up data. Recurrence risk stratification models were established in the training cohort of T3, proficient MMR (pMMR) patients without chemotherapy and subsequently validated. RESULTS For T3 pMMR tumors, GIV expression and the presence of lymphovascular invasion (LVI) were the only factors predicting recurrence in both training (GIV: HR, 2.78, P = 0.013; LVI: HR, 2.54, P = 0.025) and combined test and validation (pooled) cohorts (GIV: HR, 1.85, P = 0.019; LVI: HR, 2.52, P = 0.0004). A risk model based on GIV expression and LVI status classified patients into high- or low-risk groups; 3-year recurrence-free survival was significantly lower in the high-risk versus low-risk group across all cohorts [Training: 52.3% vs. 84.8%; HR, 3.74, 95% confidence interval (CI), 1.50-9.32; Test: 85.9% vs. 97.9%, HR, 7.83, 95% CI, 1.03-59.54; validation: 59.4% vs. 84.4%, HR, 3.71, 95% CI, 1.24-11.12]. CONCLUSIONS GIV expression status predicts recurrence risk in patients with T3 pMMR stage II colon cancer. A risk model combining GIV expression and LVI status information further enhances prediction of recurrence. Further validation studies are warranted before GIV status can be routinely included in patient management algorithms. Clin Cancer Res; 22(14); 3488-98. ©2016 AACR.
Collapse
Affiliation(s)
- Pradipta Ghosh
- Departments of Medicine and Cell and Molecular Medicine, University of California, San Diego, California
| | - Jeanne Tie
- Walter and Eliza Hall Institute, Melbourne, Australia. The Royal Melbourne Hospital, Melbourne, Australia. Western Hospital, Melbourne, Australia
| | | | | | | | | | | | | | - Yifei Zhu
- Spring Bioscience, Pleasanton, California
| | | | - Ben Tran
- Walter and Eliza Hall Institute, Melbourne, Australia. The Royal Melbourne Hospital, Melbourne, Australia. Western Hospital, Melbourne, Australia
| | - Jayesh Desai
- Walter and Eliza Hall Institute, Melbourne, Australia. The Royal Melbourne Hospital, Melbourne, Australia
| | - Ian Jones
- The Royal Melbourne Hospital, Melbourne, Australia
| | | | - Rodrigo Jover
- Department of Gastroenterology, General Hospital University of Alicante, Alicante, Spain
| | - Ajay Goel
- Baylor Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Houston, Texas
| | - Paul Waring
- Department of Pathology, University of Melbourne, Australia
| | - Song Hu
- F. Hoffmann-La Roche AG, Basel, Switzerland
| | | | | | | | | | - Peter Gibbs
- Walter and Eliza Hall Institute, Melbourne, Australia. The Royal Melbourne Hospital, Melbourne, Australia. Western Hospital, Melbourne, Australia.
| |
Collapse
|