1
|
Bossù G, Autore G, Bernardi L, Buonsenso D, Migliori GB, Esposito S. Treatment options for children with multi-drug resistant tuberculosis. Expert Rev Clin Pharmacol 2023; 16:5-15. [PMID: 36378271 DOI: 10.1080/17512433.2023.2148653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION According to the latest report from the World Health Organization (WHO), approximately 10.0 million people fell ill with tuberculosis (TB) in 2020, 12% of which were children aged under 15 years. There is very few experience on treatment of multi-drug resistant (MDR)-TB in pediatrics. AREAS COVERED The aim of this review is to analyze and summarize therapeutic options available for children experiencing MDR-TB. We also focused on management of MDR-TB prophylaxis. EXPERT OPINION The therapeutic management of children with MDR-TB or MDR-TB contacts is complicated by a lack of knowledge, and the fact that many potentially useful drugs are not registered for pediatric use and there are no formulations suitable for children in the first years of life. Furthermore, most of the available drugs are burdened by major adverse events that need to be taken into account, particularly in the case of prolonged therapy. A close follow-up with a standardized timeline and a comprehensive assessment of clinical, laboratory, microbiologic and radiologic data is extremely important in these patients. Due to the complexity of their management, pediatric patients with confirmed or suspected MDR-TB should always be referred to a specialized center.
Collapse
Affiliation(s)
- Gianluca Bossù
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giovanni Autore
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Bernardi
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri - IRCCS, Tradate, Italia
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Hua L, Qian H, Lei T, Liu W, He X, Zhang Y, Lei P, Hu Y. Anti-tuberculosis drug delivery for tuberculous bone defects. Expert Opin Drug Deliv 2021; 18:1815-1827. [PMID: 34758697 DOI: 10.1080/17425247.2021.2005576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Traditional therapy methods for treating tuberculous bone defects have several limitations. Furthermore, systemic toxicity and disease recurrence in tuberculosis (TB) have not been effectively addressed. AREAS COVERED This review is based on references from September 1998 to September 2021 and summarizes the classification and drug-loading methods of anti-TB drugs. The application of different types of biological scaffolds loaded with anti-TB drugs as a novel drug delivery strategy for tuberculous bone defects has been deeply analyzed. Furthermore, the limitations of the existing studies are summarized. EXPERT OPINION Loading anti-TB drugs into the scaffold through various drug-loading techniques can effectively improve the efficiency of anti-TB treatment and provide an effective means of treating tuberculous bone defects. This methodology also has good application prospects and provides directions for future research.
Collapse
Affiliation(s)
- Long Hua
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China.,Department of orthopedics,The Sixth Affiliated Hospital, Xinjiang Medical University, Urumqi, P. R. China
| | - Hu Qian
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Ting Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Wenbin Liu
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Xi He
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Yu Zhang
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Pengfei Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
3
|
Wang X, Zhang H, Han Y, Huo L, Cao Y, Xu X, Ai L. Rapid and simultaneous determination of ten anti-tuberculosis drugs in human plasma by UPLC-MS/MS with applications in therapeutic drug monitoring. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122246. [PMID: 32668377 DOI: 10.1016/j.jchromb.2020.122246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
Abstract
Tuberculosis remains a global challenge, particularly with a growing number of resistant cases, which may become an obstacle to eliminating this disease. Standardized short-course therapy composed of first-line anti-tuberculosis drugs isoniazid (INH), rifampicin (RIF), ethambutol (EMB), and pyrazinamide (PZA) is playing vital roles for curbing the rapid spread of tuberculosis. However, some patients have poor responses to standardized short-course therapy. As the number of drug-resistant tuberculosis increase, some other anti-tuberculous drugs are needed to achieve better treatment outcomes. In this study, we established a UPLC-MS/MS method for simultaneous detection of ten anti-tuberculosis drugs in human plasma including INH, EMB, PZA, RIF, rifampin, rifapentine as well as four second-line antituberculosis drugs, i.e. ethionamide, protionamide, thiosemicarbazone and clofazimine. This study contains almost all the commonly used anti-tuberculosis drugs. The plasma samples were treated with acetonitrile to precipitate proteins, and doped with the isotope internal standard. A Shiseido CAPCELL RAK-ADME (2.1 mm × 50 mm, 3 μm) column was used for chromatographic separation, and acetonitrile-water (containing 0.1% formic acid) was the mobile phase. The separation used gradient elution with a flow rate of 0.4 mL/min. The column temperature was 40 °C, and the sample volume was 1 μL. The electrospray ionization source (ESI) and the positive ion multiple reaction monitoring (MRM) mode were used for the detection. The analysis time was as short as 7 min. The results show a good linear relationship under optimized conditions in the range of 5.00-7.50 × 103, 1.00-1.50 × 103, 5.00-5.00 × 104, 5.00-7.50 × 103, 1.00-3.00 × 103, 1.00 × 101-1.00 × 104, 1.00-3.00 × 103, 1.00-3.00 × 103, 2.00-4.00 × 103, and 1.00 × 10-1-2.00 × 102 ng/mL for INH, EMB PZA, RIF, rifabutin, rifapentine, ethionamide, protionamide, thiosemicarbazone, and clofazimine, respectively, with a linear correlation coefficient of R > 0.99. Finally, 34 patients with pulmonary TB were tested for therapeutic drug monitoring. The results showed that the presented method have significant advances in sensitivity, separation efficiency and simplicity.
Collapse
Affiliation(s)
- Xiangji Wang
- School of Public Health, and Hebei Province Key Laboratory of Environment and Human Health of Hebei Medical University, Shijiazhuang 050017, China
| | - Haichao Zhang
- Technology Center of Shijiazhuang Customs, 318 Heping West Road, Shijiazhuang 050051, China
| | - Yanzhen Han
- School of Public Health, and Hebei Province Key Laboratory of Environment and Human Health of Hebei Medical University, Shijiazhuang 050017, China
| | - Lin Huo
- Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang 050048, China
| | - Yaqing Cao
- Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang 050048, China
| | - Xiangdong Xu
- School of Public Health, and Hebei Province Key Laboratory of Environment and Human Health of Hebei Medical University, Shijiazhuang 050017, China.
| | - Lianfeng Ai
- Technology Center of Shijiazhuang Customs, 318 Heping West Road, Shijiazhuang 050051, China
| |
Collapse
|
4
|
Chiappini E, Matucci T, Lisi C, Petrolini C, Venturini E, Tersigni C, de Martino M, Galli L. Use of Second-line Medications and Treatment Outcomes in Children With Tuberculosis in a Single Center From 2007 to 2018. Pediatr Infect Dis J 2019; 38:1027-1034. [PMID: 31397749 DOI: 10.1097/inf.0000000000002410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The incidence of drug-resistant forms of tuberculosis (DR-TB) and the number of children treated with second-line drugs (SLDs) are increasing. However, limited amount of information is available regarding the use of SLDs in this population. METHODS To describe the treatment of pediatric TB with SLDs and factors associated with use of SLDs in children with and without documented DR-TB, records of pediatric TB patients referred to a center in Italy from 2007 to 2018 were reviewed retrospectively. RESULTS Of 204 children diagnosed with active TB during the study period, 42 were treated with SLDs because of confirmed or probable drug resistance (42.8%), adverse reactions to first-line drugs (7.1%), central nervous system involvement (11.9%) or unconfirmed possible drug resistance (38.1%). There were no deaths or adverse reactions to SLDs reported. Treatment was successful in 85.2% children treated with first-line drugs and 92.9% children treated with SLDs. After adjusting for calendar period, the only factor associated with DR-TB was <2 years old [odds ratio (OR): 5.24 for <2 years vs. 5-18 years; P = 0.008]. Factors associated with treatment with SLDs were TB at 2 or more sites (OR: 11.30; P < 0.001), extrapulmonary TB (OR: 8.48; P < 0.001) or adverse reactions to first-line drugs (OR: 7.48; P = 0.002). No differences were noted in age or region of origin. CONCLUSIONS A substantial proportion of TB children were treated with SLDs. The main reason for using SLDs was failure of a first-line drug regimen, suggesting possible DR-TB and underestimation of DR-TB in children. The use of SLD regimens was associated with a high success rate and good tolerability profile.
Collapse
Affiliation(s)
- Elena Chiappini
- From the Department of Health Sciences, Anna Meyer Children University Hospital, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Matucci T, Galli L, de Martino M, Chiappini E. Treating children with tuberculosis: new weapons for an old enemy. J Chemother 2019; 31:227-245. [DOI: 10.1080/1120009x.2019.1598039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tommaso Matucci
- Department of Health Sciences, Anna Meyer Children University Hospital, University of Florence, Florence, Italy
| | - Luisa Galli
- Department of Health Sciences, Anna Meyer Children University Hospital, University of Florence, Florence, Italy
| | - Maurizio de Martino
- Department of Health Sciences, Anna Meyer Children University Hospital, University of Florence, Florence, Italy
| | - Elena Chiappini
- Department of Health Sciences, Anna Meyer Children University Hospital, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Antimicrobial Activity of Quinazolin Derivatives of 1,2-Di(quinazolin-4-yl)diselane against Mycobacteria. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5791781. [PMID: 28612027 PMCID: PMC5458374 DOI: 10.1155/2017/5791781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/12/2017] [Accepted: 04/03/2017] [Indexed: 11/17/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is one of the leading causes of morbidity and mortality. Currently, the emergence of drug resistance has an urgent need for new drugs. In previous study, we found that 1,2-di(quinazolin-4-yl)diselane (DQYD), a quinazoline derivative, has anticancer activities against many cancers. However, whether DQYD has the activity of antimycobacterium is still little known. Here our results show that DQYD has a similar value of the minimum inhibitory concentration with clinical drugs against mycobacteria and also has the ability of bacteriostatic activity with dose-dependent and time-dependent manner. Furthermore, the activities of DQYD against M. tuberculosis are associated with intracellular ATP homeostasis. Meanwhile, mycobacterium DNA damage level was increased after DQYD treatment. But there was no correlation between survival of mycobacteria in the presence of DQYD and intercellular reactive oxygen species. This study enlightens the possible benefits of quinazoline derivatives as potential antimycobacterium compounds and furtherly suggests a new strategy to develop new methods for searching antituberculosis drugs.
Collapse
|
7
|
Recent developments in the diagnosis and management of tuberculosis. NPJ Prim Care Respir Med 2016; 26:16078. [PMID: 27808163 PMCID: PMC5093435 DOI: 10.1038/npjpcrm.2016.78] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 01/03/2023] Open
Abstract
Tuberculosis (TB) is a major public health issue worldwide, with ~9.6 million new incident cases and 1.5 million deaths in 2014. The End-TB Strategy launched by the World Health Organization in the context of the post-2015 agenda aims to markedly abate the scourge of TB towards global elimination, by improving current diagnostic and therapeutic practices, promoting preventative interventions, stimulating government commitment and increased financing, and intensifying research and innovation. The emergence and spread of multidrug-resistant strains is currently among the greatest concerns, which may hinder the achievement of future goals. It is crucial that primary healthcare providers are sufficiently familiar with the basic principles of TB diagnosis and care, to ensure early case detection and prompt referral to specialised centres for treatment initiation and follow-up. Given their special relationship with patients, they are in the best position to promote educational interventions and identify at-risk individuals as well as to improve adherence to treatment.
Collapse
|
8
|
Ali HR, Ali MRK, Wu Y, Selim SA, Abdelaal HFM, Nasr EA, El-Sayed MA. Gold Nanorods as Drug Delivery Vehicles for Rifampicin Greatly Improve the Efficacy of Combating Mycobacterium tuberculosis with Good Biocompatibility with the Host Cells. Bioconjug Chem 2016; 27:2486-2492. [PMID: 27595304 DOI: 10.1021/acs.bioconjchem.6b00430] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
TB remains a challenging disease to control worldwide. Nanoparticles have been used as drug carriers to deliver high concentrations of antibiotics directly to the site of infection, reducing the duration of treatment along with any side effects of off-target toxicities after systemic exposure to the antibiotics. Herein we have developed a drug delivery platform where gold nanorods (AuNRs) are conjugated to rifampicin (RF), which is released after uptake into macrophage cells (RAW264.7). Due to the nature of the macrophage cells, the nanoparticles are actively internalized into macrophages and release RF after uptake, under the safety frame of the host cells (macrophage). AuNRs without RF conjugation exhibit obvious antimicrobial activity. Therefore, AuNRs could be a promising antimycobacterial agent and an effective delivery vehicle for the antituberculosis drug Rifampicin for use in tuberculosis therapy.
Collapse
Affiliation(s)
- Hala R Ali
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States.,Animal Health Research Institute (AHRI) , Department of Bacteriology and Immunology, Dokki, Giza, Egypt.,Department of Veterinary Medicine, Cairo University , Giza, Cairo, Egypt
| | - Moustafa R K Ali
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Yue Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Salah A Selim
- Department of Veterinary Medicine, Cairo University , Giza, Cairo, Egypt
| | - Hazem F M Abdelaal
- Department of Pathobiological Sciences, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Essam A Nasr
- Veterinary Serum and Vaccine Research Institute , Bacterial Diagnostics Research Department (Tuberculosis), Abbasia, Cairo, Egypt
| | - Mostafa A El-Sayed
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States.,Adjunct Professor, School of Chemistry, King Abdul Aziz University , Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Principi N, Esposito S. Infectious Discitis and Spondylodiscitis in Children. Int J Mol Sci 2016; 17:539. [PMID: 27070599 PMCID: PMC4848995 DOI: 10.3390/ijms17040539] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/18/2016] [Accepted: 04/01/2016] [Indexed: 12/19/2022] Open
Abstract
In children, infectious discitis (D) and infectious spondylodiscitis (SD) are rare diseases that can cause significant clinical problems, including spinal deformities and segmental instabilities. Moreover, when the infection spreads into the spinal channel, D and SD can cause devastating neurologic complications. Early diagnosis and treatment may reduce these risks. The main aim of this paper is to discuss recent concepts regarding the epidemiology, microbiology, clinical presentation, diagnosis, and treatment of pediatric D and SD. It is highlighted that particular attention must be paid to the identification of the causative infectious agent and its sensitivity to antibiotics, remembering that traditional culture frequently leads to negative results and modern molecular methods can significantly increase the detection rate. Several different bacterial pathogens can cause D and SD, and, in some cases, particularly those due to Staphylococcus aureus, Kingella kingae, Mycobacterium tuberculosis, Brucella spp., the appropriate choice of drug is critical to achieve cure.
Collapse
Affiliation(s)
- Nicola Principi
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | - Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| |
Collapse
|