1
|
Wang Q, Shi Y, Qin Z, Xu M, Wang J, Lu Y, Zhao Z, Bi H. A375 melanoma-derived lactate controls A375 melanoma phenotypes by inducing macrophage M2 polarization via TCA cycle and TGF-β signaling. PeerJ 2025; 13:e18887. [PMID: 39995996 PMCID: PMC11849511 DOI: 10.7717/peerj.18887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 12/31/2024] [Indexed: 02/26/2025] Open
Abstract
Introduction Macrophage phenotypes have been linked to progression and prognosis of cutaneous melanoma. However, the association between Warburg effect in A375 melanoma and macrophages polarization, as well as the underlying mechanisms, remains less well documented. Objective The present study aimed to investigate the effect of lactate derived from A375 melanoma on macrophage polarization, melanoma phenotype responses and the underlying mechanisms. Methods Flow cytometry was performed to evaluate the expression of M1 and M2 markers, cell cycle and apoptosis. Levels of transforming growth factor β (TGF-β) and tumor necrosis factor α (TNF-α) were determined with enzyme-linked immunosorbent assay (ELISA) kit. Proliferation and invasion were assessed by CCK8 and transwell assays, respectively. The extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were analyzed using an XF96 extracellular flux analyzer. Protein expressions were determined by Western blotting. Results Our results revealed that melanoma A375 conditioned medium (A375-CM) induced peripheral blood mononuclear cells (PBMCs) to polarize toward anti-inflammatory M2 macrophages. M2 markers CD206 and ARG1 expression increased, as did TGF-β secretion. Conversely, M1 marker CD68 expression decreased. Furthermore, hypoxia promoted macrophage M2 polarization induced by A375-CM. Elevated lactate level in PIG1-conditioned medium (PIG1-CM) induced M2 polarization, whereas the lactate transport inhibitor AZD3965 suppressed this effect in PBMCs cultured with A375-CM. Additionally, lactate derived from melanoma regulated M1/M2 polarization by the tricarboxylic acid (TCA) cycle instead of glycolysis. Significantly, polarized macrophages altered melanoma phenotypes including proliferation, clone formation, cell cycle, apoptosis, migration and invasion via TCA cycle and TGF-β. Conclusion Our data collectively demonstrate that lactate derived from melanoma facilitates polarization of M2 macrophages, which subsequently leads to modifications in melanoma phenotypes via TCA cycle and TGF-β signaling.
Collapse
Affiliation(s)
- Qifei Wang
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing, China
| | - Yurui Shi
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing, China
| | - Zelian Qin
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing, China
| | - Mengli Xu
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing, China
| | - Jingyi Wang
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing, China
| | - Yuhao Lu
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing, China
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing, China
| |
Collapse
|
2
|
Khan AQ, Agha MV, Ahmad F, Anver R, Sheikhan KSAM, Mateo J, Alam M, Buddenkotte J, Uddin S, Steinhoff M. Metabolomics analyses reveal the crucial role of ERK in regulating metabolic pathways associated with the proliferation of human cutaneous T-cell lymphoma cells treated with Glabridin. Cell Prolif 2024; 57:e13701. [PMID: 38946222 PMCID: PMC11503255 DOI: 10.1111/cpr.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Cutaneous T-cell lymphomas (CTC) are a heterogeneous group of T-cell lymphoproliferative malignancies of the skin with limited treatment options, increased resistance and remission. Metabolic reprogramming is vital in orchestrating the uncontrolled growth and proliferation of cancer cells. Importantly, deregulated signalling plays a significant role in metabolic reprogramming. Considering the crucial role of metabolic reprogramming in cancer-cell growth and proliferation, target identification and the development of novel and multi-targeting agents are imperative. The present study explores the underlying mechanisms and metabolic signalling pathways associated with Glabridin mediated anti-cancer actions in CTCL. Our results show that Glabridin significantly inhibits the growth of CTCL cells through induction of programmed cell death (PCD) such as apoptosis, autophagy and necrosis. Interestingly, results further show that Glabridin induces PCD in CTCL cells by targeting MAPK signalling pathways, particularly the activation of ERK. Further, Glabridin also sensitized CTCL cells to the anti-cancer drug, bortezomib. Importantly, LC-MS-based metabolomics analyses further showed that Glabridin targeted multiple metabolites and metabolic pathways intricately involved in cancer cell growth and proliferation in an ERK-dependent fashion. Overall, our findings revealed that Glabridin induces PCD and attenuates the expression of regulatory proteins and metabolites involved in orchestrating the uncontrolled proliferation of CTCL cells through ERK activation. Therefore, Glabridin possesses important features of an ideal anti-cancer agent.
Collapse
Affiliation(s)
- Abdul Q. Khan
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
| | - Maha Victor Agha
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
| | - Fareed Ahmad
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology and VenereologyRumailah Hospital, Hamad Medical CorporationDohaQatar
| | - Rasheeda Anver
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
| | | | - Jericha Mateo
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
| | - Majid Alam
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology and VenereologyRumailah Hospital, Hamad Medical CorporationDohaQatar
| | - Joerg Buddenkotte
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology and VenereologyRumailah Hospital, Hamad Medical CorporationDohaQatar
| | - Shahab Uddin
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Laboratory Animal Research CenterQatar UniversityDohaQatar
| | - Martin Steinhoff
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology and VenereologyRumailah Hospital, Hamad Medical CorporationDohaQatar
- Department of MedicineWeill Cornell Medicine Qatar, Qatar Foundation‐Education CityDohaQatar
- Department of MedicineWeill Cornell MedicineNew YorkNew YorkUSA
- College of MedicineQatar UniversityDohaQatar
| |
Collapse
|
3
|
Ke R, Kumar S, Singh SK, Rana A, Rana B. Molecular insights into the role of mixed lineage kinase 3 in cancer hallmarks. Biochim Biophys Acta Rev Cancer 2024; 1879:189157. [PMID: 39032538 DOI: 10.1016/j.bbcan.2024.189157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Mixed-lineage kinase 3 (MLK3) is a serine/threonine kinase of the MAPK Kinase kinase (MAP3K) family that plays critical roles in various biological processes, including cancer. Upon activation, MLK3 differentially activates downstream MAPKs, such as JNK, p38, and ERK. In addition, it regulates various non-canonical signaling pathways, such as β-catenin, AMPK, Pin1, and PAK1, to regulate cell proliferation, apoptosis, invasion, and metastasis. Recent studies have also uncovered other potentially diverse roles of MLK3 in malignancy, which include metabolic reprogramming, cancer-associated inflammation, and evasion of cancer-related immune surveillance. The role of MLK3 in cancer is complex and cancer-specific, and an understanding of its function at the molecular level aligned specifically with the cancer hallmarks will have profound therapeutic implications for diagnosing and treating MLK3-dependent cancers. This review summarizes the current knowledge about the effect of MLK3 on the hallmarks of cancer, providing insights into its potential as a promising anticancer drug target.
Collapse
Affiliation(s)
- Rong Ke
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
4
|
Melones-Herrero J, Alcalá S, Ruiz-Cañas L, Benítez-Buelga C, Batres-Ramos S, Calés C, Lorenzo O, Perona R, Quiroga AG, Sainz B, Sánchez-Pérez I. Platinum iodido drugs show potential anti-tumor activity, affecting cancer cell metabolism and inducing ROS and senescence in gastrointestinal cancer cells. Commun Biol 2024; 7:353. [PMID: 38519773 PMCID: PMC10959927 DOI: 10.1038/s42003-024-06052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Cisplatin-based chemotherapy has associated clinical disadvantages, such as high toxicity and resistance. Thus, the development of new antitumor metallodrugs able to overcome different clinical barriers is a public healthcare priority. Here, we studied the mechanism of action of the isomers trans and cis-[PtI2(isopropylamine)2] (I5 and I6, respectively) against gastrointestinal cancer cells. We demonstrate that I5 and I6 modulate mitochondrial metabolism, decreasing OXPHOS activity and negatively affecting ATP-linked oxygen consumption rate. Consequently, I5 and I6 generated Reactive Oxygen Species (ROS), provoking oxidative damage and eventually the induction of senescence. Thus, herein we propose a loop with three interconnected processes modulated by these iodido agents: (i) mitochondrial dysfunction and metabolic disruptions; (ii) ROS generation and oxidative damage; and (iii) cellular senescence. Functionally, I5 reduces cancer cell clonogenicity and tumor growth in a pancreatic xenograft model without systemic toxicity, highlighting a potential anticancer complex that warrants additional pre-clinical studies.
Collapse
Affiliation(s)
- Jorge Melones-Herrero
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sonia Alcalá
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Laura Ruiz-Cañas
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carlos Benítez-Buelga
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
| | - Sandra Batres-Ramos
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmela Calés
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, Instituto de Investigaciones Sanitarias-Fundación Jimenez Díaz, CIBERDEM, UAM, Madrid, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Rare Diseases, CIBERER, ISCIII, Madrid, Spain
- Instituto de Salud Carlos III, Madrid, Spain
| | - Adoración G Quiroga
- Department of Inorganic Chemistry, School of Sciences, IAdChem, UAM, Madrid, Spain
| | - Bruno Sainz
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, Spain.
| | - Isabel Sánchez-Pérez
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Investigación Biomédica en Red, Área Rare Diseases, CIBERER, ISCIII, Madrid, Spain.
- Unidad Asociada de Biomedicina UCLM-CSIC, Madrid, Spain.
| |
Collapse
|
5
|
Laurin KM, Coutu-Beaudry K, Salazar A, Méribout N, Audet-Walsh É, Gravel SP. Low expression of PGC-1β and other mitochondrial biogenesis modulators in melanoma is associated with growth arrest and the induction of an immunosuppressive gene expression program dependent on MEK and IRF-1. Cancer Lett 2022; 541:215738. [PMID: 35594996 DOI: 10.1016/j.canlet.2022.215738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
Mitochondria are specialized metabolic and immune organelles that have important roles in tumor progression, metastasis, and response to chemotherapy and immunotherapy. Mitochondrial biogenesis and function are under the control of the peroxisome-proliferator activated receptor-gamma (PGC-1) transcriptional coactivators. Recent research unveiled the role of PGC-1α in bolstering mitochondrial oxidative functions and in the suppression of metastasis in melanoma, but the role of PGC-1s in tumor immunology remains elusive. Herein, we show that low PGC-1s expression in human melanoma tumors is associated with increased expression of a repertoire of immunosuppressive (CD73, PD-L2, Galectin-9) and pro-inflammatory (IL-8, TNF, IL-1β) transcripts, and that experimental depletion of PGC-1β recapitulates this signature in human melanoma cell lines. The depletion of PGC-1β reduces the expression of HSPA9, impairs mitochondrial activity, and leads to cell cycle arrest. Using pharmacological and gene silencing approaches, we further show that MEK1/2 and IRF-1 mediate the observed immune transcriptional response. Overall, this research suggests that mitochondrial biogenesis modulators can modulate tumor progression, immune evasion, and response to therapeutics through transcriptional control of immune pathways.
Collapse
Affiliation(s)
- Karl M Laurin
- Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | | | | | - Nour Méribout
- Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
6
|
De Tomi E, Campagnari R, Orlandi E, Cardile A, Zanrè V, Menegazzi M, Gomez-Lira M, Gotte G. Upregulation of miR-34a-5p, miR-20a-3p and miR-29a-3p by Onconase in A375 Melanoma Cells Correlates with the Downregulation of Specific Onco-Proteins. Int J Mol Sci 2022; 23:ijms23031647. [PMID: 35163570 PMCID: PMC8835754 DOI: 10.3390/ijms23031647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Onconase (ONC) is an amphibian secretory ribonuclease displaying cytostatic and cytotoxic activities against many mammalian tumors, including melanoma. ONC principally damages tRNA species, but also other non-coding RNAs, although its precise targets are not known. We investigated the ONC ability to modulate the expression of 16 onco-suppressor microRNAs (miRNAs) in the A375 BRAF-mutated melanoma cell line. RT-PCR and immunoblots were used to measure the expression levels of miRNAs and their regulated proteins, respectively. In silico study was carried out to verify the relations between miRNAs and their mRNA targets. A375 cell transfection with miR-20a-3p and miR-34a-5p mimics or inhibitors was performed. The onco-suppressors miR-20a-3p, miR-29a-3p and miR-34a-5p were highly expressed in 48-h ONC-treated A375 cells. The cytostatic effect of ONC in A375 cells was mechanistically explained by the sharp inhibition of cyclins D1 and A2 expression level, as well as by downregulation of retinoblastoma protein and cyclin-dependent-kinase-2 activities. Remarkably, the expression of kinases ERK1/2 and Akt, as well as of the hypoxia inducible factor-1α, was inhibited by ONC. All these proteins control pro-survival pathways. Finally, many crucial proteins involved in migration, invasion and metastatic potential were downregulated by ONC. Results obtained from transfection of miR-20a-3p and miR-34a-5p inhibitors in the presence of ONC show that these miRNAs may participate in the antitumor effects of ONC in the A375 cell line. In conclusion, we identified many intracellular downregulated proteins involved in melanoma cell proliferation, metabolism and progression. All mRNAs coding these proteins may be targets of miR-20a-3p, miR-29a-3p and/or miR-34a-5p, which are in turn upregulated by ONC. Data suggest that several known ONC anti-proliferative and anti-metastatic activities in A375 melanoma cells might depend on the upregulation of onco-suppressor miRNAs. Notably, miRNAs stability depends on the upstream regulation by long-non-coding-RNAs or circular-RNAs that can, in turn, be damaged by ONC ribonucleolytic activity.
Collapse
Affiliation(s)
- Elisa De Tomi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Elisa Orlandi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Alessia Cardile
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Valentina Zanrè
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
- Correspondence:
| | - Macarena Gomez-Lira
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| |
Collapse
|
7
|
Zerhouni M, Martin AR, Furstoss N, Gutierrez VS, Jaune E, Tekaya N, Beranger GE, Abbe P, Regazzetti C, Amdouni H, Driowya M, Dubreuil P, Luciano F, Jacquel A, Tulic MK, Cluzeau T, O'Hara BP, Ben-Sahra I, Passeron T, Benhida R, Robert G, Auberger P, Rocchi S. Dual Covalent Inhibition of PKM and IMPDH Targets Metabolism in Cutaneous Metastatic Melanoma. Cancer Res 2021; 81:3806-3821. [PMID: 34099492 DOI: 10.1158/0008-5472.can-20-2114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/08/2020] [Accepted: 06/02/2021] [Indexed: 11/16/2022]
Abstract
Overcoming acquired drug resistance is a primary challenge in cancer treatment. Notably, more than 50% of patients with BRAFV600E cutaneous metastatic melanoma (CMM) eventually develop resistance to BRAF inhibitors. Resistant cells undergo metabolic reprogramming that profoundly influences therapeutic response and promotes tumor progression. Uncovering metabolic vulnerabilities could help suppress CMM tumor growth and overcome drug resistance. Here we identified a drug, HA344, that concomitantly targets two distinct metabolic hubs in cancer cells. HA344 inhibited the final and rate-limiting step of glycolysis through its covalent binding to the pyruvate kinase M2 (PKM2) enzyme, and it concurrently blocked the activity of inosine monophosphate dehydrogenase, the rate-limiting enzyme of de novo guanylate synthesis. As a consequence, HA344 efficiently targeted vemurafenib-sensitive and vemurafenib-resistant CMM cells and impaired CMM xenograft tumor growth in mice. In addition, HA344 acted synergistically with BRAF inhibitors on CMM cell lines in vitro. Thus, the mechanism of action of HA344 provides potential therapeutic avenues for patients with CMM and a broad range of different cancers. SIGNIFICANCE: Glycolytic and purine synthesis pathways are often deregulated in therapy-resistant tumors and can be targeted by the covalent inhibitor described in this study, suggesting its broad application for overcoming resistance in cancer.
Collapse
Affiliation(s)
- Marwa Zerhouni
- Université Côte d'azur, Nice, France
- Inserm U1065, C3M, Team 2, Nice, France
- Inserm U1065, C3M, Team 12, Nice, France
| | - Anthony R Martin
- Université Côte d'azur, Nice, France
- Institut de Chimie de Nice UMR 7272, Nice, France
| | - Nathan Furstoss
- Université Côte d'azur, Nice, France
- Inserm U1065, C3M, Team 2, Nice, France
| | - Vincent S Gutierrez
- Université Côte d'azur, Nice, France
- Institut de Chimie de Nice UMR 7272, Nice, France
| | - Emilie Jaune
- Université Côte d'azur, Nice, France
- Inserm U1065, C3M, Team 12, Nice, France
| | - Nedra Tekaya
- Université Côte d'azur, Nice, France
- Inserm U1065, C3M, Team 12, Nice, France
| | | | - Patricia Abbe
- Université Côte d'azur, Nice, France
- Inserm U1065, C3M, Team 12, Nice, France
| | - Claire Regazzetti
- Université Côte d'azur, Nice, France
- Inserm U1065, C3M, Team 12, Nice, France
| | - Hella Amdouni
- Université Côte d'azur, Nice, France
- Institut de Chimie de Nice UMR 7272, Nice, France
| | - Mohsine Driowya
- Université Côte d'azur, Nice, France
- Institut de Chimie de Nice UMR 7272, Nice, France
| | - Patrice Dubreuil
- CRCM, Team Signalisation, Hématopoïèse et Mécanismes de l'Oncogenèse, Marseille, France
| | - Frédéric Luciano
- Université Côte d'azur, Nice, France
- Inserm U1065, C3M, Team 2, Nice, France
| | - Arnaud Jacquel
- Université Côte d'azur, Nice, France
- Inserm U1065, C3M, Team 2, Nice, France
| | - Meri K Tulic
- Université Côte d'azur, Nice, France
- Inserm U1065, C3M, Team 2, Nice, France
| | - Thomas Cluzeau
- Université Côte d'azur, Nice, France
- Inserm U1065, C3M, Team 2, Nice, France
- CHU de Nice, Nice, France
| | - Brendan P O'Hara
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Thierry Passeron
- Université Côte d'azur, Nice, France
- Inserm U1065, C3M, Team 12, Nice, France
- CHU de Nice, Nice, France
| | | | - Guillaume Robert
- Université Côte d'azur, Nice, France
- Inserm U1065, C3M, Team 2, Nice, France
| | - Patrick Auberger
- Université Côte d'azur, Nice, France.
- Inserm U1065, C3M, Team 2, Nice, France
| | - Stéphane Rocchi
- Université Côte d'azur, Nice, France.
- Inserm U1065, C3M, Team 12, Nice, France
| |
Collapse
|
8
|
Metabolic Interplay between the Immune System and Melanoma Cells: Therapeutic Implications. Biomedicines 2021; 9:biomedicines9060607. [PMID: 34073463 PMCID: PMC8227307 DOI: 10.3390/biomedicines9060607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive biological behavior and high metastatic potential. Treatment strategies for advanced disease have dramatically changed over the last years due to the introduction of BRAF/MEK inhibitors and immunotherapy. However, many patients either display primary (i.e., innate) or eventually develop secondary (i.e., acquired) resistance to systemic treatments. Treatment resistance depends on multiple mechanisms driven by a set of rewiring processes, which involve cancer metabolism, epigenetic, gene expression, and interactions within the tumor microenvironment. Prognostic and predictive biomarkers are needed to guide patients’ selection and treatment decisions. Indeed, there are no recognized clinical or biological characteristics that identify which patients will benefit more from available treatments, but several biomarkers have been studied with promising preliminary results. In this review, we will summarize novel tumor metabolic pathways and tumor-host metabolic crosstalk mechanisms leading to melanoma progression and drug resistance, with an overview on their translational potential as novel therapeutic targets.
Collapse
|
9
|
Izraely S, Ben-Menachem S, Sagi-Assif O, Meshel T, Malka S, Telerman A, Bustos MA, Ramos RI, Pasmanik-Chor M, Hoon DSB, Witz IP. The melanoma brain metastatic microenvironment: aldolase C partakes in shaping the malignant phenotype of melanoma cells - a case of inter-tumor heterogeneity. Mol Oncol 2020; 15:1376-1390. [PMID: 33274599 PMCID: PMC8096793 DOI: 10.1002/1878-0261.12872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Previous studies indicated that microglia cells upregulate the expression of aldolase C (ALDOC) in melanoma cells. The present study using brain‐metastasizing variants from three human melanomas explores the functional role of ALDOC in the formation and maintenance of melanoma brain metastasis (MBM). ALDOC overexpression impacted differentially the malignant phenotype of these three variants. In the first variant, ALDOC overexpression promoted cell viability, adhesion to and transmigration through a layer of brain endothelial cells, and amplified brain micrometastasis formation. The cross‐talk between this MBM variant and microglia cells promoted the proliferation and migration of the latter cells. In sharp contrast, ALDOC overexpression in the second brain‐metastasizing melanoma variant reduced or did not affect the same malignancy features. In the third melanoma variant, ALDOC overexpression augmented certain characteristics of malignancy and reduced others. The analysis of biological functions and disease pathways in the ALDOC overexpressing variants clearly indicated that ALDOC induced the expression of tumor progression promoting genes in the first variant and antitumor progression properties in the second variant. Overall, these results accentuate the complex microenvironment interactions between microglia cells and MBM, and the functional impact of intertumor heterogeneity. Since intertumor heterogeneity imposes a challenge in the planning of cancer treatment, we propose to employ the functional response of tumors with an identical histology, to a particular drug or the molecular signature of this response, as a predictive indicator of response/nonresponse to this drug.
Collapse
Affiliation(s)
- Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Israel
| | - Shlomit Ben-Menachem
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Israel
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Israel
| | - Tsipi Meshel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Israel
| | - Sapir Malka
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Israel
| | - Alona Telerman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Israel
| | - Matias A Bustos
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Romela Irene Ramos
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Israel
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Isaac P Witz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Israel
| |
Collapse
|
10
|
Ho C, Lin CY. Genes Associated with Calcium Signaling are Involved in Alcohol-Induced Breast Cancer Growth. Alcohol Clin Exp Res 2020; 45:79-91. [PMID: 33222221 DOI: 10.1111/acer.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Alcohol consumption is a risk factor for breast cancer, contributing to up to nearly 23,000 new cases each year. Mechanistic studies show that alcohol increases tumor aggressiveness and metastatic potential, promotes angiogenesis, induces chronic inflammation, and dysregulates RNA polymerase III-related genes. Alcohol has also been shown to affect estrogen signaling in breast cancer, including in our study of the transcriptomic effects of alcohol in breast cancer cells. METHODS To elucidate mechanisms of action of alcohol in breast cancer, we carried out secondary analyses of our alcohol-responsive transcriptome data using gene ontology and pathway databases and analysis tools and cistromic data analysis of candidate transcription factors which may mediate the transcriptomic alterations. Predicted alcohol-responsive pathways and mechanisms were perturbed and examined experimentally in breast cancer cells. The clinical relevance of identified genes was determined by expression profiles in patient samples and correlation with disease outcomes and alcohol consumption in previously published study cohorts. RESULTS Gene ontology analysis showed that alcohol alters the expression of many metabolism-related genes, and cistromic data of differentially expressed genes revealed the potential involvement of nuclear factor of activated T cells 3 (NFATC3) in mediating the transcriptomic effects of alcohol. Pathway analysis also predicted regulation of calcium signaling by alcohol in breast cancer cells. Chemical perturbation of this pathway reversed the effect of alcohol on breast cancer cell growth and reduced the elevated cytosolic Ca2+ levels induced by alcohol. Expression levels of alcohol-responsive genes in tumor samples from breast cancer patients are associated with poor disease outcomes. Moreover, expression of some of these genes was altered in breast cancer patients who consumed alcohol previously as compared to those who did not drink. CONCLUSION Alcohol alters expression of genes that regulate intracellular calcium levels and downstream signaling pathways which drive breast cancer cell proliferation and disease progression.
Collapse
Affiliation(s)
- Charles Ho
- From the, Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Science & Engineering Research Center, Houston, Texas, USA
| | - Chin-Yo Lin
- From the, Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Science & Engineering Research Center, Houston, Texas, USA
| |
Collapse
|
11
|
Rebecca VW, Somasundaram R, Herlyn M. Pre-clinical modeling of cutaneous melanoma. Nat Commun 2020; 11:2858. [PMID: 32504051 PMCID: PMC7275051 DOI: 10.1038/s41467-020-15546-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Metastatic melanoma is challenging to manage. Although targeted- and immune therapies have extended survival, most patients experience therapy resistance. The adaptability of melanoma cells in nutrient- and therapeutically-challenged environments distinguishes melanoma as an ideal model for investigating therapy resistance. In this review, we discuss the current available repertoire of melanoma models including two- and three-dimensional tissue cultures, organoids, genetically engineered mice and patient-derived xenograft. In particular, we highlight how each system recapitulates different features of melanoma adaptability and can be used to better understand melanoma development, progression and therapy resistance. Despite the new targeted and immunotherapies for metastatic melanoma, several patients show therapeutic plateau. Here, the authors review the current pre-clinical models of cutaneous melanoma and discuss their strengths and limitations that may help with overcoming therapeutic plateau.
Collapse
Affiliation(s)
- Vito W Rebecca
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | | | - Meenhard Herlyn
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Alkallas R, Lajoie M, Moldoveanu D, Hoang KV, Lefrançois P, Lingrand M, Ahanfeshar-Adams M, Watters K, Spatz A, Zippin JH, Najafabadi HS, Watson IR. Multi-omic analysis reveals significantly mutated genes and DDX3X as a sex-specific tumor suppressor in cutaneous melanoma. NATURE CANCER 2020; 1:635-652. [PMID: 35121978 PMCID: PMC8832745 DOI: 10.1038/s43018-020-0077-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 05/15/2020] [Indexed: 12/30/2022]
Abstract
The high background tumor mutation burden in cutaneous melanoma limits the ability to identify significantly mutated genes (SMGs) that drive this cancer. To address this, we performed a mutation significance study of over 1,000 melanoma exomes, combined with a multi-omic analysis of 470 cases from The Cancer Genome Atlas. We discovered several SMGs with co-occurring loss-of-heterozygosity and loss-of-function mutations, including PBRM1, PLXNC1 and PRKAR1A, which encodes a protein kinase A holoenzyme subunit. Deconvolution of bulk tumor transcriptomes into cancer, immune and stromal components revealed a melanoma-intrinsic oxidative phosphorylation signature associated with protein kinase A pathway alterations. We also identified SMGs on the X chromosome, including the RNA helicase DDX3X, whose loss-of-function mutations were exclusively observed in males. Finally, we found that tumor mutation burden and immune infiltration contain complementary information on survival of patients with melanoma. In summary, our multi-omic analysis provides insights into melanoma etiology and supports contribution of specific mutations to the sex bias observed in this cancer.
Collapse
Affiliation(s)
- Rached Alkallas
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Mathieu Lajoie
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Dan Moldoveanu
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of General Surgery, McGill University, Montréal, Québec, Canada
| | - Karen Vo Hoang
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Philippe Lefrançois
- Division of Dermatology, McGill University Health Centre, Montréal, Québec, Canada
| | - Marine Lingrand
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | - Kevin Watters
- Department of Pathology, McGill University and McGill University Health Center, Montréal, Québec, Canada
| | - Alan Spatz
- Department of Pathology, McGill University and McGill University Health Center, Montréal, Québec, Canada
- Lady Davis Institute, Montréal, Québec, Canada
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical College, New York, NY, USA
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- McGill University and Genome Québec Innovation Centre, McGill University, Montréal, Québec, Canada
| | - Ian R Watson
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.
- Department of Biochemistry, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
13
|
Avagliano A, Fiume G, Pelagalli A, Sanità G, Ruocco MR, Montagnani S, Arcucci A. Metabolic Plasticity of Melanoma Cells and Their Crosstalk With Tumor Microenvironment. Front Oncol 2020; 10:722. [PMID: 32528879 PMCID: PMC7256186 DOI: 10.3389/fonc.2020.00722] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Cutaneous melanoma (CM) is a highly aggressive and drug resistant solid tumor, showing an impressive metabolic plasticity modulated by oncogenic activation. In particular, melanoma cells can generate adenosine triphosphate (ATP) during cancer progression by both cytosolic and mitochondrial compartments, although CM energetic request mostly relies on glycolysis. The upregulation of glycolysis is associated with constitutive activation of BRAF/MAPK signaling sustained by BRAFV600E kinase mutant. In this scenario, the growth and progression of CM are strongly affected by melanoma metabolic changes and interplay with tumor microenvironment (TME) that sustain tumor development and immune escape. Furthermore, CM metabolic plasticity can induce a metabolic adaptive response to BRAF/MEK inhibitors (BRAFi/MEKi), associated with the shift from glycolysis toward oxidative phosphorylation (OXPHOS). Therefore, in this review article we survey the metabolic alterations and plasticity of CM, its crosstalk with TME that regulates melanoma progression, drug resistance and immunosurveillance. Finally, we describe hallmarks of melanoma therapeutic strategies targeting the shift from glycolysis toward OXPHOS.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - Gennaro Sanità
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
14
|
Kelly AM, McLoughlin RM. Target the Host, Kill the Bug; Targeting Host Respiratory Immunosuppressive Responses as a Novel Strategy to Improve Bacterial Clearance During Lung Infection. Front Immunol 2020; 11:767. [PMID: 32425944 PMCID: PMC7203494 DOI: 10.3389/fimmu.2020.00767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
The lung is under constant pressure to protect the body from invading bacteria. An effective inflammatory immune response must be tightly orchestrated to ensure complete clearance of any invading bacteria, while simultaneously ensuring that inflammation is kept under strict control to preserve lung viability. Chronic bacterial lung infections are seen as a major threat to human life with the treatment of these infections becoming more arduous as the prevalence of antibiotic resistance becomes increasingly commonplace. In order to survive within the lung bacteria target the host immune system to prevent eradication. Many bacteria directly target inflammatory cells and cytokines to impair inflammatory responses. However, bacteria also have the capacity to take advantage of and strongly promote anti-inflammatory immune responses in the host lung to inhibit local pro-inflammatory responses that are critical to bacterial elimination. Host cells such as T regulatory cells and myeloid-derived suppressor cells are often enhanced in number and activity during chronic pulmonary infection. By increasing suppressive cell populations and cytokines, bacteria promote a permissive environment suitable for their prolonged survival. This review will explore the anti-inflammatory aspects of the lung immune system that are targeted by bacteria and how bacterial-induced immunosuppression could be inhibited through the use of host-directed therapies to improve treatment options for chronic lung infections.
Collapse
Affiliation(s)
- Alanna M Kelly
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Watt MJ, Clark AK, Selth LA, Haynes VR, Lister N, Rebello R, Porter LH, Niranjan B, Whitby ST, Lo J, Huang C, Schittenhelm RB, Anderson KE, Furic L, Wijayaratne PR, Matzaris M, Montgomery MK, Papargiris M, Norden S, Febbraio M, Risbridger GP, Frydenberg M, Nomura DK, Taylor RA. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci Transl Med 2020; 11:11/478/eaau5758. [PMID: 30728288 DOI: 10.1126/scitranslmed.aau5758] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/17/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022]
Abstract
Metabolism alterations are hallmarks of cancer, but the involvement of lipid metabolism in disease progression is unclear. We investigated the role of lipid metabolism in prostate cancer using tissue from patients with prostate cancer and patient-derived xenograft mouse models. We showed that fatty acid uptake was increased in human prostate cancer and that these fatty acids were directed toward biomass production. These changes were mediated, at least partly, by the fatty acid transporter CD36, which was associated with aggressive disease. Deleting Cd36 in the prostate of cancer-susceptible Pten-/- mice reduced fatty acid uptake and the abundance of oncogenic signaling lipids and slowed cancer progression. Moreover, CD36 antibody therapy reduced cancer severity in patient-derived xenografts. We further demonstrated cross-talk between fatty acid uptake and de novo lipogenesis and found that dual targeting of these pathways more potently inhibited proliferation of human cancer-derived organoids compared to the single treatments. These findings identify a critical role for CD36-mediated fatty acid uptake in prostate cancer and suggest that targeting fatty acid uptake might be an effective strategy for treating prostate cancer.
Collapse
Affiliation(s)
- Matthew J Watt
- Department of Physiology, University of Melbourne, Melbourne, VIC 3010, Australia. .,Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Ashlee K Clark
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Vanessa R Haynes
- Department of Physiology, University of Melbourne, Melbourne, VIC 3010, Australia.,Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Natalie Lister
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Richard Rebello
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4GJ, UK
| | - Laura H Porter
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Birunthi Niranjan
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sarah T Whitby
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Jennifer Lo
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Cheng Huang
- Monash Biomedical Proteomics Facility and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ralf B Schittenhelm
- Monash Biomedical Proteomics Facility and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Kimberley E Anderson
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkley, Berkeley, CA, USA
| | - Luc Furic
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Poornima R Wijayaratne
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Maria Matzaris
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Magdalene K Montgomery
- Department of Physiology, University of Melbourne, Melbourne, VIC 3010, Australia.,Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Melissa Papargiris
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sam Norden
- TissuPath, Mount Waverley, VIC 3149, Australia
| | - Maria Febbraio
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Gail P Risbridger
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark Frydenberg
- Department of Surgery, Faculty of Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Daniel K Nomura
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkley, Berkeley, CA, USA
| | - Renea A Taylor
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia. .,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| |
Collapse
|
16
|
Di Leo L, Bodemeyer V, De Zio D. The Complex Role of Autophagy in Melanoma Evolution: New Perspectives From Mouse Models. Front Oncol 2020; 9:1506. [PMID: 31998652 PMCID: PMC6966767 DOI: 10.3389/fonc.2019.01506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Despite tremendous efforts in the last decade to improve treatments, melanoma still represents a major therapeutic challenge and overall survival of patients remains poor. Therefore, identifying new targets to counteract melanoma is needed. In this scenario, autophagy, the “self-eating” process of the cell, has recently arisen as new potential candidate in melanoma. Alongside its role as a recycling mechanism for dysfunctional and damaged cell components, autophagy also clearly sits at a crossroad with metabolism, thereby orchestrating cell proliferation, bioenergetics and metabolic rewiring, all hallmarks of cancer cells. In this regard, autophagy, both in tumor and host, has been flagged as an essential player in melanomagenesis and progression. To pave the way to a better understanding of such a complex interplay, the use of genetically engineered mouse models (GEMMs), as well as syngeneic mouse models, has been undoubtedly crucial. Herein, we will explore the latest discoveries in the field, with particular focus on the potential of these models in unraveling the contribution of autophagy in melanoma, along with the therapeutic advantages that may arise.
Collapse
Affiliation(s)
- Luca Di Leo
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Valérie Bodemeyer
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniela De Zio
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
17
|
From computational genomics to systems metabolomics for precision cancer medicine and drug discovery. Pharmacol Res 2020; 151:104479. [DOI: 10.1016/j.phrs.2019.104479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 11/24/2022]
|
18
|
Gianni M, Qin Y, Wenes G, Bandstra B, Conley AP, Subbiah V, Leibowitz-Amit R, Ekmekcioglu S, Grimm EA, Roszik J. High-Throughput Architecture for Discovering Combination Cancer Therapeutics. JCO Clin Cancer Inform 2019; 2:1-12. [PMID: 30652536 PMCID: PMC6873994 DOI: 10.1200/cci.17.00054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The amount of available next-generation sequencing data of tumors, in combination with relevant molecular and clinical data, has significantly increased in the last decade and transformed translational cancer research. Even with the progress made through data-sharing initiatives, there is a clear unmet need for easily accessible analyses tools. These include capabilities to efficiently process large sequencing database projects to present them in a straightforward and accurate way. Another urgent challenge in cancer research is to identify more effective combination therapies. METHODS We have created a software architecture that allows the user to integrate and analyze large-scale sequencing, clinical, and other datasets for efficient prediction of potential combination drug targets. This architecture permits predictions for all genes pairs; however, Food and Drug Administration-approved agents are currently lacking for most of the identified gene targets. RESULTS By applying this approach, we performed a comprehensive study and analyzed all possible combination partners and identified potentially synergistic target pairs for 38 approved targets currently in clinical use. We further showed which genes could be synergistic prediction markers and potential targets with MAPK/ERK inhibitors for the treatment of melanoma. Moreover, we integrated a graph analytics technique in this architecture to identify pathways that could be targeted synergistically to enhance the efficacy of certain therapeutics in cancer. CONCLUSION The architecture and the results presented provide a foundation for discovering effective combination therapeutics.
Collapse
Affiliation(s)
- Matt Gianni
- Matt Gianni, Geert Wenes, and Becca Bandstra, Cray Inc, Seattle, WA; Yong Qin, Anthony P. Conley, Vivek Subbiah, Suhendan Ekmekcioglu, Elizabeth A. Grimm, and Jason Roszik, The University of Texas MD Anderson Cancer Center, Houston, TX; and Raya Leibowitz-Amit, Tel Aviv University Sackler School of Medicine, Tel-Hashomer, Israel
| | - Yong Qin
- Matt Gianni, Geert Wenes, and Becca Bandstra, Cray Inc, Seattle, WA; Yong Qin, Anthony P. Conley, Vivek Subbiah, Suhendan Ekmekcioglu, Elizabeth A. Grimm, and Jason Roszik, The University of Texas MD Anderson Cancer Center, Houston, TX; and Raya Leibowitz-Amit, Tel Aviv University Sackler School of Medicine, Tel-Hashomer, Israel
| | - Geert Wenes
- Matt Gianni, Geert Wenes, and Becca Bandstra, Cray Inc, Seattle, WA; Yong Qin, Anthony P. Conley, Vivek Subbiah, Suhendan Ekmekcioglu, Elizabeth A. Grimm, and Jason Roszik, The University of Texas MD Anderson Cancer Center, Houston, TX; and Raya Leibowitz-Amit, Tel Aviv University Sackler School of Medicine, Tel-Hashomer, Israel
| | - Becca Bandstra
- Matt Gianni, Geert Wenes, and Becca Bandstra, Cray Inc, Seattle, WA; Yong Qin, Anthony P. Conley, Vivek Subbiah, Suhendan Ekmekcioglu, Elizabeth A. Grimm, and Jason Roszik, The University of Texas MD Anderson Cancer Center, Houston, TX; and Raya Leibowitz-Amit, Tel Aviv University Sackler School of Medicine, Tel-Hashomer, Israel
| | - Anthony P Conley
- Matt Gianni, Geert Wenes, and Becca Bandstra, Cray Inc, Seattle, WA; Yong Qin, Anthony P. Conley, Vivek Subbiah, Suhendan Ekmekcioglu, Elizabeth A. Grimm, and Jason Roszik, The University of Texas MD Anderson Cancer Center, Houston, TX; and Raya Leibowitz-Amit, Tel Aviv University Sackler School of Medicine, Tel-Hashomer, Israel
| | - Vivek Subbiah
- Matt Gianni, Geert Wenes, and Becca Bandstra, Cray Inc, Seattle, WA; Yong Qin, Anthony P. Conley, Vivek Subbiah, Suhendan Ekmekcioglu, Elizabeth A. Grimm, and Jason Roszik, The University of Texas MD Anderson Cancer Center, Houston, TX; and Raya Leibowitz-Amit, Tel Aviv University Sackler School of Medicine, Tel-Hashomer, Israel
| | - Raya Leibowitz-Amit
- Matt Gianni, Geert Wenes, and Becca Bandstra, Cray Inc, Seattle, WA; Yong Qin, Anthony P. Conley, Vivek Subbiah, Suhendan Ekmekcioglu, Elizabeth A. Grimm, and Jason Roszik, The University of Texas MD Anderson Cancer Center, Houston, TX; and Raya Leibowitz-Amit, Tel Aviv University Sackler School of Medicine, Tel-Hashomer, Israel
| | - Suhendan Ekmekcioglu
- Matt Gianni, Geert Wenes, and Becca Bandstra, Cray Inc, Seattle, WA; Yong Qin, Anthony P. Conley, Vivek Subbiah, Suhendan Ekmekcioglu, Elizabeth A. Grimm, and Jason Roszik, The University of Texas MD Anderson Cancer Center, Houston, TX; and Raya Leibowitz-Amit, Tel Aviv University Sackler School of Medicine, Tel-Hashomer, Israel
| | - Elizabeth A Grimm
- Matt Gianni, Geert Wenes, and Becca Bandstra, Cray Inc, Seattle, WA; Yong Qin, Anthony P. Conley, Vivek Subbiah, Suhendan Ekmekcioglu, Elizabeth A. Grimm, and Jason Roszik, The University of Texas MD Anderson Cancer Center, Houston, TX; and Raya Leibowitz-Amit, Tel Aviv University Sackler School of Medicine, Tel-Hashomer, Israel
| | - Jason Roszik
- Matt Gianni, Geert Wenes, and Becca Bandstra, Cray Inc, Seattle, WA; Yong Qin, Anthony P. Conley, Vivek Subbiah, Suhendan Ekmekcioglu, Elizabeth A. Grimm, and Jason Roszik, The University of Texas MD Anderson Cancer Center, Houston, TX; and Raya Leibowitz-Amit, Tel Aviv University Sackler School of Medicine, Tel-Hashomer, Israel
| |
Collapse
|
19
|
Metabolic flexibility in melanoma: A potential therapeutic target. Semin Cancer Biol 2019; 59:187-207. [PMID: 31362075 DOI: 10.1016/j.semcancer.2019.07.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023]
Abstract
Cutaneous melanoma (CM) represents one of the most metastasizing and drug resistant solid tumors. CM is characterized by a remarkable metabolic plasticity and an important connection between oncogenic activation and energetic metabolism. In fact, melanoma cells can use both cytosolic and mitochondrial compartments to produce adenosine triphosphate (ATP) during cancer progression. However, the CM energetic demand mainly depends on glycolysis, whose upregulation is strictly linked to constitutive activation of BRAF/MAPK pathway affected by BRAFV600E kinase mutant. Furthermore, the impressive metabolic plasticity of melanoma allows the development of resistance mechanisms to BRAF/MEK inhibitors (BRAFi/MEKi) and the adaptation to microenvironmental changes. The metabolic interaction between melanoma cells and tumor microenvironment affects the immune response and CM growth. In this review article, we describe the regulation of melanoma metabolic alterations and the metabolic interactions between cancer cells and microenvironment that influence melanoma progression and immune response. Finally, we summarize the hallmarks of melanoma therapies and we report BRAF/MEK pathway targeted therapy and mechanisms of metabolic resistance.
Collapse
|
20
|
Marzagalli M, Raimondi M, Fontana F, Montagnani Marelli M, Moretti RM, Limonta P. Cellular and molecular biology of cancer stem cells in melanoma: Possible therapeutic implications. Semin Cancer Biol 2019; 59:221-235. [PMID: 31265892 DOI: 10.1016/j.semcancer.2019.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/27/2019] [Indexed: 01/17/2023]
Abstract
Malignant melanoma is a tumor characterized by a very high level of heterogeneity, responsible for its malignant behavior and ability to escape from standard therapies. In this review we highlight the molecular and biological features of the subpopulation of cancer stem cells (CSCs), well known to be characterized by self-renewal properties, deeply involved in triggering the processes of tumor generation, metastasis, progression and drug resistance. From the molecular point of view, melanoma CSCs are identified and characterized by the expression of stemness markers, such as surface markers, ATP-binding cassette (ABC) transporters, embryonic stem cells and intracellular markers. These cells are endowed with different functional features. In particular, they play pivotal roles in the processes of tumor dissemination, epithelial-to-mesenchymal transition (EMT) and angiogenesis, mediated by specific intracellular signaling pathways; moreover, they are characterized by a unique metabolic reprogramming. As reported for other types of tumors, the CSCs subpopulation in melanoma is also characterized by a low immunogenic profile as well as by the ability to escape the immune system, through the expression of a negative modulation of T cell functions and the secretion of immunosuppressive factors. These biological features allow melanoma CSCs to escape standard treatments, thus being deeply involved in tumor relapse. Targeting the CSCs subpopulation is now considered an attractive treatment strategy; in particular, combination treatments, based on both CSCs-targeting and standard drugs, will likely increase the therapeutic options for melanoma patients. The characterization of CSCs in liquid biopsies from single patients will pave the way towards precision medicine.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | | | - Roberta M Moretti
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy.
| |
Collapse
|
21
|
Audrito V, Managò A, Gaudino F, Deaglio S. Targeting metabolic reprogramming in metastatic melanoma: The key role of nicotinamide phosphoribosyltransferase (NAMPT). Semin Cell Dev Biol 2019; 98:192-201. [PMID: 31059816 DOI: 10.1016/j.semcdb.2019.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Cancer cells rewire their metabolism to support proliferation, growth and survival. In metastatic melanoma the BRAF oncogenic pathway is a master regulator of this process, highlighting the importance of metabolic reprogramming in the pathogenesis of this tumor and offering potential therapeutic approaches. Metabolic adaptation of melanoma cells generally requires increased amounts of NAD+, an essential redox cofactor in cellular metabolism and a signaling molecule. Nicotinamide phosphoribosyltransferase (NAMPT) is the most important NAD+ biosynthetic enzyme in mammalian cells and a direct target of the BRAF oncogenic signaling pathway. These findings suggest that NAMPT is an attractive new therapeutic target, particularly in combination strategies with BRAF or MEK inhibitors. Here we review current knowledge on how oncogenic signaling reprograms metabolism in BRAF-mutated melanoma, and discuss how NAMPT/NAD+ axis contributes to these processes. Lastly, we present evidence supporting a role of NAMPT as a novel therapeutic target in metastatic melanoma.
Collapse
Affiliation(s)
- Valentina Audrito
- Department of Medical Sciences, University of Turin, Turin, Italy; Italian Institute for Genomic Medicine, Turin, Italy.
| | - Antonella Managò
- Department of Medical Sciences, University of Turin, Turin, Italy; Italian Institute for Genomic Medicine, Turin, Italy
| | - Federica Gaudino
- Department of Medical Sciences, University of Turin, Turin, Italy; Italian Institute for Genomic Medicine, Turin, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy; Italian Institute for Genomic Medicine, Turin, Italy.
| |
Collapse
|
22
|
Sahoo A, Sahoo SK, Joshi P, Lee B, Perera RJ. MicroRNA-211 Loss Promotes Metabolic Vulnerability and BRAF Inhibitor Sensitivity in Melanoma. J Invest Dermatol 2019; 139:167-176. [PMID: 30076926 PMCID: PMC6309654 DOI: 10.1016/j.jid.2018.06.189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/07/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022]
Abstract
The clinical management of malignant melanoma remains a challenge because these tumors are intrinsically aggressive and prone to therapeutic resistance. MicroRNA (miR)-211 is an emerging melanoma oncogene. Melanoma metabolism adapts to promote survival, including in response to BRAFV600E inhibition, but how miR-211 participates in this process is unknown. Here, we generated miR-211 loss-of-function cell lines using CRISPR/Cas9 technology and show that miR-211 loss slowed growth and invasion in vitro, inhibited phosphoinositol-3-kinase signaling, and inhibited melanoma growth in vivo. miR-211 deficiency rendered melanoma cells metabolically vulnerable by attenuating mitochondrial respiration and tricarboxylic acid cycling. miR-211 was up-regulated by the BRAF inhibitor vemurafenib and in vemurafenib-resistant melanoma cells, with miR-211 loss rendering them more drug sensitive. miR-211 loss represents a "two-pronged" anticancer strategy by inhibiting both critical growth-promoting cell signaling pathways and rendering cells metabolically vulnerable, making it an extremely attractive and specific candidate combinatorial therapeutic target in melanoma.
Collapse
Affiliation(s)
- Anupama Sahoo
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Sanjaya K Sahoo
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Piyush Joshi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA; Johns Hopkins School of Medicine, Department of Oncology, St. Petersburg, Florida, USA
| | - Bongyong Lee
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA; Johns Hopkins School of Medicine, Department of Oncology, St. Petersburg, Florida, USA
| | - Ranjan J Perera
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA; Johns Hopkins School of Medicine, Department of Oncology, St. Petersburg, Florida, USA.
| |
Collapse
|
23
|
Metabolic targeting synergizes with MAPK inhibition and delays drug resistance in melanoma. Cancer Lett 2018; 442:453-463. [PMID: 30481565 DOI: 10.1016/j.canlet.2018.11.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022]
Abstract
Tumors, including melanomas, frequently show an accelerated glucose metabolism. Mutations in the v-Raf murine sarcoma viral oncogene homolog B (BRAF), detected in about 50% of all melanomas, result in further enhancement of glycolysis. Therefore anti-metabolic substances might enhance the impact of RAF inhibitors. We have identified the two non-steroidal anti-inflammatory drugs (NSAIDs) diclofenac and lumiracoxib being able to restrict energy metabolism in human melanoma cells by targeting lactate release and oxidative phosphorylation (OXPHOS). In combination with the RAF inhibitor vemurafenib strong synergism was observed: Diclofenac as well as lumiracoxib increased the anti-glycolytic impact of vemurafenib and prevented RAF-inhibitor induced metabolic reprogramming towards OXPHOS. Consequently, both NSAIDs sensitized melanoma cells to vemurafenib triggered proliferation arrest and enhanced the anti-tumor effect of RAF inhibitors from cytostatic to cytotoxic. Furthermore the addition of NSAIDs delayed the onset of RAF inhibitor resistance, most likely by counteracting the upregulation of MITF. Our data suggest that selected NSAIDs could be a promising combination partner for MAPK pathway inhibitors for the treatment of BRAFV600E mutated melanomas.
Collapse
|
24
|
Chang CC, Chang YS, Huang HY, Yeh KT, Liu TC, Chang JG. Determination of the mutational landscape in Taiwanese patients with papillary thyroid cancer by whole-exome sequencing. Hum Pathol 2018; 78:151-158. [PMID: 29753010 DOI: 10.1016/j.humpath.2018.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/14/2018] [Accepted: 04/25/2018] [Indexed: 02/03/2023]
Abstract
Among women in Taiwan, thyroid cancer is the fifth most common malignant neoplasia. However, genomic profiling of papillary thyroid cancer (PTC) cases from Taiwan has not been attempted previously. We used whole-exome sequencing to identify mutations in a cohort of 19 PTC patients. Sequencing was performed using the Illumina system; Sanger sequencing was used to validate all identified mutations. We identified new somatic mutations in APC, DICER1, LRRC8D and NDRG1. We also found somatic mutations in ARID5A, CREB3L2, MDM4, PPP2R5A and TFPT; mutations in these genes had been found previously in other tumors, but had not been described previously in PTC. We also investigated the pathway deregulation in BRAF-mutated PTC compared with wild-type BRAF PTC. In checking our gene mutations against The Cancer Genome Atlas (TCGA) database, we identified aberrations in one pathway that are specific to BRAF-mutated PTC: maturity-onset diabetes of the young. In addition, the caffeine metabolism pathway showed aberrations that are specific to wild-type BRAF PTC. For this study, we performed a comprehensive exome-wide analysis of the mutational spectra of Taiwanese patients with PTC. We identified novel genes that are potentially associated with PTC tumorigenesis, as well as aberrations in pathways that led to the distinct pathogeneses of BRAF-mutated PTC and wild-type BRAF PTC, which may provide a new target for PTC therapy.
Collapse
Affiliation(s)
- Chun-Chi Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Ya-Sian Chang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan; Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan; Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Hsi-Yuan Huang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan; Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan; Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ta-Chih Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan; Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan; Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
25
|
Dard L, Bellance N, Lacombe D, Rossignol R. RAS signalling in energy metabolism and rare human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:845-867. [PMID: 29750912 DOI: 10.1016/j.bbabio.2018.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
The RAS pathway is a highly conserved cascade of protein-protein interactions and phosphorylation that is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Recent findings indicate that the RAS pathway plays a role in the regulation of energy metabolism via the control of mitochondrial form and function but little is known on the participation of this effect in RAS-related rare human genetic diseases. Germline mutations that hyperactivate the RAS pathway have been discovered and linked to human developmental disorders that are known as RASopathies. Individuals with RASopathies, which are estimated to affect approximately 1/1000 human birth, share many overlapping characteristics, including cardiac malformations, short stature, neurocognitive impairment, craniofacial dysmorphy, cutaneous, musculoskeletal, and ocular abnormalities, hypotonia and a predisposition to developing cancer. Since the identification of the first RASopathy, type 1 neurofibromatosis (NF1), which is caused by the inactivation of neurofibromin 1, several other syndromes have been associated with mutations in the core components of the RAS-MAPK pathway. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), which was formerly called LEOPARD syndrome, Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS) and capillary malformation-arteriovenous malformation syndrome (CM-AVM). Here, we review current knowledge about the bioenergetics of the RASopathies and discuss the molecular control of energy homeostasis and mitochondrial physiology by the RAS pathway.
Collapse
Affiliation(s)
- L Dard
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France
| | - N Bellance
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France
| | - D Lacombe
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France; CHU de Bordeaux, Service de Génétique Médicale, F-33076 Bordeaux, France
| | - R Rossignol
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France.
| |
Collapse
|
26
|
Zhou W, Liotta LA, Petricoin EF. The Warburg Effect and Mass Spectrometry-based Proteomic Analysis. Cancer Genomics Proteomics 2018. [PMID: 28647695 DOI: 10.21873/cgp.20032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Compared to normal cells, cancer cells have a unique metabolism by performing lactic acid fermentation in the presence of oxygen, also known as the Warburg effect. Researchers have proposed several hypotheses to elucidate the phenomenon, but the mechanism is still an enigma. In this review, we discuss three typical models, such as "damaged mitochondria", "adaptation to hypoxia", and "cell proliferation requirement", as well as contributions from mass spectrometry analysis toward our understanding of the Warburg effect. Mass spectrometry analysis supports the "adaptation to hypoxia" model that cancer cells are using quasi-anaerobic fermentation to reduce oxygen consumption in vivo. We further propose that hypoxia is an early event and it plays a crucial role in carcinoma initiation and development.
Collapse
Affiliation(s)
- Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, U.S.A.
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, U.S.A
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, U.S.A
| |
Collapse
|
27
|
Audrito V, Managò A, La Vecchia S, Zamporlini F, Vitale N, Baroni G, Cignetto S, Serra S, Bologna C, Stingi A, Arruga F, Vaisitti T, Massi D, Mandalà M, Raffaelli N, Deaglio S. Nicotinamide Phosphoribosyltransferase (NAMPT) as a Therapeutic Target in BRAF-Mutated Metastatic Melanoma. J Natl Cancer Inst 2018; 110:290-303. [DOI: 10.1093/jnci/djx198] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Valentina Audrito
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Antonella Managò
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Sofia La Vecchia
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Federica Zamporlini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nicoletta Vitale
- Department of Molecular Biotechnologies and Health Science, University of Turin, Italy
| | - Gianna Baroni
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Italy
| | - Simona Cignetto
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Sara Serra
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Cinzia Bologna
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Aureliano Stingi
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Francesca Arruga
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Daniela Massi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Italy
| | - Mario Mandalà
- Unit of Medical Oncology, Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| |
Collapse
|
28
|
Pinheiro C, Miranda-Gonçalves V, Longatto-Filho A, Vicente ALSA, Berardinelli GN, Scapulatempo-Neto C, Costa RFA, Viana CR, Reis RM, Baltazar F, Vazquez VL. The metabolic microenvironment of melanomas: Prognostic value of MCT1 and MCT4. Cell Cycle 2016; 15:1462-70. [PMID: 27105345 DOI: 10.1080/15384101.2016.1175258] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BRAF mutations are known drivers of melanoma development and, recently, were also described as players in the Warburg effect, while this reprogramming of energy metabolism has been identified as a possible strategy for treating melanoma patients. Therefore, the aim of this work was to evaluate the expression and prognostic value of a panel of glycolytic metabolism-related proteins in a series of melanomas. The immunohistochemical expression of MCT1, MCT4, GLUT1, and CAIX was evaluated in 356 patients presenting melanoma and 20 patients presenting benign nevi. Samples included 20 benign nevi, 282 primary melanomas, 117 lymph node and 54 distant metastases samples. BRAF mutation was observed in 29/92 (31.5%) melanoma patients and 17/20 (85%) benign nevi samples. NRAS mutation was observed in 4/36 (11.1%) melanoma patients and 1/19 (5.3%) benign nevi samples. MCT4 and GLUT1 expression was significantly increased in metastatic samples, and MCT1, MCT4 and GLUT1 were significantly associated with poor prognostic variables. Importantly, MCT1 and MCT4 were associated with shorter overall survival. In conclusion, the present study brings new insights on metabolic aspects of melanoma, paving the way for the development of new-targeted therapies.
Collapse
Affiliation(s)
- Céline Pinheiro
- a Barretos School of Health Sciences, Dr. Paulo Prata - FACISB , Barretos , São Paulo , Brazil.,b Molecular Oncology Research Center, Barretos Cancer Hospital , Barretos , São Paulo , Brazil
| | - Vera Miranda-Gonçalves
- c Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga , Portugal.,d ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães , Portugal
| | - Adhemar Longatto-Filho
- b Molecular Oncology Research Center, Barretos Cancer Hospital , Barretos , São Paulo , Brazil.,c Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga , Portugal.,d ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães , Portugal.,e Laboratory of Medical Investigation (LIM-14), School of Medicine, University of São Paulo , São Paulo , Brazil
| | - Anna L S A Vicente
- b Molecular Oncology Research Center, Barretos Cancer Hospital , Barretos , São Paulo , Brazil
| | - Gustavo N Berardinelli
- b Molecular Oncology Research Center, Barretos Cancer Hospital , Barretos , São Paulo , Brazil
| | | | - Ricardo F A Costa
- a Barretos School of Health Sciences, Dr. Paulo Prata - FACISB , Barretos , São Paulo , Brazil
| | - Cristiano R Viana
- f Pathology Department , Barretos Cancer Hospital , Barretos , São Paulo , Brazil
| | - Rui M Reis
- b Molecular Oncology Research Center, Barretos Cancer Hospital , Barretos , São Paulo , Brazil.,c Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga , Portugal.,d ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães , Portugal
| | - Fátima Baltazar
- c Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga , Portugal.,d ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães , Portugal
| | - Vinicius L Vazquez
- b Molecular Oncology Research Center, Barretos Cancer Hospital , Barretos , São Paulo , Brazil.,g Surgery Department , Melanoma/Sarcoma, Barretos Cancer Hospital , Barretos , São Paulo , Brazil
| |
Collapse
|