1
|
Zhang H, Hong Y, Wu T, Ben E, Li S, Hu L, Xie T. Role of gut microbiota in regulating immune checkpoint inhibitor therapy for glioblastoma. Front Immunol 2024; 15:1401967. [PMID: 38915399 PMCID: PMC11194316 DOI: 10.3389/fimmu.2024.1401967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Glioblastoma (GBM) is a highly malignant, invasive, and poorly prognosed brain tumor. Unfortunately, active comprehensive treatment does not significantly prolong patient survival. With the deepening of research, it has been found that gut microbiota plays a certain role in GBM, and can directly or indirectly affect the efficacy of immune checkpoint inhibitors (ICIs) in various ways. (1) The metabolites produced by gut microbiota directly affect the host's immune homeostasis, and these metabolites can affect the function and distribution of immune cells, promote or inhibit inflammatory responses, affect the phenotype, angiogenesis, inflammatory response, and immune cell infiltration of GBM cells, thereby affecting the effectiveness of ICIs. (2) Some members of the gut microbiota may reverse T cell function inhibition, increase T cell anti-tumor activity, and ultimately improve the efficacy of ICIs by targeting specific immunosuppressive metabolites and cytokines. (3) Some members of the gut microbiota directly participate in the metabolic process of drugs, which can degrade, transform, or produce metabolites, affecting the effective concentration and bioavailability of drugs. Optimizing the structure of the gut microbiota may help improve the efficacy of ICIs. (4) The gut microbiota can also regulate immune cell function and inflammatory status in the brain through gut brain axis communication, indirectly affecting the progression of GBM and the therapeutic response to ICIs. (5) Given the importance of gut microbiota for ICI therapy, researchers have begun exploring the use of fecal microbiota transplantation (FMT) to transplant healthy or optimized gut microbiota to GBM patients, in order to improve their immune status and enhance their response to ICI therapy. Preliminary studies suggest that FMT may enhance the efficacy of ICI therapy in some patients. In summary, gut microbiota plays a crucial role in regulating ICIs in GBM, and with a deeper understanding of the relationship between gut microbiota and tumor immunity, it is expected to develop more precise and effective personalized ICI therapy strategies for GBM, in order to improve patient prognosis.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Hong
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Wu
- Department of Health Management, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Eyi Ben
- Department of Oncology, Yidu People’s Hospital, Yichang, Hubei, China
| | - Shuai Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liu Hu
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Xie
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Vicente JJ, Khan K, Tillinghast G, McFaline-Figueroa JL, Sancak Y, Stella N. The microtubule targeting agent ST-401 triggers cell death in interphase and prevents the formation of polyploid giant cancer cells. J Transl Med 2024; 22:441. [PMID: 38730481 PMCID: PMC11084142 DOI: 10.1186/s12967-024-05234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Microtubule targeting agents (MTAs) are commonly prescribed to treat cancers and predominantly kill cancer cells in mitosis. Significantly, some MTA-treated cancer cells escape death in mitosis, exit mitosis and become malignant polyploid giant cancer cells (PGCC). Considering the low number of cancer cells undergoing mitosis in tumor tissues, killing them in interphase may represent a favored antitumor approach. We discovered that ST-401, a mild inhibitor of microtubule (MT) assembly, preferentially kills cancer cells in interphase as opposed to mitosis, a cell death mechanism that avoids the development of PGCC. Single cell RNA sequencing identified mRNA transcripts regulated by ST-401, including mRNAs involved in ribosome and mitochondrial functions. Accordingly, ST-401 induces a transient integrated stress response, reduces energy metabolism, and promotes mitochondria fission. This cell response may underly death in interphase and avoid the development of PGCC. Considering that ST-401 is a brain-penetrant MTA, we validated these results in glioblastoma cell lines and found that ST-401 also reduces energy metabolism and promotes mitochondria fission in GBM sensitive lines. Thus, brain-penetrant mild inhibitors of MT assembly, such as ST-401, that induce death in interphase through a previously unanticipated antitumor mechanism represent a potentially transformative new class of therapeutics for the treatment of GBM.
Collapse
Affiliation(s)
- Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington, Health Sciences Building G424, 1705 NE Pacific Str., Seattle, WA, 98195-7280, USA.
| | - Kainat Khan
- Department of Pharmacology, University of Washington, Health Sciences Center F404A, 1959 NE Pacific Str., Seattle, WA, 98195-7280, USA
| | - Grant Tillinghast
- Department of Biomedical Engineering, Columbia University, New York, NY, 10025, USA
| | | | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Health Sciences Center F404A, 1959 NE Pacific Str., Seattle, WA, 98195-7280, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Health Sciences Center F404A, 1959 NE Pacific Str., Seattle, WA, 98195-7280, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
3
|
Vicente JJ, Khan K, Tillinghast G, McFaline-Figueroa JL, Sancak Y, Stella N. Mitosis exit followed by death in interphase prevents the development of polyploid giant cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555795. [PMID: 37693393 PMCID: PMC10491223 DOI: 10.1101/2023.08.31.555795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Microtubule targeting agents ( MTAs ) are commonly prescribed to treat cancers and predominantly kill cancer cells in mitosis. Significantly, some MTA-treated cancer cells can escape death in mitosis and exit mitosis, and become malignant polyploid giant cancer cells ( PGCC ). Considering the low number of malignant cells undergoing mitosis in tumor tissue, killing these cells in interphase may represent a favored antitumor approach. We discovered that ST-401, a mild inhibitor of microtubule assembly, preferentially kills cancer cells in interphase as opposed to mitosis, and avoids the development of PGCC. Single cell RNA sequencing identified mRNA transcripts regulated by ST-401, including mRNAs involved in ribosome and mitochondrial functions. Accordingly, ST-401 induces an integrated stress response and promotes mitochondria fission accompanied by a reduction in energy metabolism. This cell response may underly death in interphase and avoid the development of PGCC.
Collapse
|
4
|
Kline T, Xu C, Kreitzer FR, Hurst DP, Eldeeb KM, Wager-Miller J, Olivas K, Hepburn SA, Huffman JW, Mackie K, Howlett AC, Reggio P, Stella N. Design, synthesis, and evaluation of substituted alkylindoles that activate G protein-coupled receptors distinct from the cannabinoid CB 1 and CB 2 receptors. Eur J Med Chem 2023; 249:115123. [PMID: 36708677 PMCID: PMC10917149 DOI: 10.1016/j.ejmech.2023.115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
The alkylindole (AI), WIN55212-2, modulates the activity of several proteins, including cannabinoid receptors 1 and 2 (CB1R, CB2R), and at least additional G protein-coupled receptor (GPCR) that remains uncharacterized with respect to its molecular identity and pharmacological profile. Evidence suggests that such AI-sensitive GPCRs are expressed by the human kidney cell line HEK293. We synthesized fourteen novel AI analogues and evaluated their activities at AI-sensitive GPCRs using [35S]GTPγS and [3H]WIN55212-2 binding in HEK293 cell membranes, and performed in silico pharmacophore modeling to identify characteristics that favor binding to AI-sensitive GPCRs versus CB1R/CB2R. Compounds 10 and 12 stimulated [35S]GTPγS binding (EC50s = 3.5 and 1.1 nM, respectively), and this response was pertussis toxin-sensitive, indicating that AI-sensitive GPCRs couple to Gi/o proteins. Five AI analogues reliably distinguished two binding sites that correspond to the high and low affinity state of AI-sensitive GPCRs coupled or not to G proteins. In silico pharmacophore modeling suggest 3 characteristics that favor binding to AI-sensitive GPCRs versus CB1R/CB2R: 1) an s-cis orientation of the two aromatic rings in AI analogues, 2) a narrow dihedral angle between the carbonyl group and the indole ring plane [i.e., O-C(carbonyl)-C3-C2] and 3) the presence of a carbonyl oxygen. The substituted alkylindoles reported here represent novel chemical tools to study AI-sensitive GPCRs.
Collapse
Affiliation(s)
- Toni Kline
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Cong Xu
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Faith R Kreitzer
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Dow P Hurst
- Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, NC, 27412, USA
| | - Khalil M Eldeeb
- Department of Physiology and Pharmacology, Wake Forest University, School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jim Wager-Miller
- Department of Psychological and Brain Sciences and the Gill Center, Indiana University, Bloomington, IN, 47405, USA
| | - Kathleen Olivas
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Seon A Hepburn
- Howard L. Hunter Laboratory, Clemson University, Clemson, SC, 29634, USA
| | - John W Huffman
- Howard L. Hunter Laboratory, Clemson University, Clemson, SC, 29634, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences and the Gill Center, Indiana University, Bloomington, IN, 47405, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University, School of Medicine, Winston-Salem, NC, 27157, USA
| | - Patricia Reggio
- Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, NC, 27412, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA; Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
5
|
Lott J, Jutkiewicz EM, Puthenveedu MA. The Synthetic Cannabinoid WIN55,212-2 Can Disrupt the Golgi Apparatus Independent of Cannabinoid Receptor-1. Mol Pharmacol 2022; 101:371-380. [PMID: 35236771 PMCID: PMC9092469 DOI: 10.1124/molpharm.121.000377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
The synthetic cannabinoid WIN55,212-2 (WIN) is widely used as a pharmacological tool to study the biologic activity of cannabinoid receptors. In contrast to many other cannabinoid agonists, however, WIN also causes broad effects outside of neurons, such as reducing inflammatory responses, causing cell cycle arrest, and reducing general protein expression. How exactly WIN causes these broad effects is not known. Here we show that WIN partially disrupts the Golgi apparatus at nanomolar concentrations and fully disperses the Golgi apparatus in neuronal and non-neuronal cells at micromolar concentrations. WIN55,212-3, the enantiomer of WIN; JWH-018, a related alkylindole; or 2-arachidonoylglycerol, an endocannabinoid, did not cause Golgi disruption, suggesting that the effect was specific to the chirality of WIN. WIN treatment also perturbed the microtubule network. Importantly, WIN disrupted the Golgi in primary cortical neurons derived from mice where cannabinoid receptor-1 (CB1) was genetically knocked out, indicating that the effects were independent of CB1 signaling. The Golgi dispersion could not be explained by WIN's action on peroxisome proliferator-activated receptors. Our results show that WIN can disrupt the Golgi apparatus independent of CB1 in cultured cells. These effects could contribute to the unique physiologic effects that WIN exhibits in neuronal behavior, as well as its role as an antiproliferative and anti-inflammatory agent. SIGNIFICANCE STATEMENT: The synthetic cannabinoid WIN55,212-2 (WIN), widely used to investigate the cannabinoid system, also shows unique broader effects at cellular and organismal levels compared to endogenous cannabinoids. Our study shows that WIN can disrupt the Golgi apparatus and the microtubule network in multiple cell types, independent of cannabinoid receptors. These results could explain how WIN reduces surface levels of proteins and contributes to the unique physiological effects observed with WIN.
Collapse
Affiliation(s)
- Joshua Lott
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Emily M Jutkiewicz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
6
|
Non-Canonical Cannabinoid Receptors with Distinct Binding and Signaling Properties in Prostate and Other Cancer Cell Types Mediate Cell Death. Int J Mol Sci 2022; 23:ijms23063049. [PMID: 35328467 PMCID: PMC8954350 DOI: 10.3390/ijms23063049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Cannabinoids exert anti-cancer actions; however, the underlying cytotoxic mechanisms and the cannabinoid receptors (CBRs) involved remain unclear. In this study, CBRs were characterized in several cancer cell lines. Radioligand binding screens surprisingly revealed specific binding only for the non-selective cannabinoid [3H]WIN-55,212-2, and not [3H]CP-55,940, indicating that the expressed CBRs exhibit atypical binding properties. Furthermore, [3H]WIN-55,212-2 bound to a single site in all cancer cells with high affinity and varying densities. CBR characteristics were next compared between human prostate cancer cell lines expressing low (PC-3) and high (DU-145) CBR density. Although mRNA for canonical CBRs was detected in both cell lines, only 5 out of 15 compounds with known high affinity for canonical CBRs displaced [3H]WIN-55,212-2 binding. Functional assays further established that CBRs in prostate cancer cells exhibit distinct signaling properties relative to canonical Gi/Go-coupled CBRs. Prostate cancer cells chronically exposed to both CBR agonists and antagonists/inverse agonists produced receptor downregulation, inconsistent with actions at canonical CBRs. Treatment of DU-145 cells with CBR ligands increased LDH-release, decreased ATP-dependent cell viability, and produced mitochondrial membrane potential depolarization. In summary, several cancer cell lines express CBRs with binding and signaling profiles dissimilar to canonical CBRs. Drugs selectively targeting these atypical CBRs might exhibit improved anti-cancer properties.
Collapse
|
7
|
Shoeib AM, Yarbrough AL, Ford BM, Franks LN, Urbaniak A, Hensley LL, Benson LN, Mu S, Radominska-Pandya A, Prather PL. Characterization of cannabinoid receptors expressed in Ewing sarcoma TC-71 and A-673 cells as potential targets for anti-cancer drug development. Life Sci 2021; 285:119993. [PMID: 34592231 PMCID: PMC10395316 DOI: 10.1016/j.lfs.2021.119993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
AIMS Characterizing cannabinoid receptors (CBRs) expressed in Ewing sarcoma (EWS) cell lines as potential targets for anti-cancer drug development. MAIN METHODS CBR affinity and function were examined by competitive binding and G-protein activation, respectively. Cannabinoid-mediated cytotoxicity and cell viability were evaluated by LDH, and trypan blue assays, respectively. KEY FINDINGS qRT-PCR detected CB1 (CB1R) and CB2 receptor (CB2R) mRNA in TC-71 cells. However, binding screens revealed that CBRs expressed exhibit atypical properties relative to canonical receptors, because specific binding in TC-71 could only be demonstrated by the established non-selective CB1/CB2R radioligand [3H]WIN-55,212-2, but not CB1/CB2R radioligand [3H]CP-55,940. Homologous receptor binding demonstrated that [3H]WIN-55,212-2 binds to a single site with nanomolar affinity, expressed at high density. Further support for non-canonical CBRs expression is provided by subsequent binding screens, revealing that only 9 out of 28 well-characterized cannabinoids with high affinity for canonical CB1 and/or CB2Rs were able to displace [3H]WIN-55,212-2, whereas two ligands enhanced [3H]WIN-55,212-2 binding. Five cannabinoids producing the greatest [3H]WIN-55,212-2 displacement exhibited high nanomolar affinity (Ki) for expressed receptors. G-protein modulation and adenylyl cyclase assays further indicate that these CBRs exhibit distinct signaling/functional profiles compared to canonical CBRs. Importantly, cannabinoids with the highest affinity for non-canonical CBRs reduced TC-71 viability and induced cytotoxicity in a time-dependent manner. Studies in a second EWS cell line (A-673) showed similar atypical binding properties of expressed CBRs, and cannabinoid treatment produced cytotoxicity. SIGNIFICANCE Cannabinoids induce cytotoxicity in EWS cell lines via non-canonical CBRs, which might be a potential therapeutic target to treat EWS.
Collapse
Affiliation(s)
- Amal M Shoeib
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Azure L Yarbrough
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Benjamin M Ford
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Lirit N Franks
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Lori L Hensley
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States of America
| | - Lance N Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Paul L Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America.
| |
Collapse
|
8
|
Howlett AC, Thomas BF, Huffman JW. The Spicy Story of Cannabimimetic Indoles. Molecules 2021; 26:6190. [PMID: 34684770 PMCID: PMC8538531 DOI: 10.3390/molecules26206190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
The Sterling Research Group identified pravadoline as an aminoalkylindole (AAI) non-steroidal anti-inflammatory pain reliever. As drug design progressed, the ability of AAI analogs to block prostaglandin synthesis diminished, and antinociceptive activity was found to result from action at the CB1 cannabinoid receptor, a G-protein-coupled receptor (GPCR) abundant in the brain. Several laboratories applied computational chemistry methods to ultimately conclude that AAI and cannabinoid ligands could overlap within a common binding pocket but that WIN55212-2 primarily utilized steric interactions via aromatic stacking, whereas cannabinoid ligands required some electrostatic interactions, particularly involving the CB1 helix-3 lysine. The Huffman laboratory identified strategies to establish CB2 receptor selectivity among cannabimimetic indoles to avoid their CB1-related adverse effects, thereby stimulating preclinical studies to explore their use as anti-hyperalgesic and anti-allodynic pharmacotherapies. Some AAI analogs activate novel GPCRs referred to as "Alkyl Indole" receptors, and some AAI analogs act at the colchicine-binding site on microtubules. The AAI compounds having the greatest potency to interact with the CB1 receptor have found their way into the market as "Spice" or "K2". The sale of these alleged "herbal products" evades FDA consumer protections for proper labeling and safety as a medicine, as well as DEA scheduling as compounds having no currently accepted medical use and a high potential for abuse. The distribution to the public of potent alkyl indole synthetic cannabimimetic chemicals without regard for consumer safety contrasts with the adherence to regulatory requirements for demonstration of safety that are routinely observed by ethical pharmaceutical companies that market medicines.
Collapse
Affiliation(s)
- Allyn C. Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Brian F. Thomas
- Department of Analytical Sciences, The Cronos Group, Toronto, ON M5V 2H1, Canada;
| | - John W. Huffman
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
9
|
Molecular Mechanism of Cannabinoids in Cancer Progression. Int J Mol Sci 2021; 22:ijms22073680. [PMID: 33916164 PMCID: PMC8037087 DOI: 10.3390/ijms22073680] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cannabinoids are a family of heterogeneous compounds that mostly interact with receptors eliciting several physiological effects both in the central and peripheral nervous systems and in peripheral organs. They exert anticancer action by modulating signaling pathways involved in cancer progression; furthermore, the effects induced by their use depend on both the type of tumor and their action on the components of the endocannabinoid system. This review will explore the mechanism of action of the cannabinoids in signaling pathways involved in cancer proliferation, neovascularisation, migration, invasion, metastasis, and tumor angiogenesis.
Collapse
|
10
|
Breivogel CS, McPartland JM, Parekh B. Investigation of non-CB 1, non-CB 2 WIN55212-2-sensitive G-protein-coupled receptors in the brains of mammals, birds, and amphibians. J Recept Signal Transduct Res 2018; 38:316-326. [PMID: 30376752 DOI: 10.1080/10799893.2018.1494743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE Previous studies have found non-CB1 non-CB2 G-protein-coupled receptors in rodents that are activated by the aminoalkylindole cannabinoid agonist WIN55212-2. This work obtained evidence for the presence or absence of similar receptors in the brains of other mammals, birds and amphibians. MATERIALS AND METHODS Antagonism of the stimulation of [35S]GTPγS binding by WIN55212-2 and CP55940 was assessed in multiple CNS regions of rat and canine, and in whole brain membranes from shrew, pigeon, frog and newt. A bioinformatics approach searched for orthologs of GRP3, GPR6, and GPR12 (closely related to cannabinoid receptors) in the genomes of these or related species. Orthologs were examined for amino acid motifs known to impart functionality to receptors. RESULTS In mammals and pigeon, but not amphibians, a significant fraction of the stimulation of [35S]GTPγS binding by WIN55212-2 was not blocked by the CB1 antagonist SR141716A. BLAST searches found that GPR3 was restricted to mammals. GPR12 orthologs existed in all species, and they shared identical amino acid motifs. GPR6 orthologs existed all species, but with significant departures in the identity of some critical amino acids in bird, more so in amphibian. CONCLUSIONS The portion of WIN55212-2-stimulated [35S]GTPγS binding that was antagonized by SR141716A was consistent with stimulation via CB1 receptors, indicating that antagonist-insensitive activity was via a different G-protein coupled receptor. Pharmacological evidence of this receptor was found in the brains of mammals and pigeon, but not frog or newt. Bioinfomatics results implicate GPR6 as a possible candidate for the additional WIN55212-2-sensitive receptor.
Collapse
Affiliation(s)
- Chris S Breivogel
- a Department of Pharmaceutical Sciences , Campbell University College of Pharmacy & Health Sciences , Buies Creek , NC , USA
| | - John M McPartland
- b College of Medicine, University of Vermont , Burlington , VT , USA
| | - Bhavita Parekh
- a Department of Pharmaceutical Sciences , Campbell University College of Pharmacy & Health Sciences , Buies Creek , NC , USA
| |
Collapse
|
11
|
Diaz P, Horne E, Xu C, Hamel E, Wagenbach M, Petrov RR, Uhlenbruck B, Haas B, Hothi P, Wordeman L, Gussio R, Stella N. Modified carbazoles destabilize microtubules and kill glioblastoma multiform cells. Eur J Med Chem 2018; 159:74-89. [PMID: 30268825 DOI: 10.1016/j.ejmech.2018.09.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 11/26/2022]
Abstract
Small molecules that target microtubules (MTs) represent promising therapeutics to treat certain types of cancer, including glioblastoma multiform (GBM). We synthesized modified carbazoles and evaluated their antitumor activity in GBM cells in culture. Modified carbazoles with an ethyl moiety linked to the nitrogen of the carbazole and a carbonyl moiety linked to distinct biaromatic rings exhibited remarkably different killing activities in human GBM cell lines and patient-derived GBM cells, with IC50 values from 67 to >10,000 nM. Measures of the activity of modified carbazoles with tubulin and microtubules coupled to molecular docking studies show that these compounds bind to the colchicine site of tubulin in a unique low interaction space that inhibits tubulin assembly. The modified carbazoles reported here represent novel chemical tools to better understand how small molecules disrupt MT functions and kill devastating cancers such as GBM.
Collapse
Affiliation(s)
- Philippe Diaz
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA; DermaXon LLC, 32 Campus Drive, Missoula, MT, 59812, USA.
| | - Eric Horne
- Stella Therapeutics, Inc., Pacific Northwest Research Institute, 720 Broadway, Seattle, WA, 98122, USA
| | - Cong Xu
- Department of Pharmacology (CX, BH and NS), Department of Physiology and Biophysics (MW and LW), Department of Psychiatry and Behavioral Sciences (NS), The University of Washington, Seattle, WA, 98195, USA
| | - Ernest Hamel
- Screening Technologies Branch (EH) and Computational Drug Development Group (RG), Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Michael Wagenbach
- Department of Pharmacology (CX, BH and NS), Department of Physiology and Biophysics (MW and LW), Department of Psychiatry and Behavioral Sciences (NS), The University of Washington, Seattle, WA, 98195, USA
| | - Ravil R Petrov
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Benjamin Uhlenbruck
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Brian Haas
- Department of Pharmacology (CX, BH and NS), Department of Physiology and Biophysics (MW and LW), Department of Psychiatry and Behavioral Sciences (NS), The University of Washington, Seattle, WA, 98195, USA
| | - Parvinder Hothi
- Ivy Center for Advance Brain Tumor Treatment, Swedish Neuroscience Institute, 550 17th Ave, Seattle, WA, 98122, USA
| | - Linda Wordeman
- Department of Pharmacology (CX, BH and NS), Department of Physiology and Biophysics (MW and LW), Department of Psychiatry and Behavioral Sciences (NS), The University of Washington, Seattle, WA, 98195, USA
| | - Rick Gussio
- Screening Technologies Branch (EH) and Computational Drug Development Group (RG), Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Nephi Stella
- Stella Therapeutics, Inc., Pacific Northwest Research Institute, 720 Broadway, Seattle, WA, 98122, USA; Department of Pharmacology (CX, BH and NS), Department of Physiology and Biophysics (MW and LW), Department of Psychiatry and Behavioral Sciences (NS), The University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
12
|
Zhang Y, Jia J, Li Y, Chen YG, Huang H, Qiao Y, Zhu Y. Tudor-staphylococcal nuclease regulates the expression and biological function of alkylglycerone phosphate synthase via nuclear factor-κB and microRNA-127 in human glioma U87MG cells. Oncol Lett 2018; 15:9553-9558. [PMID: 29805677 DOI: 10.3892/ol.2018.8484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/20/2018] [Indexed: 12/24/2022] Open
Abstract
Glioma is one of the malignant tumor types detrimental to human health; therefore, it is important to find novel targets and therapeutics for this tumor. The downregulated expression of Tudor-staphylococcal nuclease (SN) and alkylglycerone phosphate synthase (AGPS) can decrease cancer malignancy, and the overexpression of them can the increase viability and migration potential of various tumor cell types; however, the role of AGPS in the proliferation and migration of glioma, and the association of Tudor-SN and AGPS in human glioma is not clear. In the present study, it was determined that AGPS silencing suppressed the proliferation and migration potential of glioma U87MG cells, and suppressed the expression of the circular RNAs circ-ubiquitin-associated protein 2, circ-zinc finger protein 292 and circ-homeodomain-interacting protein kinase 3, and the long non-coding RNAs H19 imprinted maternally expressed transcript (non-protein coding), colon cancer-associated transcript 1 (non-protein coding) and hepatocellular carcinoma upregulated long non-coding RNA. Furthermore, Tudor-SN silencing suppressed the expression of AGPS; however, nuclear factor (NF)-κB and microRNA (miR)-127 retrieval experiments partially reduced the expression of AGPS. Additionally, it was determined that Tudor-SN silencing suppressed the activity of the mechanistic target of rapamycin (mTOR) signaling pathway, and NF-κB and miR-127 retrieval experiments partially reduced the activity of mTOR. Therefore, it was considered that NF-κB and miR-127 may be the mediators of Tudor-SN-regulated AGPS via the mTOR signaling pathway. These results improve on our knowledge of the mechanisms underlying Tudor-SN and AGPS in human glioma.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Geriatric Ward of Neurology, Department of Geriatrics, Institute of Tianjin Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jun Jia
- Department of Surgery of Foot and Ankle, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Ying Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yan-Ge Chen
- Basic Medical College, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Huan Huang
- Basic Medical College, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yang Qiao
- Basic Medical College, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yu Zhu
- Department of Clinical Laboratory, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| |
Collapse
|
13
|
Castro-Gamero AM, Pezuk JA, Brassesco MS, Tone LG. G2/M inhibitors as pharmacotherapeutic opportunities for glioblastoma: the old, the new, and the future. Cancer Biol Med 2018; 15:354-374. [PMID: 30766748 PMCID: PMC6372908 DOI: 10.20892/j.issn.2095-3941.2018.0030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is one of the deadliest tumors and has a median survival of 3 months if left untreated. Despite advances in rationally targeted pharmacological approaches, the clinical care of GBM remains palliative in intent. Since the majority of altered signaling cascades involved in cancer establishment and progression eventually affect cell cycle progression, an alternative approach for cancer therapy is to develop innovative compounds that block the activity of crucial molecules needed by tumor cells to complete cell division. In this context, we review promising ongoing and future strategies for GBM therapeutics aimed towards G2/M inhibition such as anti-microtubule agents and targeted therapy against G2/M regulators like cyclin-dependent kinases, Aurora inhibitors, PLK1, BUB, 1, and BUBR1, and survivin. Moreover, we also include investigational agents in the preclinical and early clinical settings. Although several drugs were shown to be gliotoxic, most of them have not yet entered therapeutic trials. The use of either single exposure or a combination with novel compounds may lead to treatment alternatives for GBM patients in the near future.
Collapse
Affiliation(s)
- Angel Mauricio Castro-Gamero
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas 37130-001, Brazil
| | - Julia Alejandra Pezuk
- Biotechnology and Innovation in Health Program and Pharmacy Program, Anhanguera University São Paulo (UNIAN-SP), São Paulo 05145-200, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics.,Department of Genetics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
14
|
Morales P, Reggio PH. An Update on Non-CB 1, Non-CB 2 Cannabinoid Related G-Protein-Coupled Receptors. Cannabis Cannabinoid Res 2017; 2:265-273. [PMID: 29098189 PMCID: PMC5665501 DOI: 10.1089/can.2017.0036] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) has been shown to be of great importance in the regulation of numerous physiological and pathological processes. To date, two Class A G-protein-coupled receptors (GPCRs) have been discovered and validated as the main therapeutic targets of this system: the cannabinoid receptor type 1 (CB1), which is the most abundant neuromodulatory receptor in the brain, and the cannabinoid receptor type 2 (CB2), predominantly found in the immune system among other organs and tissues. Endogenous cannabinoid receptor ligands (endocannabinoids) and the enzymes involved in their synthesis, cell uptake, and degradation have also been identified as part of the ECS. However, its complex pharmacology suggests that other GPCRs may also play physiologically relevant roles in this therapeutically promising system. In the last years, GPCRs such as GPR18 and GPR55 have emerged as possible missing members of the cannabinoid family. This categorization still stimulates strong debate due to the lack of pharmacological tools to validate it. Because of their close phylogenetic relationship, the Class A orphan GPCRs, GPR3, GPR6, and GPR12, have also been associated with the cannabinoids. Moreover, certain endo-, phyto-, and synthetic cannabinoid ligands have displayed activity at other well-established GPCRs, including the opioid, adenosine, serotonin, and dopamine receptor families. In addition, the cannabinoid receptors have also been shown to form dimers with other GPCRs triggering cross-talk signaling under specific conditions. In this mini review, we aim to provide insight into the non-CB1, non-CB2 cannabinoid-related GPCRs that have been reported thus far. We consider the physiological relevance of these molecular targets in modulating the ECS.
Collapse
Affiliation(s)
- Paula Morales
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, North Carolina
| | - Patricia H. Reggio
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, North Carolina
| |
Collapse
|