1
|
Borgonetti V, Vozella V, Ware T, Cruz B, Bullard R, Cravatt BF, Galeotti N, Roberto M. Excessive alcohol intake produces persistent mechanical allodynia and dysregulates the endocannabinoid system in the lumbar dorsal root ganglia of genetically-selected Marchigian Sardinian alcohol-preferring rats. Pharmacol Res 2024; 209:107462. [PMID: 39396766 PMCID: PMC11834946 DOI: 10.1016/j.phrs.2024.107462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024]
Abstract
Epidemiological data indicate a strong association between alcohol use disorder (AUD) and neuropathic pain. Genetically-selected Marchigian Sardinian alcohol-preferring (msP) rats exhibit a high preference for alcohol compared with their background strain (Wistar rats), but their sensitivity to mechanical allodynia after chronic alcohol exposure is unknown. The present study compared the development of mechanical allodynia between "low, non-pathological drinker" Wistar rats and "high drinker" msP rats using the two-bottle choice (2BC) free-access procedure. Several studies reported the involvement of endocannabinoids (eCBs) in modulating mechanical allodynia, but there are no data on their role in alcohol-related allodynia. Thus, the present study assessed eCBs and their related lipid species in lumbar dorsal root ganglia (DRG) and correlated them with mechanical allodynia in our model. We found that male and female msP rats developed persistent mechanical allodynia during protracted abstinence from alcohol, presenting no sign of recovery, as opposed to Wistar rats. This effect directly correlated with their total alcohol intake. Notably, we found a correlation between lower lumbar DRG 2-arachidonoylglycerol (2-AG) levels and the development of higher mechanical allodynia during abstinence in msP rats of both sexes but not in Wistar rats. Moreover, alcohol-exposed and abstinent msP and Wistar females but not males exhibited significant alterations of thromboxane B2 and prostaglandin E2/prostaglandin D2 compared with naive rats. These findings demonstrate that DRG 2-AG metabolism is altered in msP rats during prolonged abstinence and represents a potentially interesting pharmacological target for the treatment of mechanical allodynia during alcohol abstinence.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Tim Ware
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan Bullard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
2
|
Rodrigues Tavares LR, Petrilli LA, Baptista-de-Souza D, Canto-de-Souza L, Planeta CDS, Guimarães FS, Nunes-de-Souza RL, Canto-de-Souza A. Cannabidiol Treatment Shows Therapeutic Efficacy in a Rodent Model of Social Transfer of Pain in Pair-Housed Male Mice. Cannabis Cannabinoid Res 2024; 9:699-713. [PMID: 37074109 DOI: 10.1089/can.2022.0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Introduction: Prosocial behavior refers to sharing emotions and sensations such as pain. Accumulated data indicate that cannabidiol (CBD), a nonpsychotomimetic component of the Cannabis sativa plant, attenuates hyperalgesia, anxiety, and anhedonic-like behavior. Nevertheless, the role of CBD in the social transfer of pain has never been evaluated. In this study, we investigated the effects of acute systemic administration of CBD in mice that cohabited with a conspecific animal suffering from chronic constriction injury. Furthermore, we assessed whether repeated CBD treatment decreases hypernociception, anxiety-like behavior, and anhedonic-like responses in mice undergoing chronic constriction injury and whether this attenuation would be socially transferred to the partner. Materials and Methods: Male Swiss mice were Housed in pairs for 28 days. On the 14th day of living together, animals were then divided into two groups: cagemate nerve constriction (CNC), in which one animal of each partner was subjected to sciatic nerve constriction; and cagemate sham (CS), subjected to the same surgical procedure but without suffering nerve constriction. In Experiments 1, 2, and 3 on day 28 of living together, the cagemates (CNC and CS) animals received a single systemic injection (intraperitoneally) of vehicle or CBD (0.3, 1, 10, or 30 mg/kg). After 30 min, the cagemates were subjected to the elevated plusmaze followed by exposure to the writhing and sucrose splash tests. For chronic treatment (Exp. 4), sham and chronic constriction injury animals received a repeated systemic injection (subcutaneous) of vehicle or CBD (10 mg/kg) for 14 days after the sciatic nerve constriction procedure. On days 28 and 29 sham and chronic constriction injury animals and their cagemates were behaviorally tested. Results and Conclusion: Acute CBD administration attenuated anxiety-like behavior, pain hypersensitivity, and anhedonic-like behavior in cagemates that cohabited with a pair in chronic pain. In addition, repeated CBD treatment reversed the anxiety-like behavior induced by chronic pain and enhanced the mechanical withdrawal thresholds in Von Frey filaments and the grooming time in the sucrose splash test. Moreover, repeated CBD treatment effects were socially transferred to the chronic constriction injury cagemates.
Collapse
Affiliation(s)
- Lígia Renata Rodrigues Tavares
- Psychobiology Group, Department of Psychology, CECH-Universidade Federal de São Carlos-UFSCar, São Carlos, Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, Brazil
| | - Leonardo Abdelnur Petrilli
- Psychobiology Group, Department of Psychology, CECH-Universidade Federal de São Carlos-UFSCar, São Carlos, Brazil
| | - Daniela Baptista-de-Souza
- Psychobiology Group, Department of Psychology, CECH-Universidade Federal de São Carlos-UFSCar, São Carlos, Brazil
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista-UNESP, Araraquara, Brazil
- Neuroscience and Behavior Institute-IneC, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Canto-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista-UNESP, Araraquara, Brazil
- Neuroscience and Behavior Institute-IneC, Ribeirão Preto, São Paulo, Brazil
| | - Cleopatra da Silva Planeta
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, Brazil
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista-UNESP, Araraquara, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, Brazil
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista-UNESP, Araraquara, Brazil
- Neuroscience and Behavior Institute-IneC, Ribeirão Preto, São Paulo, Brazil
| | - Azair Canto-de-Souza
- Psychobiology Group, Department of Psychology, CECH-Universidade Federal de São Carlos-UFSCar, São Carlos, Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, Brazil
- Neuroscience and Behavior Institute-IneC, Ribeirão Preto, São Paulo, Brazil
- Program in Psychology UFSCar, São Carlos, Brazil
| |
Collapse
|
3
|
Iannotti FA. Cannabinoids, Endocannabinoids, and Synthetic Cannabimimetic Molecules in Neuromuscular Disorders. Int J Mol Sci 2023; 25:238. [PMID: 38203407 PMCID: PMC10779239 DOI: 10.3390/ijms25010238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Neuromuscular disorders (NMDs) encompass a large heterogeneous group of hereditary and acquired diseases primarily affecting motor neurons, peripheral nerves, and the skeletal muscle system. The symptoms of NMDs may vary depending on the specific condition, but some of the most common ones include muscle weakness, pain, paresthesias, and hyporeflexia, as well as difficulties with swallowing and breathing. NMDs are currently untreatable. Therapeutic options include symptomatic and experimental medications aimed at delaying and alleviating symptoms, in some cases supplemented by surgical and physical interventions. To address this unmet medical need, ongoing research is being conducted on new treatments, including studies on medical cannabis, endocannabinoids, and related molecules with cannabimimetic properties. In this context, a significant amount of knowledge about the safety and effectiveness of cannabinoids in NMDs has been obtained from studies involving patients with multiple sclerosis experiencing pain and spasticity. In recent decades, numerous other preclinical and clinical studies have been conducted to determine the potential benefits of cannabinoids in NMDs. This review article aims to summarize and provide an unbiased point of view on the current knowledge about the use of cannabinoids, endocannabinoids, and synthetic analogs in NMDs, drawing from an array of compelling studies.
Collapse
Affiliation(s)
- Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry (ICB), National Research Council of Italy (CNR), 80078 Pozzuoli, NA, Italy
| |
Collapse
|
4
|
Mariano XM, de Assis Ferreira LC, Almeida-Leite CM, de Castro Junior CJ, de Lima ME. PnPP-15, a Synthetic Peptide Derived from a Toxin from Phoneutria nigriventer Spider Venom, Alleviates Diabetic Neuropathic Pain and Acts Synergistically with Pregabalin in Mice. Toxins (Basel) 2023; 15:560. [PMID: 37755986 PMCID: PMC10537695 DOI: 10.3390/toxins15090560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Diabetic neuropathic pain is one of the complications that affect a wide variety of the diabetic population and is often difficult to treat. Only a small number of patients experience pain relief, which usually comes with onerous side effects and low levels of satisfaction. The search for new analgesic drugs is necessary, given the limitations that current drugs present. Combining drugs to treat neuropathic pain has been attracting interest to improve their efficacy compared to single-drug monotherapies while also reducing dose sizes to minimize side effects. The aim of our study was to verify the antinociceptive effect of a synthetic peptide, PnPP-15, alone and combined with pregabalin, in male Swiss diabetic mice using the von Frey method. PnPP-15 is a synthetic peptide derived from PnPP19, a peptide representing a discontinuous epitope of the primary structure of the toxin PnTx2-6 from the venom of the spider Phoneutria nigriventer. The antinociceptive activity of both compounds was dose-dependent and showed synergism, which was verified by isobolographic analysis. Treatment with PnPP-15 did not cause spontaneous or forced motor changes and did not cause any damage or signs of toxicity in the analyzed organs (pancreas, lung, heart, kidney, brain, or liver). In conclusion, PnPP-15 is a great candidate for an analgesic drug against neuropathic pain caused by diabetes and exerts a synergistic effect when combined with pregabalin, allowing for even more efficient treatment.
Collapse
Affiliation(s)
- Xavier Maia Mariano
- Programa de Pós Graduação em Medicina e Biomedicina da Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30150-240, MG, Brazil; (X.M.M.); (L.C.d.A.F.); (C.J.d.C.J.)
| | - Luana Caroline de Assis Ferreira
- Programa de Pós Graduação em Medicina e Biomedicina da Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30150-240, MG, Brazil; (X.M.M.); (L.C.d.A.F.); (C.J.d.C.J.)
| | - Camila Megale Almeida-Leite
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Célio José de Castro Junior
- Programa de Pós Graduação em Medicina e Biomedicina da Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30150-240, MG, Brazil; (X.M.M.); (L.C.d.A.F.); (C.J.d.C.J.)
| | - Maria Elena de Lima
- Programa de Pós Graduação em Medicina e Biomedicina da Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30150-240, MG, Brazil; (X.M.M.); (L.C.d.A.F.); (C.J.d.C.J.)
| |
Collapse
|
5
|
Greco R, Francavilla M, Demartini C, Zanaboni AM, Sodergren MH, Facchetti S, Pacchetti B, Palmisan M, Franco V, Tassorelli C. Characterization of the biochemical and behavioral effects of cannabidiol: implications for migraine. J Headache Pain 2023; 24:48. [PMID: 37138206 PMCID: PMC10155373 DOI: 10.1186/s10194-023-01589-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
Cannabidiol (CBD) is the main pharmacologically active phytocannabinoid. CBD exerts an analgesic effect in several pain models, does not have side effects and has low toxicity. The data about CBD mechanisms of action in pain and its therapeutic potential in this area are limited. Here, we tested CBD effects in animal models specific for migraine. We assayed CBD distribution in plasma and in cranial areas related to migraine pain in male Sprague Dawley rats treated chronically (5 days). Successively, we tested CBD activity on the behavioral and biochemical effects induced in the acute and the chronic migraine animal models by nitroglycerin (NTG) administration. In the acute migraine model, rats received CBD (15 mg or 30 mg/kg, i.p) 3 h after NTG (10 mg/kg i.p.) or vehicle injection. In the chronic migraine model, rats were treated with CBD and NTG every other day over nine days with the following doses: CBD 30 mg/kg i.p., NTG 10 mg/kg i.p. We evaluated behavioral parameters with the open field and the orofacial formalin tests. We explored the fatty acid amide hydrolase gene expression, cytokines mRNA and protein levels in selected brain areas and CGRP serum level. CBD levels in the meninges, trigeminal ganglia, cervical spinal cord, medulla pons, and plasma were higher 1 h after the last treatment than after 24 h, suggesting that CBD penetrates but does not accumulate in these tissues. In the acute model, CBD significantly reduced NTG-induced trigeminal hyperalgesia and CGRP and cytokine mRNA levels in peripheral and central sites. In the chronic model, CBD caused a significant decrease in NTG-induced IL-6 protein levels in the medulla-pons, and trigeminal ganglion. It also reduced CGRP serum levels. By contrast, CBD did not modulate TNF-alpha protein levels and fatty acid amide hydrolase (FAAH) gene expression in any of investigated areas. In both experimental conditions, there was no modulation of anxiety, motor/exploratory behavior, or grooming. These findings show that CBD reaches brain areas involved in migraine pain after systemic administration. They also show for the first time that CBD modulates migraine-related nociceptive transmission, likely via a complex signaling mechanism involving different pathways.
Collapse
Affiliation(s)
- Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy.
| | - Miriam Francavilla
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| | - Chiara Demartini
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| | - Anna Maria Zanaboni
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| | - Mikael H Sodergren
- Curaleaf International, Guernsey, UK
- Medical Cannabis Research Group, Imperial College London, London, UK
| | - Sara Facchetti
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | | | - Michela Palmisan
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Pavia, Italy
| | - Valentina Franco
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Pavia, Italy
| | - Cristina Tassorelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| |
Collapse
|
6
|
Cortes-Altamirano JL, Yáñes-Pizaña A, Reyes-Long S, Angélica GM, Bandala C, Bonilla-Jaime H, Alfaro-Rodríguez A. Potential Neuroprotective Effect of Cannabinoids in Covid-19 Patients. Curr Top Med Chem 2022; 22:1326-1345. [PMID: 35382723 DOI: 10.2174/1568026622666220405143003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
The global pandemic caused by the SARS-CoV-2 virus began in early 2020 and is still present. The respiratory symptoms caused by COVID-19 are well established, however, neurological manifestations that may result from direct or indirect neurological damage after SARS-CoV-2 infection have been reported frequently. The main proposed pathophysiological processes leading to neurological damage in COVID-19 are cerebrovascular disease, and indirect mechanisms of inflammatory / autoimmune origin. A growing number of studies confirm that neuroprotective measures should be maintained in COVID-19 patients. On the other hand, cannabinoids have been the subject of various studies that propose them as potential promising drugs in chronic neurodegenerative diseases due to their powerful neuroprotective potential. In this review we address the possible mechanism of action of cannabinoids as a neuroprotective treatment in patients infected by SARS-CoV-2. The endocannabinoid system is found in multiple systems within the body, including the immune system. Its activation can lead to beneficial results, such as a decrease in viral entry, a decrease in viral replication, and a decrease in pro-inflammatory cytokines such as IL-2, IL-4, IL-6, IL-12, TNF-α or IFN-c through CB2R expression induced during inflammation by SARS-CoV-2 infection in the central nervous system.
Collapse
Affiliation(s)
- José Luis Cortes-Altamirano
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Departamento de Quiropráctica, Universidad Estatal del Valle de Ecatepec, Estado de Mexico, 55210, Mexico
| | - Ariadna Yáñes-Pizaña
- Escuela de Ciencias de la Salud, Medicina Veterinaria y Zootecnia, Universidad del Valle de Mexico, Mexico City, 04910, México.,Escuela de Medicina Veterinaria y Zootecnia en Pequeñas Especies, Federación Canofila Mexicana, Mexico City, 14430, México
| | - Samuel Reyes-Long
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, 07738, México
| | - González-Maciel Angélica
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur No. 3700-C, Mexico City, C. P. 04530, Mexico
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela de Medicina Veterinaria y Zootecnia en Pequeñas Especies, Federación Canofila Mexicana, Mexico City, 14430, México
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la reproducción, Universidad Autónoma Metropolitana, Mexico City, 09340, Mexico
| | - Alfonso Alfaro-Rodríguez
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico
| |
Collapse
|
7
|
Stark T, Di Martino S, Drago F, Wotjak CT, Micale V. Phytocannabinoids and schizophrenia: Focus on adolescence as a critical window of enhanced vulnerability and opportunity for treatment. Pharmacol Res 2021; 174:105938. [PMID: 34655773 DOI: 10.1016/j.phrs.2021.105938] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
The recent shift in socio-political debates and growing liberalization of Cannabis use across the globe has raised concern regarding its impact on vulnerable populations such as adolescents. Concurrent with declining perception of Cannabis harms, more adolescents are using it daily in several countries and consuming marijuana strains with high content of psychotropic delta (9)-tetrahydrocannabinol (THC). These dual, related trends seem to facilitate the development of compromised social and cognitive performance at adulthood, which are described in preclinical and human studies. Cannabis exerts its effects via altering signalling within the endocannabinoid system (ECS), which modulates the stress circuitry during the neurodevelopment. In this context early interventions appear to circumvent the emergence of adult neurodevelopmental deficits. Accordingly, Cannabis sativa second-most abundant compound, cannabidiol (CBD), emerges as a potential therapeutic agent to treat neuropsychiatric disorders. We first focus on human and preclinical studies on the long-term effects induced by adolescent THC exposure as a "critical window" of enhanced neurophysiological vulnerability, which could be involved in the pathophysiology of schizophrenia and related primary psychotic disorders. Then, we focus on adolescence as a "window of opportunity" for early pharmacological treatment, as novel risk reduction strategy for neurodevelopmental disorders. Thus, we review current preclinical and clinical evidence regarding the efficacy of CBD in terms of positive, negative and cognitive symptoms treatment, safety profile, and molecular targets.
Collapse
Affiliation(s)
- Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Stress Neurobiology & Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carsten T Wotjak
- Department of Stress Neurobiology & Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach an der Riss, Germany
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
8
|
Muller C, Reggio PH. An Analysis of the Putative CBD Binding Site in the Ionotropic Cannabinoid Receptors. Front Cell Neurosci 2020; 14:615811. [PMID: 33362478 PMCID: PMC7755602 DOI: 10.3389/fncel.2020.615811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
Cannabinoids have been long studied for their therapeutic properties, particularly for their use in the treatment of pain. As new therapies are sought after to treat conditions of chronic pain, so is a better understanding of the ligands and their target receptors or channels. A recently published cryo-EM structure showed the putative binding location of a well-known cannabinoid ligand, cannabidiol (CBD), in TRPV2, a channel that has been implicated in inflammation and chronic pain. TRPV2, along with TRPV1, TRPV3, TRPV4, TRPA1, and TRPM8 all have the capability to be modulated by cannabinoid ligands and are located in the peripheral nervous system. Here, we analyze the putative CBD binding site in each of these channels and compare structural and sequential information with experimental data.
Collapse
Affiliation(s)
| | - Patricia H. Reggio
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
9
|
Booth WT, Walker NB, Lowther WT, Howlett AC. Cannabinoid Receptor Interacting Protein 1a (CRIP1a): Function and Structure. Molecules 2019; 24:molecules24203672. [PMID: 31614728 PMCID: PMC6832298 DOI: 10.3390/molecules24203672] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Cannabinoid receptor interacting protein 1a (CRIP1a) is an important CB1 cannabinoid receptor-associated protein, first identified from a yeast two-hybrid screen to modulate CB1-mediated N-type Ca2+ currents. In this paper we review studies of CRIP1a function and structure based upon in vitro experiments and computational chemistry, which elucidate the specific mechanisms for the interaction of CRIP1a with CB1 receptors. N18TG2 neuronal cells overexpressing or silencing CRIP1a highlighted the ability of CRIP1 to regulate cyclic adenosine 3′,5′monophosphate (cAMP) production and extracellular signal-regulated kinase (ERK1/2) phosphorylation. These studies indicated that CRIP1a attenuates the G protein signaling cascade through modulating which Gi/o subtypes interact with the CB1 receptor. CRIP1a also attenuates CB1 receptor internalization via β-arrestin, suggesting that CRIP1a competes for β-arrestin binding to the CB1 receptor. Predictions of CRIP1a secondary structure suggest that residues 34-110 are minimally necessary for association with key amino acids within the distal C-terminus of the CB1 receptor, as well as the mGlu8a metabotropic glutamate receptor. These interactions are disrupted through phosphorylation of serines and threonines in these regions. Through investigations of the function and structure of CRIP1a, new pharmacotherapies based upon the CRIP-CB1 receptor interaction can be designed to treat diseases such as epilepsy, motor dysfunctions and schizophrenia.
Collapse
Affiliation(s)
- William T Booth
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Noah B Walker
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - W Todd Lowther
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
- Center for Molecular Signaling, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA.
| | - Allyn C Howlett
- Center for Molecular Signaling, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA.
- Department of Physiology and Pharmacology, Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
10
|
|
11
|
Glare P, Aubrey KR, Myles PS. Transition from acute to chronic pain after surgery. Lancet 2019; 393:1537-1546. [PMID: 30983589 DOI: 10.1016/s0140-6736(19)30352-6] [Citation(s) in RCA: 504] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/20/2018] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
Over the past decade there has been an increasing reliance on strong opioids to treat acute and chronic pain, which has been associated with a rising epidemic of prescription opioid misuse, abuse, and overdose-related deaths. Deaths from prescription opioids have more than quadrupled in the USA since 1999, and this pattern is now occurring globally. Inappropriate opioid prescribing after surgery, particularly after discharge, is a major cause of this problem. Chronic postsurgical pain, occurring in approximately 10% of patients who have surgery, typically begins as acute postoperative pain that is difficult to control, but soon transitions into a persistent pain condition with neuropathic features that are unresponsive to opioids. Research into how and why this transition occurs has led to a stronger appreciation of opioid-induced hyperalgesia, use of more effective and safer opioid-sparing analgesic regimens, and non-pharmacological interventions for pain management. This Series provides an overview of the epidemiology and societal effect, basic science, and current recommendations for managing persistent postsurgical pain. We discuss the advances in the prevention of this transitional pain state, with the aim to promote safer analgesic regimens to better manage patients with acute and chronic pain.
Collapse
Affiliation(s)
- Paul Glare
- Pain Management Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Karin R Aubrey
- Pain Management Research Institute, University of Sydney, Sydney, NSW, Australia; Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Paul S Myles
- Department of Anaesthesiology and Perioperative Medicine, Alfred Hospital, Melbourne, VIC.
| |
Collapse
|
12
|
Watkins BA. Endocannabinoids, exercise, pain, and a path to health with aging. Mol Aspects Med 2018; 64:68-78. [DOI: 10.1016/j.mam.2018.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/22/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
|
13
|
Endocannabinoid system, stress and HPA axis. Eur J Pharmacol 2018; 834:230-239. [DOI: 10.1016/j.ejphar.2018.07.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022]
|
14
|
Donertas B, Unel CC, Erol K. Cannabinoids and agmatine as potential therapeutic alternatives for cisplatin-induced peripheral neuropathy. J Exp Pharmacol 2018; 10:19-28. [PMID: 29950907 PMCID: PMC6018893 DOI: 10.2147/jep.s162059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cisplatin is a widely used antineoplastic agent in the treatment of various cancers. Peripheral neuropathy is a well-known side effect of cisplatin and has the potential to result in limiting and/or reducing the dose, decreasing the quality of life. Unfortunately, the mechanism for cisplatin-induced neuropathy has not been completely elucidated. Currently, available treatments for neuropathic pain (NP) are mostly symptomatic, insufficient and are often linked with several detrimental side effects; thus, effective treatments are needed. Cannabinoids and agmatine are endogenous modulators that are implicated in painful states. This review explains the cisplatin-induced neuropathy and antinociceptive effects of cannabinoids and agmatine in animal models of NP and their putative therapeutic potential in cisplatin-induced neuropathy.
Collapse
Affiliation(s)
- Basak Donertas
- Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Cigdem Cengelli Unel
- Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Kevser Erol
- Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
15
|
Abstract
Injury to or disease of the nervous system can invoke chronic and sometimes intractable neuropathic pain. Many parallel, interdependent, and time-dependent processes, including neuroimmune interactions at the peripheral, supraspinal, and spinal levels, contribute to the etiology of this "disease of pain." Recent work emphasizes the roles of colony-stimulating factor 1, ATP, and brain-derived neurotrophic factor. Excitatory processes are enhanced, and inhibitory processes are attenuated in the spinal dorsal horn and throughout the somatosensory system. This leads to central sensitization and aberrant processing such that tactile and innocuous thermal information is perceived as pain (allodynia). Processes involved in the onset of neuropathic pain differ from those involved in its long-term maintenance. Opioids display limited effectiveness, and less than 35% of patients derive meaningful benefit from other therapeutic approaches. We thus review promising therapeutic targets that have emerged over the last 20 years, including Na+, K+, Ca2+, hyperpolarization-activated cyclic nucleotide-gated channels, transient receptor potential channel type V1 channels, and adenosine A3 receptors. Despite this progress, the gabapentinoids retain their status as first-line treatments, yet their mechanism of action is poorly understood. We outline recent progress in understanding the etiology of neuropathic pain and show how this has provided insights into the cellular actions of pregabalin and gabapentin. Interactions of gabapentinoids with the α2δ-1 subunit of voltage-gated Ca2+ channels produce multiple and neuron type-specific actions in spinal cord and higher centers. We suggest that drugs that affect multiple processes, rather than a single specific target, show the greatest promise for future therapeutic development.
Collapse
Affiliation(s)
- Sascha R A Alles
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada (S.R.A.A.); and Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (P.A.S.)
| | - Peter A Smith
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada (S.R.A.A.); and Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (P.A.S.)
| |
Collapse
|
16
|
Neuroimmune-Driven Neuropathic Pain Establishment: A Focus on Gender Differences. Int J Mol Sci 2018; 19:ijms19010281. [PMID: 29342105 PMCID: PMC5796227 DOI: 10.3390/ijms19010281] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 12/20/2022] Open
Abstract
The role of neuroinflammatory cells in the establishment of neuropathic pain has been investigated in depth in the last few years. In particular, microglia have been shown to be key players in the induction of tactile allodynia, as they release proinflammatory molecules that, in turn, sensitize nociceptive neurons within the spinal cord. However, the role of peripheral immune cells such as macrophages, infiltrating monocytes, mast cells, and T-cells has been highlighted in the last few studies, even though the data are still conflicting and need to be clarified. Intriguingly, the central (microglia) and peripheral (T-cell)-adaptive immune cells that orchestrate maladaptive process-driven neuropathic pain seem to be involved in a gender-dependent manner. In this review, we highlight the role of the microglia and peripheral immune cells in chronic degenerative disease associated with neuro-immune-inflammatory processes.
Collapse
|
17
|
Silva NR, Gomes FV, Fonseca MD, Mechoulam R, Breuer A, Cunha TM, Guimarães FS. Antinociceptive effects of HUF-101, a fluorinated cannabidiol derivative. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:369-377. [PMID: 28720466 DOI: 10.1016/j.pnpbp.2017.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/12/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
Cannabidiol (CBD) is a phytocannabinoid with multiple pharmacological effects and several potential therapeutic properties. Its low oral bioavailability, however, can limit its clinical use. Preliminary results indicate that fluorination of the CBD molecule increases its pharmacological potency. Here, we investigated whether HUF-101 (3, 10, and 30mg/kg), a fluorinated CBD analogue, would induce antinociceptive effects. HUF-101 effects were compared to those induced by CBD (10, 30, and 90mg/kg) and the cannabinoid CB1/2 receptor agonist WIN55,212-2 (1, 3, and 5mg/kg). These drugs were tested in male Swiss mice submitted to the following models predictive to antinociceptive drugs: hot plate, acetic acid-induced writhing, and carrageenan-induced inflammatory hyperalgesia. To evaluate the involvement of CB1 and CB2 receptors in HUF-101 and CBD effects, mice received the CB1 receptor antagonist AM251 (1 or 3mg/kg) or the CB2 receptor antagonist AM630 (1 or 3mg/kg) 30min before HUF-101, CBD, or WIN55,212-2. In the hot plate test, HUF-101 (30mg/kg) and WIN55,212-2 (5mg/kg) induced antinociceptive effects, which were attenuated by the pretreatment with AM251 and AM630. In the abdominal writhing test, CBD (30 and 90mg/kg), HUF-101 (30mg/kg), and WIN55,212-2 (3 and 5mg/kg) induced antinociceptive effects indicated by a reduction in the number of writhing. Whereas the pretreatment with AM630 did not mitigate the effects induced by any drug in this test, the pretreatment with AM251 attenuated the effect caused by WIN55,212-2. In the carrageenan-induced hyperalgesia test, CBD (30 and 90mg/kg), HUF-101 (3, 10 and 30mg/kg) and WIN55,212-2 (1mg/kg) decreased the intensity of mechanical hyperalgesia measured by the electronic von Frey method. The effects of all compounds were attenuated by the pretreatment with AM251 and AM630. Additionally, we evaluated whether HUF-101 would induce the classic cannabinoid CB1 receptor-mediated tetrad (hypolocomotion, catalepsy, hypothermia, and antinociception). Unlike WIN55,212-2, CBD and HUF-101 did not induce the cannabinoid tetrad. These findings show that HUF-101 produced antinociceptive effects at lower doses than CBD, indicating that the addition of fluoride improved its pharmacological profile. Furthermore, some of the antinociceptive effects of CBD and HUF-101 effects seem to involve the activation of CB1 and CB2 receptors.
Collapse
Affiliation(s)
- Nicole R Silva
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil.
| | - Felipe V Gomes
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Miriam D Fonseca
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Raphael Mechoulam
- Department of Medicinal Chemistry and Natural Products, Medical Faculty, Hebrew University of Jerusalem, Israel
| | - Aviva Breuer
- Department of Medicinal Chemistry and Natural Products, Medical Faculty, Hebrew University of Jerusalem, Israel
| | - Thiago M Cunha
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| |
Collapse
|
18
|
Yan YY, Li CY, Zhou L, Ao LY, Fang WR, Li YM. Research progress of mechanisms and drug therapy for neuropathic pain. Life Sci 2017; 190:68-77. [PMID: 28964813 DOI: 10.1016/j.lfs.2017.09.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/09/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is maladaptive pain caused by injury or dysfunction in peripheral and central nervous system, and remains a worldwide thorny problem leading to decreases in physical and mental quality of people's life. Currently, drug therapy is the main treatment regimen for resolving pain, while effective drugs are still unmet in medical need, and commonly used drugs such as anticonvulsants and antidepressants often make patients experience adverse drug reactions like dizziness, somnolence, severe headache, and high blood pressure. Thus, in this review we overview the anatomical physiology, underlying mechanisms of neuropathic pain to provide a better understanding in the initiation, development, maintenance, and modulation of this pervasive disease, and inspire research in the unclear mechanisms as well as potential targets. Furthermore, we summarized the existing drug therapies and new compounds that have shown antalgic effects in laboratory studies to be helpful for rational regimens in clinical treatment and promotion in novel drug discovery.
Collapse
Affiliation(s)
- Yun-Yi Yan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cheng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lin Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lu-Yao Ao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
19
|
Genaro K, Fabris D, Arantes ALF, Zuardi AW, Crippa JAS, Prado WA. Cannabidiol Is a Potential Therapeutic for the Affective-Motivational Dimension of Incision Pain in Rats. Front Pharmacol 2017; 8:391. [PMID: 28680401 PMCID: PMC5478794 DOI: 10.3389/fphar.2017.00391] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Background: Pain involves different brain regions and is critically determined by emotional processing. Among other areas, the rostral anterior cingulate cortex (rACC) is implicated in the processing of affective pain. Drugs that interfere with the endocannabinoid system are alternatives for the management of clinical pain. Cannabidiol (CBD), a phytocannabinoid found in Cannabis sativa, has been utilized in preclinical and clinical studies for the treatment of pain. Herein, we evaluate the effects of CBD, injected either systemically or locally into the rACC, on mechanical allodynia in a postoperative pain model and on the negative reinforcement produced by relief of spontaneous incision pain. Additionally, we explored whether CBD underlies the reward of pain relief after systemic or rACC injection. Methods and Results: Male Wistar rats were submitted to a model of incision pain. All rats had mechanical allodynia, which was less intense after intraperitoneal CBD (3 and 10 mg/kg). Conditioned place preference (CPP) paradigm was used to assess negative reinforcement. Intraperitoneal CBD (1 and 3 mg/kg) inverted the CPP produced by peripheral nerve block even at doses that do not change mechanical allodynia. CBD (10 to 40 nmol/0.25 μL) injected into the rACC reduced mechanical allodynia in a dose-dependent manner. CBD (5 nmol/0.25 μL) did not change mechanical allodynia, but reduced peripheral nerve block-induced CPP, and the higher doses inverted the CPP. Additionally, CBD injected systemically or into the rACC at doses that did not change the incision pain evoked by mechanical stimulation significantly produced CPP by itself. Therefore, a non-rewarding dose of CBD in sham-incised rats becomes rewarding in incised rats, presumably because of pain relief or reduction of pain aversiveness. Conclusion: The study provides evidence that CBD influences different dimensions of the response of rats to a surgical incision, and the results establish the rACC as a brain area from which CBD evokes antinociceptive effects in a manner similar to the systemic administration of CBD. In addition, the study gives further support to the notion that the sensorial and affective dimensions of pain may be differentially modulated by CBD.
Collapse
Affiliation(s)
- Karina Genaro
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloSão Paulo, Brazil.,Department of Psychology and Education, Faculty of Phylosophy, Science and Language Studies of Ribeirão Preto, University of São PauloSão Paulo, Brazil
| | - Débora Fabris
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloSão Paulo, Brazil.,Department of Psychology and Education, Faculty of Phylosophy, Science and Language Studies of Ribeirão Preto, University of São PauloSão Paulo, Brazil
| | - Ana L F Arantes
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloSão Paulo, Brazil.,Department of Psychology and Education, Faculty of Phylosophy, Science and Language Studies of Ribeirão Preto, University of São PauloSão Paulo, Brazil
| | - Antônio W Zuardi
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloSão Paulo, Brazil.,National Institute of Science and Technology for Translational Medicine, Conselho Nacional de Desenvolvimento Cientifico e TecnologicoBrasília, Brazil
| | - José A S Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloSão Paulo, Brazil.,National Institute of Science and Technology for Translational Medicine, Conselho Nacional de Desenvolvimento Cientifico e TecnologicoBrasília, Brazil
| | - Wiliam A Prado
- Department of Psychology and Education, Faculty of Phylosophy, Science and Language Studies of Ribeirão Preto, University of São PauloSão Paulo, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São PauloSão Paulo, Brazil
| |
Collapse
|
20
|
Effect of a new formulation of micronized and ultramicronized N-palmitoylethanolamine in a tibia fracture mouse model of complex regional pain syndrome. PLoS One 2017; 12:e0178553. [PMID: 28594885 PMCID: PMC5464592 DOI: 10.1371/journal.pone.0178553] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/15/2017] [Indexed: 11/19/2022] Open
Abstract
Complex regional pain syndrome type 1 (CRPS-I) is a disabling and frequently chronic condition. It involves the extremities and is a frequent consequence of distal tibia and radius fractures. The inflamed appearance of the affected CRPS-I limb suggests that local production of inflammatory mediators may be implicated in the ensuing etiology. A rodent tibia fracture model, characterized by inflammation, chronic unilateral hindlimb warmth, edema, protein extravasation, allodynia and hyperalgesia resembles the clinical features of patients with acute CRPS-I. N-palmitoylethanolamine (PEA), a member of the family of naturally-occurring N-acylethanolamines, is well-known for its ability to modulate inflammatory processes and regulate pain sensitivity. However, the large particle size and lipidic nature of PEA may limit its bioavailability and solubility when given orally. Micronized formulations are frequently used to enhance the dissolution rate of drug and reduce its variability of absorption when orally administered. The aim of this study was to assess the effects of a formulation of micronized and ultramicronized PEA (PEA-MPS), given orally in a mouse model of CRPS-I. CD-1 male mice were subjected to distal tibia fracture and divided into two groups: control and treated with PEA-MPS (PEA micronized 300 mg/kg and ultramicronized 600 mg/kg). Sensibility to pain was monitored in all mice throughout the course of the experiment. Twenty-eight days after tibia fracture induction animals were sacrificed and biochemical parameters evaluated. The PEA-MPS-treated group showed an improved healing process, fracture recovery and fibrosis score. PEA-MPS administration decreased mast cell density, nerve growth factor, matrix metalloproteinase 9 and cytokine expression. This treatment also reduced (poly-ADP)ribose polymerase activation, peroxynitrite formation and apoptosis. Our results suggest that PEA-MPS may be a new therapeutic strategy in the treatment of CRPS-I.
Collapse
|