1
|
Wu R, Chou S, Li M. Continuous oral olanzapine or clozapine treatment initiated in adolescence has differential short- and long-term impacts on antipsychotic sensitivity than those initiated in adulthood. Eur J Pharmacol 2024; 972:176567. [PMID: 38582275 PMCID: PMC11128075 DOI: 10.1016/j.ejphar.2024.176567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
One of the major discoveries in recent research on antipsychotic drugs is that antipsychotic treatment in adolescence could induce robust long-term alterations in antipsychotic sensitivity that persist into adulthood. These long-term impacts are likely influenced by various factors, including the "diseased" state of animals, sex, type of drugs, mode of drug administration, and age of treatment onset. In this study we compared the short- and long-term behavioral effects of 21-day continuous oral olanzapine (7.5 mg/kg/day) or clozapine (30.0 mg/kg/day) administration in heathy or maternal immune activated adolescent (33-53 days old) or adult (80-100 days old) rats of both sexes. We used a conditioned avoidance response model to assess the drug-induced alterations in antipsychotic sensitivity. Here, we report that while under the chronic drug treatment period, olanzapine progressively increased its suppression of avoidance responding over time, especially when treatment was initiated in adulthood. Clozapine's suppression depended on the age of drug exposure, with treatment initiated in adulthood showing a suppression while that initiated in adolescent did not. After a 17-day drug-free interval, in a drug challenge test, olanzapine treatment initiated in adolescence caused a decrease in drug sensitivity, as reflected by less avoidance suppression (a tolerance effect); whereas that initiated in adulthood appeared to cause an increase (more avoidance suppression, a sensitization effect). Clozapine treatments initiated in both adolescence and adulthood caused a similar tolerance effect. Our findings indicate that the same chronic antipsychotic treatment regimen initiated in adolescence or adulthood can have differential short- and long-term impacts on drug sensitivity.
Collapse
Affiliation(s)
- Ruiyong Wu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Shinnyi Chou
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ming Li
- Department of Psychology, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Xia M, Wang Y, Su W, Tang Y, Zhang T, Cui H, Wei Y, Tang X, Xu L, Hu H, Guo Q, Qian Z, Wu X, Li C, Wang J. The effect of initial antipsychotic treatment on hippocampal and amygdalar volume in first-episode schizophrenia is influenced by age. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110780. [PMID: 37141986 DOI: 10.1016/j.pnpbp.2023.110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Antipsychotic treatment has been shown to yield hippocampal and amygdalar volumetric changes in first-episode schizophrenia (FES). However, whether antipsychotic induced volumetric changes interact with age remains unclear. METHODS The current study includes data from 120 medication naïve FES patients and 110 matched healthy controls (HC). Patients underwent MRI scans before (T1) and after (T2) antipsychotic treatment. HCs underwent MRI scans at baseline only. The hippocampus and amygdala were segmented via Freesurfer 7. General linear models were conducted to investigate the effect of age by diagnosis interaction on baseline volume. Linear mixed models (LMM) were used to detect the effect of age on volumetric changes from pre to post treatment in FES. RESULTS GLM revealed a trending effect (F = 3.758, p = 0.054) of age by diagnosis interaction on the baseline volume of the left (whole) hippocampus, with older FES patients showing smaller hippocampal volumes, relative to HC, when controlled sex, education years, and ICV. LMM showed a significant age by time-point interaction effect (F = 4.194, estimate effect = -1.964, p = 0.043) on left hippocampal volume in all FES and significant time effect(F = 6.608,T1-T2(estimate effect) = 62.486, p = 0.011), whereby younger patients showed greater hippocampal volumetric decreases following treatment. At the subfield level, a significant time effect emerged in left molecular_layer_HP (F = 4.509,T1-T2(estimate effect) = 12.424, p = 0.032, FDR corrected) and left cornu ammonis(CA)4 (F = 4.800,T1-T2(estimate effect) = 7.527, p = 0.046, FDR corrected), implying volumetric reduction after treatment in these subfields. CONCLUSIONS Our findings suggest that age plays an important role in the neuroplastic mechanisms of initial antipsychotics on the hippocampus and amygdala of schizophrenia.
Collapse
Affiliation(s)
- Mengqing Xia
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Yingchan Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Wenjun Su
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Hao Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Qian Guo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Xuming Wu
- Nantong Fourth People's Hospital & Nantong Brain Hospital, Jiangsu 226005, China.
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai 200030, PR China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, PR China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai 200030, PR China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| |
Collapse
|
3
|
Ben-Azu B, Adebayo OG, Jarikre TA, Oyovwi MO, Edje KE, Omogbiya IA, Eduviere AT, Moke EG, Chijioke BS, Odili OS, Omondiabge OP, Oyovbaire A, Esuku DT, Ozah EO, Japhet K. Taurine, an essential β-amino acid insulates against ketamine-induced experimental psychosis by enhancement of cholinergic neurotransmission, inhibition of oxidative/nitrergic imbalances, and suppression of COX-2/iNOS immunoreactions in mice. Metab Brain Dis 2022; 37:2807-2826. [PMID: 36057735 DOI: 10.1007/s11011-022-01075-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/23/2022] [Indexed: 12/22/2022]
Abstract
Cholinergic, oxidative, nitrergic alterations, and neuroinflammation are some key neuropathological features common in schizophrenia disease. They involve complex biological processes that alter normal behavior. The present treatments used in the management of the disorder remain ineffective together with some serious side effects as one of their setbacks. Taurine is a naturally occurring essential β-amino acid reported to elicit antipsychotic property in first episode psychosis in clinical setting, thus require preclinical investigation. Hence, we set out to investigate the effects of taurine in the prevention and reversal of ketamine-induced psychotic-like behaviors and the associated putative neurobiological mechanisms underlying its effects. Adult male Swiss mice were sheared into three separate cohorts of experiments (n = 7): drug alone, preventive and reversal studies. Treatments consisted of saline (10 mL/kg/p.o./day), taurine (50 and 100 mg/kg/p.o./day) and risperidone (0.5 mg/kg/p.o./day) with concomitant ketamine (20 mg/kg/i.p./day) injections between days 8-14, or 14 days entirely. Behavioral hyperactivity, despair, cognitive impairment, and catalepsy were measured. Brain oxidative/nitrergic imbalance, immunoreactivity (COX-2 and iNOS), and cholinergic markers were determined in the striatum, prefrontal-cortex, and hippocampus. Taurine abates ketamine-mediated psychotic-like episodes without cataleptogenic potential. Taurine attenuated ketamine-induced decrease in glutathione, superoxide-dismutase and catalase levels in the striatum, prefrontal-cortex and hippocampus. Also, taurine prevented and reversed ketamine-mediated elevation of malondialdehyde, nitrite contents, acetylcholinesterase activity, and suppressed COX-2 and iNOS expressions in a brain-region dependent manner. Conclusively, taurine insulates against ketamine-mediated psychotic phenotype by normalizing brain central cholinergic neurotransmissions, oxidative, nitrergic and suppression of immunoreactive proteins in mice brains.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.
| | - Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Thiophilus Aghogho Jarikre
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mega O Oyovwi
- Department of Basic Medical Science, Achievers University, Owo, Ondo State, Nigeria
| | - Kesiena Emmanuel Edje
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Itivere Adrian Omogbiya
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Anthony T Eduviere
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Emuesiri Goodies Moke
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Bienose S Chijioke
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Onyebuchi S Odili
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Osemudiame P Omondiabge
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Aghogho Oyovbaire
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Daniel T Esuku
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Esther O Ozah
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Kelvin Japhet
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
4
|
Gurholt TP, Lonning V, Nerland S, Jørgensen KN, Haukvik UK, Alloza C, Arango C, Barth C, Bearden CE, Berk M, Bohman H, Dandash O, Díaz‐Caneja CM, Edbom CT, van Erp TGM, Fett AJ, Frangou S, Goldstein BI, Grigorian A, Jahanshad N, James AC, Janssen J, Johannessen C, Karlsgodt KH, Kempton MJ, Kochunov P, Krabbendam L, Kyriakopoulos M, Lundberg M, MacIntosh BJ, Rund BR, Smelror RE, Sultan A, Tamnes CK, Thomopoulos SI, Vajdi A, Wedervang‐Resell K, Myhre AM, Andreassen OA, Thompson PM, Agartz I. Intracranial and subcortical volumes in adolescents with early-onset psychosis: A multisite mega-analysis from the ENIGMA consortium. Hum Brain Mapp 2022; 43:373-384. [PMID: 33017498 PMCID: PMC8675418 DOI: 10.1002/hbm.25212] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/27/2022] Open
Abstract
Early-onset psychosis disorders are serious mental disorders arising before the age of 18 years. Here, we investigate the largest neuroimaging dataset, to date, of patients with early-onset psychosis and healthy controls for differences in intracranial and subcortical brain volumes. The sample included 263 patients with early-onset psychosis (mean age: 16.4 ± 1.4 years, mean illness duration: 1.5 ± 1.4 years, 39.2% female) and 359 healthy controls (mean age: 15.9 ± 1.7 years, 45.4% female) with magnetic resonance imaging data, pooled from 11 clinical cohorts. Patients were diagnosed with early-onset schizophrenia (n = 183), affective psychosis (n = 39), or other psychotic disorders (n = 41). We used linear mixed-effects models to investigate differences in intracranial and subcortical volumes across the patient sample, diagnostic subgroup and antipsychotic medication, relative to controls. We observed significantly lower intracranial (Cohen's d = -0.39) and hippocampal (d = -0.25) volumes, and higher caudate (d = 0.25) and pallidum (d = 0.24) volumes in patients relative to controls. Intracranial volume was lower in both early-onset schizophrenia (d = -0.34) and affective psychosis (d = -0.42), and early-onset schizophrenia showed lower hippocampal (d = -0.24) and higher pallidum (d = 0.29) volumes. Patients who were currently treated with antipsychotic medication (n = 193) had significantly lower intracranial volume (d = -0.42). The findings demonstrate a similar pattern of brain alterations in early-onset psychosis as previously reported in adult psychosis, but with notably low intracranial volume. The low intracranial volume suggests disrupted neurodevelopment in adolescent early-onset psychosis.
Collapse
Affiliation(s)
- Tiril P. Gurholt
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| | - Vera Lonning
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| | - Stener Nerland
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| | - Kjetil N. Jørgensen
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| | - Unn K. Haukvik
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Department of Adult Mental Health, Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Clara Alloza
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental HealthHospital General Universitario Gregorio Marañón, IiSGM, CIBERSAMMadridSpain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental HealthHospital General Universitario Gregorio Marañón, IiSGM, CIBERSAMMadridSpain
- School of MedicineUniversidad ComplutenseMadridSpain
| | - Claudia Barth
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUCLALos AngelesCaliforniaUSA
- Department of PsychologyUCLALos AngelesCaliforniaUSA
| | - Michael Berk
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongVictoriaAustralia
- Orygen Youth Health Research CenterThe Florey Institute for Neuroscience and Department of PsychiatryParkvilleVictoriaAustralia
| | - Hannes Bohman
- Center for Psychiatry Research, Department of Clinical NeuroscienceKarolinska Institutet and Stockholm Health Care Services, Stockholm Region, Stockholm, SwedenStockholmSweden
- Department of Neuroscience, Child and Adolescent PsychiatryUppsala UniversityUppsalaSweden
- Department of Clinical Science and Education SödersjukhusetKarolinska InstitutetStockholmSweden
| | - Orwa Dandash
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongVictoriaAustralia
| | - Covadonga M. Díaz‐Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental HealthHospital General Universitario Gregorio Marañón, IiSGM, CIBERSAMMadridSpain
- School of MedicineUniversidad ComplutenseMadridSpain
| | - Carl T. Edbom
- Center for Psychiatry Research, Department of Clinical NeuroscienceKarolinska Institutet and Stockholm Health Care Services, Stockholm Region, Stockholm, SwedenStockholmSweden
| | - Theo G. M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
- Center for the Neurobiology of LearningUniversity of California Irvine and MemoryIrvineCaliforniaUSA
| | - Anne‐Kathrin J. Fett
- Department of PsychologyCity, University of LondonLondonUK
- Department of Psychosis StudiesIoPPNLondonUK
- Department of Clinical, Neuro and Developmental PsychologyVU AmsterdamAmsterdamNetherlands
| | - Sophia Frangou
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Benjamin I. Goldstein
- Center for Youth Bipolar Disorder, Sunnybrook Health Science CenterTorontoOntarioCanada
- Department of Psychiatry and PharmacologyUniversity of TorontoCanada
| | - Anahit Grigorian
- Center for Youth Bipolar Disorder, Sunnybrook Health Science CenterTorontoOntarioCanada
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Anthony C. James
- Department of PsychiatryUniversity of OxfordOxfordUK
- Oxford Health Foundation NHS TrustOxfordUK
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental HealthHospital General Universitario Gregorio Marañón, IiSGM, CIBERSAMMadridSpain
- School of MedicineUniversidad ComplutenseMadridSpain
| | - Cecilie Johannessen
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Katherine H. Karlsgodt
- Department of PsychologyUCLALos AngelesCaliforniaUSA
- Department Psychiatry and Biobehavioral SciencesUCLALos AngelesCaliforniaUSA
| | | | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Lydia Krabbendam
- Department of Clinical, Neuro and Developmental PsychologyVU AmsterdamAmsterdamNetherlands
| | - Marinos Kyriakopoulos
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology, and NeuroscienceKing's College LondonLondonUK
- National and Specialist Children's Inpatient Unit (Acorn Lodge), South London and Maudsley NHS Foundation TrustBeckenhamUK
| | - Mathias Lundberg
- Center for Psychiatry Research, Department of Clinical NeuroscienceKarolinska Institutet and Stockholm Health Care Services, Stockholm Region, Stockholm, SwedenStockholmSweden
- Department of Neuroscience, Child and Adolescent PsychiatryUppsala UniversityUppsalaSweden
- Department of Clinical Science and Education SödersjukhusetKarolinska InstitutetStockholmSweden
- The Department of Clinical Science and EducationKI SÖSStockholmSweden
| | - Bradley J. MacIntosh
- Hurvitz Brain Sciences, Sunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoOntarioCanada
| | - Bjørn Rishovd Rund
- Department of PsychologyUniversity of OsloOsloNorway
- Department of ResearchVestre Viken Hospital TrustDrammenNorway
| | - Runar E. Smelror
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| | - Alysha Sultan
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of PharmacologyUniversity of TorontoTorontoOntarioCanada
| | - Christian K. Tamnes
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| | | | - Ariana Vajdi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUCLALos AngelesCaliforniaUSA
| | - Kirsten Wedervang‐Resell
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Anne M. Myhre
- Child and Adolescent Psychiatry Unit, Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric Research and Development, Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Ole A. Andreassen
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Paul M. Thompson
- Department of Psychiatry and PharmacologyUniversity of TorontoCanada
| | - Ingrid Agartz
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Center for Psychiatry Research, Department of Clinical NeuroscienceKarolinska Institutet and Stockholm Health Care Services, Stockholm Region, Stockholm, SwedenStockholmSweden
| | | |
Collapse
|
5
|
Bar-Yosef T, Hussein W, Yitzhaki O, Damri O, Givon L, Marom C, Gurman V, Levine J, Bersudsky Y, Agam G, Ben-Shachar D. Mitochondrial function parameters as a tool for tailored drug treatment of an individual with psychosis: a proof of concept study. Sci Rep 2020; 10:12258. [PMID: 32703977 PMCID: PMC7378204 DOI: 10.1038/s41598-020-69207-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
Pharmacological treatment of mental disorders is currently decided based on "trial and error" strategy. Mitochondrial multifaceted dysfunction is assumed to be a major factor in the pathophysiology and treatment of schizophrenia (SZ) and bipolar disorder (BD). This study aimed to explore the feasibility of using a profile of mitochondrial function parameters as a tool to predict the optimal drug for an individual patient (personalized medicine). Healthy controls (n = 40), SZ (n = 48) and BD (n = 27) patients were recruited. Mental and global state of the subjects, six mitochondrial respiration parameters and 14 mitochondrial function-related proteins were assessed in fresh lymphocytes following in-vitro or in-vivo treatment with five antipsychotic drugs and two mood-stabilizers. In healthy controls, hierarchal clustering shows a drug-specific effect profile on the different mitochondrial parameters following in-vitro exposure. Similar changes were observed in untreated SZ and BD patients with psychosis. Following a month of treatment of the latter patients, only responders showed a significant correlation between drug-induced in-vitro effect (prior to in-vivo treatment) and short-term in-vivo treatment effect for 45% of the parameters. Long- but not short-term psychotropic treatment normalized mitochondria-related parameters in patients with psychosis. Taken together, these data substantiate mitochondria as a target for psychotropic drugs and provide a proof of concept for selective mitochondrial function-related parameters as a predictive tool for an optimized psychotropic treatment in a given patient. This, however, needs to be repeated with an expanded sample size and additional mitochondria related parameters.
Collapse
Affiliation(s)
- Tamara Bar-Yosef
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel
| | - Wessal Hussein
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, 31096, Haifa, Israel
| | - Ofer Yitzhaki
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel
| | - Odeya Damri
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel
| | - Limor Givon
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, 31096, Haifa, Israel
| | | | | | - Joseph Levine
- Division of Psychiatry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel
| | - Yuly Bersudsky
- Division of Psychiatry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel.
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel.
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, 31096, Haifa, Israel.
| |
Collapse
|
6
|
Effects of a methanol extract of Ficus platyphylla stem bark on a two-way active avoidance task and on body core temperature. Behav Brain Res 2019; 367:215-220. [DOI: 10.1016/j.bbr.2019.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 12/16/2022]
|
7
|
Kamińska K, Górska A, Noworyta-Sokołowska K, Wojtas A, Rogóż Z, Gołembiowska K. The effect of chronic co-treatment with risperidone and novel antidepressant drugs on the dopamine and serotonin levels in the rats frontal cortex. Pharmacol Rep 2018; 70:1023-1031. [DOI: 10.1016/j.pharep.2018.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/23/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|