1
|
Friuli M, Eramo B, Sepe C, Kiani M, Casolini P, Zuena AR. The endocannabinoid and paracannabinoid systems in natural reward processes: possible pharmacological targets? Physiol Behav 2025; 296:114929. [PMID: 40274041 DOI: 10.1016/j.physbeh.2025.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Natural rewards such as food, mating, and social interaction are essential for survival and species preservation, and their regulation involves a complex interplay of motivational, cognitive, and emotional processes. Over the past two decades, increasing attention has been directed toward the endocannabinoid system and its paracannabinoid counterpart as key modulators of these behaviors. This review aims to provide an integrated overview of the roles played by the endocannabinoid and paracannabinoid systems in regulating natural reward-driven behaviors, focusing on feeding, reproductive behavior, and social interaction. We highlight how the endocannabinoid system - mainly through CB1 receptor signaling - modulates central and peripheral circuits involved in energy homeostasis, reward processing, and emotional regulation. In parallel, we explore the role of paracannabinoids, such as oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and stearoylethanolamide (SEA), which act primarily via non-cannabinoid receptors and contribute to the regulation of appetite, sexual motivation, and social behavior. Special attention is given to the relevance of these systems in the pathophysiology of obesity, eating disorders, sexual dysfunctions, and social impairments, as well as their potential as pharmacological targets. Overall, the evidence discussed supports a broader conceptualization of endocannabinoid and paracannabinoid signaling as pivotal regulators of natural rewards and opens new avenues for the development of targeted interventions for motivational and reward-related disorders.
Collapse
Affiliation(s)
- Marzia Friuli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.
| | - Barbara Eramo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Christian Sepe
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Mitra Kiani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA
| | - Paola Casolini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Dubbioso R, Iannotti FA, Senerchia G, Verde R, Iuzzolino VV, Spisto M, Fasolino I, Manganelli F, Di Marzo V, Piscitelli F. Circulating endocannabinoidome signatures of disease activity in amyotrophic lateral sclerosis. Eur J Neurol 2024; 31:e16400. [PMID: 39152573 DOI: 10.1111/ene.16400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/26/2024] [Accepted: 06/19/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND AND PURPOSE Preclinical studies of amyotrophic lateral sclerosis (ALS) have shown altered endocannabinoid (eCB) signalling that may contribute to the disease. Results from human studies are sparse and inconclusive. The aim of this study was to determine the association between serum levels of eCBs or their congeners, the so-called endocannabinoidome, and disease status and activity in ALS patients. METHODS Serum concentrations of 2-arachidonoylglycerol and N-arachidonoylethanolamine (AEA), and AEA congeners palmitoylethanolamide (PEA), oleoylethanolamide (OEA), eicosapentaenoylethanolamide (EPEA), 2-docosahexaenoylglycerol (2-DHG) and docosahexaenoylethanolamide (DHEA) were measured in samples from 65 ALS patients, 32 healthy controls (HCs) and 16 neurological disease controls (NALS). A subset of 46 ALS patients underwent a longitudinal study. Disease activity and progression were correlated with eCB and congener levels. RESULTS Most circulating mediators were higher in ALS than HCs (all p < 0.001), but not NALS. Across clinical stages, ALS patients showed increased levels of PEA, OEA and EPEA (all p < 0.02), which were confirmed by the longitudinal study (all p < 0.03). Serum PEA and OEA levels were independent predictors of survival and OEA levels were higher in patients complaining of appetite loss. Cluster analysis revealed two distinct profiles of circulating mediators associated with corresponding patterns of disease activity (severe vs. mild). Patients belonging to the 'severe' cluster showed significantly higher levels of OEA and PEA and lower levels of 2-DHG compared to NALS and HCs. CONCLUSION Circulating endocannabinoidome profiles are indicative of disease activity, thus possibly paving the way to a personalized, rather than a 'one-fits-all', therapeutic approach targeting the endocannabinoidome.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry-National Research Council (ICB-CNR), Pozzuoli, Italy
| | - Gianmaria Senerchia
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Roberta Verde
- Institute of Biomolecular Chemistry-National Research Council (ICB-CNR), Pozzuoli, Italy
| | - Valentina Virginia Iuzzolino
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Myriam Spisto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Naples, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry-National Research Council (ICB-CNR), Pozzuoli, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidme Axis in Metabolic Health, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, Quebec, Canada
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry-National Research Council (ICB-CNR), Pozzuoli, Italy
| |
Collapse
|
3
|
Friuli M, Sepe C, Panza E, Travelli C, Paterniti I, Romano A. Autophagy and inflammation an intricate affair in the management of obesity and metabolic disorders: evidence for novel pharmacological strategies? Front Pharmacol 2024; 15:1407336. [PMID: 38895630 PMCID: PMC11184060 DOI: 10.3389/fphar.2024.1407336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Unhealthy lifestyle habits including a sedentary life, the lack of physical activity, and wrong dietary habits are the major ones responsible for the constant increase of obesity and metabolic disorders prevalence worldwide; therefore, the scientific community pays significant attention to the pharmacotherapy of such diseases, beyond lifestyle interventions, the use of medical devices, and surgical approaches. The intricate interplay between autophagy and inflammation appears crucial to orchestrate fundamental aspects of cellular and organismal responses to challenging stimuli, including metabolic insults; hence, when these two processes are dysregulated (enhanced or suppressed) they produce pathologic effects. The present review summarizes the existing literature reporting the intricate affair between autophagy and inflammation in the context of metabolic disorders, including obesity, diabetes, and liver metabolic diseases (non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH)). The evidence collected so far suggests that an alteration of autophagy might lead to maladaptive metabolic and inflammatory responses thus exacerbating the severity of the disease, and the most prominent conclusion underlies that autophagy might exert a protective function by contributing to balance inflammation. However, the complex nature of obesity and metabolic disorders might represent a limit of the studies; indeed, although many pharmacological treatments, producing positive metabolic effects, are also able to modulate autophagic flux and inflammation, it is not clear if the final beneficial effect might occur only by their mechanism of action, rather than because of additionally involved pathways. Finally, although future studies are needed, the observation that anti-obesity and antidiabetic drugs already on the market, including incretin mimetic agents, facilitate autophagy by dampening inflammation, strongly contributes to the idea that autophagy might represent a druggable system for the development of novel pharmacological tools that might represent an attractive strategy for the treatment of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Marzia Friuli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Christian Sepe
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, University of Pavia, Pavia, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Romano A, Friuli M, Eramo B, Gallelli CA, Koczwara JB, Azari EK, Paquot A, Arnold M, Langhans W, Muccioli GG, Lutz TA, Gaetani S. "To brain or not to brain": evaluating the possible direct effects of the satiety factor oleoylethanolamide in the central nervous system. Front Endocrinol (Lausanne) 2023; 14:1158287. [PMID: 37234803 PMCID: PMC10206109 DOI: 10.3389/fendo.2023.1158287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction Oleoylethanolamide (OEA), an endogenous N-acylethanolamine acting as a gut-to-brain signal to control food intake and metabolism, has been attracting attention as a target for novel therapies against obesity and eating disorders. Numerous observations suggested that the OEA effects might be peripherally mediated, although they involve central pathways including noradrenergic, histaminergic and oxytocinergic systems of the brainstem and the hypothalamus. Whether these pathways are activated directly by OEA or whether they are downstream of afferent nerves is still highly debated. Some early studies suggested vagal afferent fibers as the main route, but our previous observations have contradicted this idea and led us to consider the blood circulation as an alternative way for OEA's central actions. Methods To test this hypothesis, we first investigated the impact of subdiaphragmatic vagal deafferentation (SDA) on the OEA-induced activation of selected brain nuclei. Then, we analyzed the pattern of OEA distribution in plasma and brain at different time points after intraperitoneal administration in addition to measuring food intake. Results Confirming and extending our previous findings that subdiaphragmatic vagal afferents are not necessary for the eating-inhibitory effect of exogenous OEA, our present results demonstrate that vagal sensory fibers are also not necessary for the neurochemical effects of OEA. Rather, within a few minutes after intraperitoneal administration, we found an increased concentration of intact OEA in different brain areas, associated with the inhibition of food intake. Conclusion Our results support that systemic OEA rapidly reaches the brain via the circulation and inhibits eating by acting directly on selected brain nuclei.
Collapse
Affiliation(s)
- Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Marzia Friuli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Barbara Eramo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Cristina Anna Gallelli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Justyna Barbara Koczwara
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | | | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, ETH Zurich, Zurich, Switzerland
| | | | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Thomas Alexander Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Rodríguez-González A, Moya M, Rodríguez de Fonseca F, Gómez de Heras R, Orio L. Alcohol binge drinking induces downregulation of blood-brain barrier proteins in the rat frontal cortex -but not in the hippocampus- that is not prevented by OEA pretreatment. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11091. [PMID: 38389819 PMCID: PMC10880752 DOI: 10.3389/adar.2023.11091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2024]
Abstract
Alcohol binge drinking promotes neuroinflammation which could be partially mediated by the passage of ABD-induced peripheral inflammatory molecules to the brain parenchyma through the blood-brain barrier. The BBB is sealed by tight junction proteins, which regulate the access of substances to the brain. Whether ABD alters the BBB or not remains controversial. Here, we measured the expression of BBB proteins in frontal cortex and hippocampus after an ABD procedure that was previously shown to induce neuroinflammation in the FC, and checked neuroinflammation in the hippocampus. Oleoylethanolamide is known to inhibit ABD-induced neuroinflammation in rat FC but the mechanisms of action are not clear: whereas OEA protects against alcohol-induced breakdown of the TJ proteins in the gut barrier reducing peripheral inflammation, its effect in the TJ of the BBB remains unknown. Here, we studied whether OEA (5 mg/kg, before each gavage) prevented alcohol-induced BBB dysfunction by measuring the expression of zona-occludens, occludin, and laminin in FC and hippocampus. ABD animals showed reduced laminin and occludin levels in the FC, indicative of BBB dysfunction, which is concordant with previous findings showing ABD-induced neuroinflammation in this brain region. OEA did not prevent ABD-induced changes in the BBB proteins in the FC, suggesting that the OEA main mechanism of action to inhibit neuroinflammation in this brain region is not related to prevention of TJ proteins alteration in the BBB. In the hippocampus, this ABD protocol did not alter BBB protein levels and no markers of neuroinflammation were found elevated.
Collapse
Affiliation(s)
- Alicia Rodríguez-González
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Marta Moya
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
- RIAPAd: Research Network in Primary Care in Addictions (Red de Investigación en Atención Primaria en Adicciones), Madrid, Spain
| | - Raquel Gómez de Heras
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Laura Orio
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
- RIAPAd: Research Network in Primary Care in Addictions (Red de Investigación en Atención Primaria en Adicciones), Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
6
|
Oleoylethanolamide Reduces Hepatic Oxidative Stress and Endoplasmic Reticulum Stress in High-Fat Diet-Fed Rats. Antioxidants (Basel) 2021; 10:antiox10081289. [PMID: 34439537 PMCID: PMC8389293 DOI: 10.3390/antiox10081289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
Long-term high-fat diet (HFD) consumption can cause weight gain and obesity, two conditions often associated with hepatic non-alcoholic fatty liver and oxidative stress. Oleoylethanolamide (OEA), a lipid compound produced by the intestine from oleic acid, has been associated with different beneficial effects in diet-induced obesity and hepatic steatosis. However, the role of OEA on hepatic oxidative stress has not been fully elucidated. In this study, we used a model of diet-induced obesity to study the possible antioxidant effect of OEA in the liver. In this model rats with free access to an HFD for 77 days developed obesity, steatosis, and hepatic oxidative stress, as compared to rats consuming a low-fat diet for the same period. Several parameters associated with oxidative stress were then measured after two weeks of OEA administration to diet-induced obese rats. We showed that OEA reduced, compared to HFD-fed rats, obesity, steatosis, and the plasma level of triacylglycerols and transaminases. Moreover, OEA decreased the amount of malondialdehyde and carbonylated proteins and restored the activity of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, which decreased in the liver of HFD-fed rats. OEA had also an improving effect on parameters linked to endoplasmic reticulum stress, thus demonstrating a role in the homeostatic control of protein folding. Finally, we reported that OEA differently regulated the expression of two transcription factors involved in the control of lipid metabolism and antioxidant genes, namely nuclear factor erythroid-derived 2-related factor 1 (Nrf1) and Nrf2, thus suggesting, for the first time, new targets of the protective effect of OEA in the liver.
Collapse
|
7
|
Rani B, Santangelo A, Romano A, Koczwara JB, Friuli M, Provensi G, Blandina P, Casarrubea M, Gaetani S, Passani MB, Costa A. Brain histamine and oleoylethanolamide restore behavioral deficits induced by chronic social defeat stress in mice. Neurobiol Stress 2021; 14:100317. [PMID: 33869681 PMCID: PMC8039856 DOI: 10.1016/j.ynstr.2021.100317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/19/2021] [Accepted: 03/07/2021] [Indexed: 12/19/2022] Open
Abstract
The physiological mechanisms underlying the complex interplay between life stressors and metabolic factors is receiving growing interest and is being analyzed as one of the many factors contributing to depressive illness. The brain histaminergic system modulates neuronal activity extensively and we demonstrated that its integrity is necessary for peripheral signals such as the bioactive lipid mediator oleoylethanolamide (OEA) to exert its central actions. Here, we investigated the role of brain histamine and its interaction with OEA in response to chronic social defeat stress (CSDS), a preclinical protocol widely used to study physio-pathological mechanisms underlying symptoms observed in depression. Both histidine decarboxylase null (HDC-/-) and HDC+/+ mice were subjected to CSDS for 21 days and treated with either OEA or vehicle daily, starting 10 days after CSDS initiation, until sacrifice. Undisturbed mice served as controls. To test the hypothesis of a histamine-OEA interplay on behavioral responses affected by chronic stress, tests encompassing the social, ethological and memory domains were used. CSDS caused cognitive and social behavior impairments in both genotypes, however, only stressed HDC+/+ mice responded to the beneficial effects of OEA. To detect subtle behavioral features, an advanced multivariate approach known as T-pattern analysis was used. It revealed unexpected differences of the organization of behavioral sequences during mice social interaction between the two genotypes. These data confirm the centrality of the neurotransmitter histamine as a modulator of complex behavioral responses and directly implicate OEA as a protective agent against social stress consequences in a histamine dependent fashion.
Collapse
Affiliation(s)
- Barbara Rani
- Dipartimento di Scienze della Salute, Università di Firenze (I), Italy
| | - Andrea Santangelo
- Dipartimento di Scienze della Salute, Università di Firenze (I), Italy
| | - Adele Romano
- Dipartimento di Fisiologia e Farmacologia 'V. Erspamer', Sapienza Università di Roma, Roma, Italy
| | - Justyna Barbara Koczwara
- Dipartimento di Fisiologia e Farmacologia 'V. Erspamer', Sapienza Università di Roma, Roma, Italy
| | - Marzia Friuli
- Dipartimento di Fisiologia e Farmacologia 'V. Erspamer', Sapienza Università di Roma, Roma, Italy
| | - Gustavo Provensi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del bambino (Neurofarba) Università di Firenze Viale Pieraccini 6, 50139, Firenze Italy
| | - Patrizio Blandina
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del bambino (Neurofarba) Università di Firenze Viale Pieraccini 6, 50139, Firenze Italy
| | - Maurizio Casarrubea
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata (Bi.N.D.), Sezione di Fisiologia Umana "Giuseppe Pagano", Università degli Studi di Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Silvana Gaetani
- Dipartimento di Fisiologia e Farmacologia 'V. Erspamer', Sapienza Università di Roma, Roma, Italy
| | | | - Alessia Costa
- Dipartimento di Scienze della Salute, Università di Firenze (I), Italy
| |
Collapse
|
8
|
Klockars A, Levine AS, Head MA, Perez-Leighton CE, Kotz CM, Olszewski PK. Impact of Gut and Metabolic Hormones on Feeding Reward. Compr Physiol 2021; 11:1425-1447. [PMID: 33577129 DOI: 10.1002/cphy.c190042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ingestion of food activates a cascade of endocrine responses (thereby reflecting a contemporaneous feeding status) that include the release of hormones from the gastrointestinal (GI) tract, such as cholecystokinin (CCK), glucagonlike peptide YY (PYY), peptide PP, and oleoylethanolamide, as well as suppression of ghrelin secretion. The pancreas and adipose tissue, on the other hand, release hormones that serve as a measure of the current metabolic state or the long-term energy stores, that is, insulin, leptin, and adiponectin. It is well known and intuitively understandable that these hormones target either directly (by crossing the blood-brain barrier) or indirectly (e.g., via vagal input) the "homeostatic" brainstem-hypothalamic pathways involved in the regulation of appetite. The current article focuses on yet another target of the metabolic and GI hormones that is critical in inducing changes in food intake, namely, the reward system. We discuss the physiological basis of this functional interaction, its importance in the control of appetite, and the impact that disruption of this crosstalk has on energy intake in select physiological and pathophysiological states. We conclude that metabolic and GI hormones have a capacity to strengthen or weaken a response of the reward system to a given food, and thus, they are fundamental in ensuring that feeding reward is plastic and dependent on the energy status of the organism. © 2021 American Physiological Society. Compr Physiol 11:1425-1447, 2021.
Collapse
Affiliation(s)
- Anica Klockars
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Mitchell A Head
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | - Catherine M Kotz
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand.,Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Romano A, Friuli M, Del Coco L, Longo S, Vergara D, Del Boccio P, Valentinuzzi S, Cicalini I, Fanizzi FP, Gaetani S, Giudetti AM. Chronic Oleoylethanolamide Treatment Decreases Hepatic Triacylglycerol Level in Rat Liver by a PPARγ/SREBP-Mediated Suppression of Fatty Acid and Triacylglycerol Synthesis. Nutrients 2021; 13:394. [PMID: 33513874 PMCID: PMC7910994 DOI: 10.3390/nu13020394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 12/14/2022] Open
Abstract
Oleoylethanolamide (OEA) is a naturally occurring bioactive lipid belonging to the family of N-acylethanolamides. A variety of beneficial effects have been attributed to OEA, although the greater interest is due to its potential role in the treatment of obesity, fatty liver, and eating-related disorders. To better clarify the mechanism of the antiadipogenic effect of OEA in the liver, using a lipidomic study performed by 1H-NMR, LC-MS/MS and thin-layer chromatography analyses we evaluated the whole lipid composition of rat liver, following a two-week daily treatment of OEA (10 mg kg-1 i.p.). We found that OEA induced a significant reduction in hepatic triacylglycerol (TAG) content and significant changes in sphingolipid composition and ceramidase activity. We associated the antiadipogenic effect of OEA to decreased activity and expression of key enzymes involved in fatty acid and TAG syntheses, such as acetyl-CoA carboxylase, fatty acid synthase, diacylglycerol acyltransferase, and stearoyl-CoA desaturase 1. Moreover, we found that both SREBP-1 and PPARγ protein expression were significantly reduced in the liver of OEA-treated rats. Our findings add significant and important insights into the molecular mechanism of OEA on hepatic adipogenesis, and suggest a possible link between the OEA-induced changes in sphingolipid metabolism and suppression of hepatic TAG level.
Collapse
Affiliation(s)
- Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.R.); (M.F.); (S.G.)
| | - Marzia Friuli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.R.); (M.F.); (S.G.)
| | - Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (L.D.C.); (S.L.); (D.V.)
| | - Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (L.D.C.); (S.L.); (D.V.)
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (L.D.C.); (S.L.); (D.V.)
| | - Piero Del Boccio
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (P.D.B.); (S.V.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Silvia Valentinuzzi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (P.D.B.); (S.V.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco P. Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (L.D.C.); (S.L.); (D.V.)
| | - Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.R.); (M.F.); (S.G.)
| | - Anna M. Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (L.D.C.); (S.L.); (D.V.)
| |
Collapse
|
10
|
Oleoylethanolamide decreases frustration stress-induced binge-like eating in female rats: a novel potential treatment for binge eating disorder. Neuropsychopharmacology 2020; 45:1931-1941. [PMID: 32353860 PMCID: PMC7609309 DOI: 10.1038/s41386-020-0686-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/04/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Binge eating disorder (BED) is the most frequent eating disorder, for which current pharmacotherapies show poor response rates and safety concerns, thus highlighting the need for novel treatment options. The lipid-derived messenger oleoylethanolamide (OEA) acts as a satiety signal inhibiting food intake through the involvement of central noradrenergic and oxytocinergic neurons. We investigated the anti-binge effects of OEA in a rat model of binge-like eating, in which, after cycles of intermittent food restrictions/refeeding and palatable food consumptions, female rats show a binge-like intake of palatable food, following a 15-min exposure to their sight and smell ("frustration stress"). Systemically administered OEA dose-dependently (2.5, 5, and 10 mg kg-1) prevented binge-like eating. This behavioral effect was associated with a decreased activation (measured by mapping the expression of c-fos, an early gene widely used as a marker of cellular activation) of brain areas responding to stress (such as the nucleus accumbens and amygdala) and to a stimulation of areas involved in the control of food intake, such as the VTA and the PVN. These effects were paralleled, also, to the modulation of monoamine transmission in key brain areas involved in both homeostatic and hedonic control of eating. In particular, a decreased dopaminergic response to stress was observed by measuring dopamine extracellular concentrations in microdialysates from the nucleus accumbens shell, whereas an increased serotonergic and noradrenergic tone was detected in tissue homogenates of selected brain areas. Finally, a decrease in corticotropin-releasing factor (CRF) mRNA levels was induced by OEA in the central amygdala, while an increase in oxytocin mRNA levels was induced in the PVN. The restoration of a normal oxytocin receptor density in the striatum paralleled the oxytocinergic stimulation produced by OEA. In conclusion, we provide evidence suggesting that OEA might represent a novel potential pharmacological target for the treatment of binge-like eating behavior.
Collapse
|
11
|
Sarnat HB, Flores-Sarnat L, Boltshauser E. Area Postrema: Fetal Maturation, Tumors, Vomiting Center, Growth, Role in Neuromyelitis Optica. Pediatr Neurol 2019; 94:21-31. [PMID: 30797593 DOI: 10.1016/j.pediatrneurol.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The area postrema in the caudal fourth ventricular floor is highly vascular without blood-brain or blood-cerebrospinal fluid barrier. In addition to its function as vomiting center, several others are part of the circumventricular organs for vasomotor/angiotensin II regulation, role in neuromyelitis optica related to aquaporin-4, and somatic growth and appetite regulation. Functions are immature at birth. The purpose was to demonstrate neuronal, synaptic, glial, or ependymal maturation in the area postrema of normal fetuses. We describe three area postrema tumors. METHODS Sections of caudal fourth ventricle of 12 normal human fetal brains at autopsy aged six to 40 weeks and three infants aged three to 18 months were examined. Immunocytochemical neuronal and glial markers were applied to paraffin sections. Two infants with area postrema tumors and another with neurocutaneous melanocytosis and pernicious vomiting also studied. RESULTS Area postrema neurons exhibited cytologic maturity and synaptic circuitry by 14 weeks'. Astrocytes coexpressed vimentin, glial fibrillary acidic protein, and S-100β protein. The ependyma is thin over area postrema, with fetal ependymocytic basal processes. A glial layer separates area postrema from medullary tegmentum. Melanocytes infiltrated area postrema in the toddler with pernicious vomiting; two children had primary area postrema pilocytic astrocytomas. CONCLUSIONS Although area postrema is cytologically mature by 14 weeks, growth increases and functions mature during postnatal months. We recommend neuroimaging for patients with unexplained vomiting and that area postrema neuropathology includes synaptophysin and microtubule-associated protein-2 in patients with suspected dysfunction.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Departments of Paediatrics, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Pathology (Neuropathology), University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.
| | - Laura Flores-Sarnat
- Departments of Paediatrics, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Eugen Boltshauser
- Department of Paediatric Neurology, Children's University Hospital, Zürich, Switzerland
| |
Collapse
|
12
|
Fedele S, Arnold M, Krieger JP, Wolfstädter B, Meyer U, Langhans W, Mansouri A. Oleoylethanolamide-induced anorexia in rats is associated with locomotor impairment. Physiol Rep 2019; 6. [PMID: 29388342 PMCID: PMC5817840 DOI: 10.14814/phy2.13517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 11/24/2022] Open
Abstract
The endogenous peroxisome proliferator‐activated receptor alpha (PPAR‐α) agonist Oleoylethanolamide (OEA) inhibits eating in rodents, mainly by delaying the onset of meals. The underlying mechanisms of OEA‐induced anorexia, however, remain unclear. Animals treated with high OEA doses were shown to display signs of discomfort and impaired locomotion. Therefore, we first examined whether the impaired locomotion may contribute to OEA's anorectic effect. Second, it is controversial whether abdominal vagal afferents are necessary for OEA's anorectic effect. Thus, we explored alternative peripheral neural pathways mediating IP OEA's anorectic effect by performing a celiac‐superior mesenteric ganglionectomy (CGX) or a subdiaphragmatic vagal deafferentation (SDA) alone or in combination. Exogenously administered OEA at a commonly used dose (10 mg/kg BW, IP) concurrently reduced food intake and compromised locomotor activity. Attempts to dissociate both phenomena using the dopamine D2/D3 receptor agonist Quinpirole (1 mg/kg BW, SC) failed because Quinpirole antagonized both, OEA‐induced locomotor impairment and delay in eating onset. CGX attenuated the prolongation of the latency to eat by IP OEA, but neither SDA nor CGX prevented IP OEA‐induced locomotor impairment. Our results indicate that IP OEA's anorectic effect may be secondary to impaired locomotion rather than due to physiological satiety. They further confirm that vagal afferents do not mediate exogenous OEA's anorectic effects, but suggest a role for spinal afferents in addition to an alternative, nonneuronal signaling route.
Collapse
Affiliation(s)
- Shahana Fedele
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | | | - Bernd Wolfstädter
- Laboratorium für Organische Chemie, ETH Zurich, Zürich, Switzerland.,Laboratory of Translational Nutrition Biology, ETH Zurich, Schwerzenbach, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Abdelhak Mansouri
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
13
|
Cassano T, Magini A, Giovagnoli S, Polchi A, Calcagnini S, Pace L, Lavecchia MA, Scuderi C, Bronzuoli MR, Ruggeri L, Gentileschi MP, Romano A, Gaetani S, De Marco F, Emiliani C, Dolcetta D. Early intrathecal infusion of everolimus restores cognitive function and mood in a murine model of Alzheimer's disease. Exp Neurol 2018; 311:88-105. [PMID: 30243986 DOI: 10.1016/j.expneurol.2018.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/13/2018] [Accepted: 09/17/2018] [Indexed: 01/05/2023]
Abstract
The discovery that mammalian target of rapamycin (mTOR) inhibition increases lifespan in mice and restores/delays many aging phenotypes has led to the identification of a novel potential therapeutic target for the treatment of Alzheimer's disease (AD). Among mTOR inhibitors, everolimus, which has been developed to improve the pharmacokinetic characteristics of rapamycin, has been extensively profiled in preclinical and clinical studies as anticancer and immunosuppressive agent, but no information is available about its potential effects on neurodegenerative disorders. Using a reliable mouse model of AD (3 × Tg-AD mice), we explored whether short-term treatment with everolimus injected directly into the brain by osmotic pumps was able to modify AD-like pathology with low impact on peripheral organs. We first established in non-transgenic mice the stability of everolimus at 37 °C in comparison with rapamycin and, then, evaluated its pharmacokinetics and pharmacodynamics profiles through either a single peripheral (i.p.) or central (i.c.v.) route of administration. Finally, 6-month-old (symptomatic phase) 3 × Tg-AD mice were treated with continuous infusion of either vehicle or everolimus (0.167 μg/μl/day, i.c.v.) using the osmotic pumps. Four weeks after the beginning of infusion, we tested our hypothesis following an integrated approach, including behavioral (tests for cognitive and depressive-like alterations), biochemical and immunohistochemical analyses. Everolimus (i) showed higher stability than rapamycin at 37 °C, (ii) poorly crossed the blood-brain barrier after i.p. injection, (iii) was slowly metabolized in the brain due to a longer t1/2 in the brain compared to blood, and (iv) was more effective in the CNS when administered centrally compared to a peripheral route. Moreover, the everolimus-induced mTOR inhibition reduced human APP/Aβ and human tau levels and improved cognitive function and depressive-like phenotype in the 3 × Tg-AD mice. The intrathecal infusion of everolimus may be effective to treat early stages of AD-pathology through a short and cyclic administration regimen, with short-term outcomes and a low impact on peripheral organs.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Clinical and Experimental Medicine, Medical School, University of Foggia, 71100 Foggia, Italy.
| | - Alessandro Magini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Alice Polchi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Lorenzo Pace
- Department of Clinical and Experimental Medicine, Medical School, University of Foggia, 71100 Foggia, Italy
| | - Michele Angelo Lavecchia
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Rosanna Bronzuoli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Loredana Ruggeri
- Division of Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, 06132 Perugia, Italy
| | - Maria Pia Gentileschi
- UOSD SAFU, RiDAIT Dept, The Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Federico De Marco
- UOSD SAFU, RiDAIT Dept, The Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy
| | - Diego Dolcetta
- UOSD SAFU, RiDAIT Dept, The Regina Elena National Cancer Institute, 00144 Rome, Italy.
| |
Collapse
|
14
|
Hansen HS, Vana V. Non-endocannabinoid N-acylethanolamines and 2-monoacylglycerols in the intestine. Br J Pharmacol 2018; 176:1443-1454. [PMID: 29473944 DOI: 10.1111/bph.14175] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/23/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
This review focuses on recent findings of the physiological and pharmacological role of non-endocannabinoid N-acylethanolamines (NAEs) and 2-monoacylglycerols (2-MAGs) in the intestine and their involvement in the gut-brain signalling. Dietary fat suppresses food intake, and much research concerns the known gut peptides, for example, glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK). NAEs and 2-MAGs represent another class of local gut signals most probably involved in the regulation of food intake. We discuss the putative biosynthetic pathways and targets of NAEs in the intestine as well as their anorectic role and changes in intestinal levels depending on the dietary status. NAEs can activate the transcription factor PPARα, but studies to evaluate the role of endogenous NAEs are generally lacking. Finally, we review the role of diet-derived 2-MAGs in the secretion of anorectic gut peptides via activation of GPR119. Both PPARα and GPR119 have potential as pharmacological targets for the treatment of obesity and the former for treatment of intestinal inflammation. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Harald S Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Vasiliki Vana
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Costa A, Cristiano C, Cassano T, Gallelli CA, Gaetani S, Ghelardini C, Blandina P, Calignano A, Passani MB, Provensi G. Histamine-deficient mice do not respond to the antidepressant-like effects of oleoylethanolamide. Neuropharmacology 2018; 135:234-241. [PMID: 29596898 DOI: 10.1016/j.neuropharm.2018.03.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 11/27/2022]
Abstract
It has been suggested that the bioactive lipid mediator oleoylethanolamide (OEA), a potent agonist of the peroxisome proliferator-activated receptor-alpha (PPAR-α) possesses anti-depressant-like effects in several preclinical models. We recently demonstrated that several of OEA's behavioural actions require the integrity of the brain histaminergic system, and that an intact histaminergic neurotransmission is specifically required for selective serotonin re-uptake inhibitors to exert their anti-depressant-like effect. The purpose of our study was to test if OEA requires the integrity of the histaminergic neurotransmission to exert its antidepressant-like effects. Immobility time in the tail suspension test was measured to assess OEA's potential (10 mg/kg i.p.) as an antidepressant drug in histidine decarboxylase null (HDC-/-) mice and HDC+/+ littermates, as well as in PPAR-α+/+ and PPAR-α-/- mice. CREB phosphorylation was evaluated using Western blot analysis in hippocampal and cortical homogenates, as pCREB is considered partially responsible for the efficacy of antidepressants. Serotonin release from ventral hippocampi of HDC+/+ and HDC-/- mice was measured with in-vivo microdialysis, following OEA administration. OEA decreased immobility time and increased brain pCREB levels in HDC+/+ mice, whereas it was ineffective in HDC-/- mice. Comparable results were obtained in PPAR-α+/+ and PPAR-α-/- mice. Microdialysis revealed a dysregulation of serotonin release induced by OEA in HDC-/- mice. Our observations corroborate our hypothesis that brain histamine and signals transmitted by OEA interact to elaborate appropriate behaviours and may be the basis for the efficacy of OEA as an antidepressant-like compound.
Collapse
Affiliation(s)
- Alessia Costa
- Dipartimento di Neurofarba Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze (I), Italy
| | - Claudia Cristiano
- Dipartimento di Farmacia, Scuola di Medicina, Universitá di Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli (I), Italy
| | - Tommaso Cassano
- Dipartimento di Medicina Clinica e Sperimentale Universitá di Foggia, Via Luigi Pinto 1, 71122 Foggia (I), Italy
| | - Cristina Anna Gallelli
- Dipartmento di Fisiologia e Farmacologia "V. Erspamer", Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185, Roma (I), Italy
| | - Silvana Gaetani
- Dipartmento di Fisiologia e Farmacologia "V. Erspamer", Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185, Roma (I), Italy
| | - Carla Ghelardini
- Dipartimento di Neurofarba Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze (I), Italy
| | - Patrizio Blandina
- Dipartimento di Neurofarba Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze (I), Italy
| | - Antonio Calignano
- Dipartimento di Farmacia, Scuola di Medicina, Universitá di Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli (I), Italy
| | - M Beatrice Passani
- Dipartimento di Scienze della Salute Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Gustavo Provensi
- Dipartimento di Neurofarba Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze (I), Italy
| |
Collapse
|
16
|
Abstract
Hypothalamic integration of gastrointestinal and adipose tissue-derived hormones serves as a key element of neuroendocrine control of food intake. Leptin, adiponectin, oleoylethanolamide, cholecystokinin, and ghrelin, to name a few, are in a constant "cross talk" with the feeding-related brain circuits that encompass hypothalamic populations synthesizing anorexigens (melanocortins, CART, oxytocin) and orexigens (Agouti-related protein, neuropeptide Y, orexins). While this integrated neuroendocrine circuit successfully ensures that enough energy is acquired, it does not seem to be equally efficient in preventing excessive energy intake, especially in the obesogenic environment in which highly caloric and palatable food is constantly available. The current review presents an overview of intricate mechanisms underlying hypothalamic integration of energy balance-related peripheral endocrine input. We discuss vulnerabilities and maladaptive neuroregulatory processes, including changes in hypothalamic neuronal plasticity that propel overeating despite negative consequences.
Collapse
|
17
|
Circulating Endocannabinoids: From Whence Do They Come and Where are They Going? Neuropsychopharmacology 2018; 43:155-172. [PMID: 28653665 PMCID: PMC5719092 DOI: 10.1038/npp.2017.130] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/29/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022]
Abstract
The goal of this review is to summarize studies in which concentrations of circulating endocannabinoids in humans have been examined in relationship to physiological measurements and pathological status. The roles of endocannabinoids in the regulation of energy intake and storage have been well studied and the data obtained consistently support the hypothesis that endocannabinoid signaling is associated with increased consumption and storage of energy. Physical exercise mobilizes endocannabinoids, which could contribute to refilling of energy stores and also to the analgesic and mood-elevating effects of exercise. Circulating concentrations of 2-arachidonoylglycerol are very significantly circadian and dysregulated when sleep is disrupted. Other conditions under which circulating endocannabinoids are altered include inflammation and pain. A second important role for endocannabinoid signaling is to restore homeostasis following stress. Circulating endocannabinoids are stress-responsive and there is evidence that their concentrations are altered in disorders associated with excessive stress, including post-traumatic stress disorder. Although determination of circulating endocannabinoids can provide important information about the state of endocannabinoid signaling and thus allow for hypotheses to be defined and tested, the large number of physiological factors that contribute to their circulating concentrations makes it difficult to use them in isolation as a biomarker for a specific disorder.
Collapse
|