1
|
Sánchez ML, Mangas A, Coveñas R. Glioma and Peptidergic Systems: Oncogenic and Anticancer Peptides. Int J Mol Sci 2024; 25:7990. [PMID: 39063232 PMCID: PMC11277022 DOI: 10.3390/ijms25147990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Glioma cells overexpress different peptide receptors that are useful for research, diagnosis, management, and treatment of the disease. Oncogenic peptides favor the proliferation, migration, and invasion of glioma cells, as well as angiogenesis, whereas anticancer peptides exert antiproliferative, antimigration, and anti-angiogenic effects against gliomas. Other peptides exert a dual effect on gliomas, that is, both proliferative and antiproliferative actions. Peptidergic systems are therapeutic targets, as peptide receptor antagonists/peptides or peptide receptor agonists can be administered to treat gliomas. Other anticancer strategies exerting beneficial effects against gliomas are discussed herein, and future research lines to be developed for gliomas are also suggested. Despite the large amount of data supporting the involvement of peptides in glioma progression, no anticancer drugs targeting peptidergic systems are currently available in clinical practice to treat gliomas.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Arturo Mangas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
- Grupo GIR USAL-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Gautam SK, Dalal V, Sajja BR, Gupta S, Gulati M, Dwivedi NV, Aithal A, Cox JL, Rachagani S, Liu Y, Chung V, Salgia R, Batra SK, Jain M. Endothelin-axis antagonism enhances tumor perfusion in pancreatic cancer. Cancer Lett 2022; 544:215801. [PMID: 35732216 PMCID: PMC10198578 DOI: 10.1016/j.canlet.2022.215801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022]
Abstract
Delivery of therapeutic agents in pancreatic cancer (PC) is impaired due to its hypovascular and desmoplastic tumor microenvironment. The Endothelin (ET)-axis is the major regulator of vasomotor tone under physiological conditions and is highly upregulated in multiple cancers. We investigated the effect of dual endothelin receptor antagonist bosentan on perfusion and macromolecular transport in a PC cell-fibroblast co-implantation tumor model using Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI). Following bosentan treatment, the contrast enhancement ratio and wash-in rates in tumors were two- and nine times higher, respectively, compared to the controls, whereas the time to peak was significantly shorter (7.29 ± 1.29 min v/s 22.08 ± 5.88 min; p = 0.04). Importantly, these effects were tumor selective as the magnitudes of change for these parameters were much lower in muscles. Bosentan treatment also reduced desmoplasia and improved intratumoral distribution of high molecular weight FITC-dextran. Overall, these findings support that targeting the ET-axis can serve as a potential strategy to selectively enhance tumor perfusion and improve the delivery of therapeutic agents in pancreatic tumors.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vipin Dalal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Balasrinivasa R Sajja
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Suprit Gupta
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nidhi V Dwivedi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vincent Chung
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
3
|
Qu L, Zhang X, Wang J, Zhou H, Hou T, Wei L, Xu F, Liang X. Phenotypic assessment and ligand screening of ETA/ETB receptors with label-free dynamic mass redistribution assay. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:937-950. [PMID: 31781785 DOI: 10.1007/s00210-019-01756-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/23/2019] [Indexed: 01/16/2023]
Abstract
Endothelin receptors, consisting of two subtypes, ETA and ETB, are expressed in various tissues and widely regulate cardiovascular systems. The two receptors show distinct biological characteristics and are involved in different downstream pathways. Hence, to evaluate the ETA and ETB receptors on the same platform is helpful to display their pharmacological features. In this study, we developed a label-free dynamic mass redistribution (DMR) assay to investigate the phenotypic features of the ETA and ETB receptors in native cell lines. Meanwhile, specific agonists and antagonists were investigated for their pharmacological parameters. Results indicated that the DMR response of endothelin 1 (ET-1, an endogenous ETA/ETB agonist) was cell line dependent on ETA receptors and this ligand generated a biphasic dose-response curve in SH-SY5Y as well as PC3 cell lines. ET-1 and IRL 1620 (an ETB agonist) showed different DMR responses in U251 cells. IC50 values of antagonists were consistent with the Ki values previously reported. Furthermore, a list of compounds was screened on the ETA and ETB receptor models established by the high-throughput DMR assays. This study demonstrated that the DMR assay had great potential in the phenotypic-based investigation and ligand screening of GPCRs.
Collapse
Affiliation(s)
- Lala Qu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiuli Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, China.
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| | - Jixia Wang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Han Zhou
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Hou
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lai Wei
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fangfang Xu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
| |
Collapse
|
4
|
Zhang B, Wang H, Jiang T, Jin K, Luo Z, Shi W, Mei H, Wang H, Hu Y, Pang Z, Jiang X. Cyclopamine treatment disrupts extracellular matrix and alleviates solid stress to improve nanomedicine delivery for pancreatic cancer. J Drug Target 2018. [PMID: 29533111 DOI: 10.1080/1061186x.2018.1452243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As one of the most intractable tumours, pancreatic ductal adenocarcinoma (PDA) has a dense extracellular matrix (ECM) which could increase solid stress within tumours to compress tumour vessels, reduce tumour perfusion and compromise nanomedicine delivery for PDA. Thus, alleviating solid stress represents a potential therapeutic target for PDA treatment. In this study, cyclopamine, a special inhibitor of the hedgehog signalling pathway which contributes a lot to ECM formation of PDA, was exploited to alleviate solid stress and improve nanomedicine delivery to PDA. Results demonstrated that cyclopamine successfully disrupted ECM and lowered solid stress within PDA, which increased functional tumour vessels and resulted in enhanced tumour perfusion as well as improved tumour nanomedicine delivery in PDA-bearing animal models. Therefore, solid stress within PDA represents a new therapeutic target for PDA treatment.
Collapse
Affiliation(s)
- Bo Zhang
- a Institute of Hematology , Union Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan , China
| | - Honglan Wang
- a Institute of Hematology , Union Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan , China
| | - Ting Jiang
- a Institute of Hematology , Union Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan , China
| | - Kai Jin
- b School of Pharmacy , Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai , China
| | - Zimiao Luo
- b School of Pharmacy , Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai , China
| | - Wei Shi
- a Institute of Hematology , Union Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan , China
| | - Heng Mei
- a Institute of Hematology , Union Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan , China
| | - Huafang Wang
- a Institute of Hematology , Union Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan , China
| | - Yu Hu
- a Institute of Hematology , Union Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan , China
| | - Zhiqing Pang
- b School of Pharmacy , Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai , China
| | - Xinguo Jiang
- b School of Pharmacy , Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai , China
| |
Collapse
|