1
|
Maisto N, Mango D. Nose to brain strategy coupled to nano vesicular system for natural products delivery: Focus on synaptic plasticity in Alzheimer's disease. J Pharm Anal 2024; 14:101057. [PMID: 39802402 PMCID: PMC11718335 DOI: 10.1016/j.jpha.2024.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/28/2024] [Accepted: 07/30/2024] [Indexed: 01/16/2025] Open
Abstract
A wide number of natural molecules demonstrated neuroprotective effects on synaptic plasticity defects induced by amyloid-β (Aβ) in ex vivo and in vivo Alzheimer's disease (AD) models, suggesting a possible use in the treatment of this neurodegenerative disorder. However, several compounds, administered parenterally and orally, are unable to reach the brain due to the presence of the blood-brain barrier (BBB) which prevents the passage of external substances, such as proteins, peptides, or phytocompounds, representing a limit to the development of treatment for neurodegenerative diseases, such as AD. The combination of nano vesicular systems, as colloidal systems, and nose to brain (NtB) delivery depicts a new nanotechnological strategy to overtake this limit and to develop new treatment approaches for brain diseases, including the use of natural molecules in combination therapy for AD. Herein, we will provide an updated overview, examining the literature of the last 20 years and using specific keywords that provide evidence on natural products with the ability to restore synaptic plasticity alterations in AD models, and the possible application using safe and non-invasive strategies focusing on nano vesicular systems for NtB delivery.
Collapse
Affiliation(s)
- Nunzia Maisto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, 00185, Italy
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, 00161, Italy
| | - Dalila Mango
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, 00161, Italy
- School of Pharmacy, Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| |
Collapse
|
2
|
Zhang Y, Dong D, Zhang J, Cheng K, Zhen F, Li M, Chen B. Pathology and physiology of acid-sensitive ion channels in the bladder. Heliyon 2024; 10:e38031. [PMID: 39347393 PMCID: PMC11437851 DOI: 10.1016/j.heliyon.2024.e38031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/08/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Acid-sensitive ion channels (ASICs) are sodium-permeable channels activated by extracellular acidification. They can be activated and trigger the inward flow of Na+ when the extracellular environment is acidic, leading to membrane depolarization and thus inducing action potentials in neurons. There are four ASIC genes in mammals (ASIC1-4). ASIC is widely expressed in humans. It is closely associated with pain, neurological disorders, multiple sclerosis, epilepsy, migraines, and many other disorders. Bladder pain syndrome/interstitial cystitis (BPS/IC) is a specific syndrome characterized by bladder pain. Recent studies have shown that ASICs are closely associated with the development of BPS/IC. A study revealed that ASIC levels are significantly elevated in a BPS/IC model. Additionally, researchers have reported differential changes in ASICs in the bladders of patients with neurogenic lower urinary tract dysfunction (NLUTD) caused by spinal cord injury (SCI). In this review, we summarize the structure and physiological functions of ASICs and focus on the mechanisms by which ASICs mediate bladder disease.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Di Dong
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jialong Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Kang Cheng
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fang Zhen
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Translational Medicine, Jiangsu University, China
| |
Collapse
|
3
|
Sinha JK, Trisal A, Ghosh S, Gupta S, Singh KK, Han SS, Mahapatra M, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Bhaskar R, Mishra PC, Jha SK, Jha NK, Singh AK. Psychedelics for alzheimer's disease-related dementia: Unveiling therapeutic possibilities and pathways. Ageing Res Rev 2024; 96:102211. [PMID: 38307424 DOI: 10.1016/j.arr.2024.102211] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Psychedelics have traditionally been used for spiritual and recreational purposes, but recent developments in psychotherapy have highlighted their potential as therapeutic agents. These compounds, which act as potent 5-hydroxytryptamine (5HT) agonists, have been recognized for their ability to enhance neural plasticity through the activation of the serotoninergic and glutamatergic systems. However, the implications of these findings for the treatment of neurodegenerative disorders, particularly dementia, have not been fully explored. In recent years, studies have revealed the modulatory and beneficial effects of psychedelics in the context of dementia, specifically Alzheimer's disease (AD)-related dementia, which lacks a definitive cure. Psychedelics such as N,N-dimethyltryptamine (DMT), lysergic acid diethylamide (LSD), and Psilocybin have shown potential in mitigating the effects of this debilitating disease. These compounds not only target neurotransmitter imbalances but also act at the molecular level to modulate signalling pathways in AD, including the brain-derived neurotrophic factor signalling pathway and the subsequent activation of mammalian target of rapamycin and other autophagy regulators. Therefore, the controlled and dose-dependent administration of psychedelics represents a novel therapeutic intervention worth exploring and considering for the development of drugs for the treatment of AD-related dementia. In this article, we critically examined the literature that sheds light on the therapeutic possibilities and pathways of psychedelics for AD-related dementia. While this emerging field of research holds great promise, further studies are necessary to elucidate the long-term safety, efficacy, and optimal treatment protocols. Ultimately, the integration of psychedelics into the current treatment paradigm may provide a transformative approach for addressing the unmet needs of individuals living with AD-related dementia and their caregivers.
Collapse
Affiliation(s)
| | - Anchal Trisal
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune, Maharashtra 411057, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, the Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, the Republic of Korea
| | | | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, the Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, the Republic of Korea.
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
4
|
Ng AN, Salter EW, Georgiou J, Bortolotto ZA, Collingridge GL. Amyloid-β 1-42 oligomers enhance mGlu 5R-dependent synaptic weakening via NMDAR activation and complement C5aR1 signaling. iScience 2023; 26:108412. [PMID: 38053635 PMCID: PMC10694656 DOI: 10.1016/j.isci.2023.108412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/13/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Synaptic weakening and loss are well-correlated with the pathology of Alzheimer's disease (AD). Oligomeric amyloid beta (oAβ) is considered a major synaptotoxic trigger for AD. Recent studies have implicated hyperactivation of the complement cascade as the driving force for loss of synapses caused by oAβ. However, the initial synaptic cues that trigger pathological complement activity remain elusive. Here, we examined a form of synaptic long-term depression (LTD) mediated by metabotropic glutamate receptors (mGluRs) that is disrupted in rodent models of AD. Exogenous application of oAβ (1-42) to mouse hippocampal slices enhanced the magnitude of mGlu subtype 5 receptor (mGlu5R)-dependent LTD. We found that the enhanced synaptic weakening occurred via both N-methyl-D-aspartate receptors (NMDARs) and complement C5aR1 signaling. Our findings reveal a mechanistic interaction between mGlu5R, NMDARs, and the complement system in aberrant synaptic weakening induced by oAβ, which could represent an early trigger of synaptic loss and degeneration in AD.
Collapse
Affiliation(s)
- Ai Na Ng
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Eric W. Salter
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Zuner A. Bortolotto
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Graham L. Collingridge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| |
Collapse
|
5
|
Mango D, Ledonne A. Updates on the Physiopathology of Group I Metabotropic Glutamate Receptors (mGluRI)-Dependent Long-Term Depression. Cells 2023; 12:1588. [PMID: 37371058 DOI: 10.3390/cells12121588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGluRI), including mGluR1 and mGluR5 subtypes, modulate essential brain functions by affecting neuronal excitability, intracellular calcium dynamics, protein synthesis, dendritic spine formation, and synaptic transmission and plasticity. Nowadays, it is well appreciated that the mGluRI-dependent long-term depression (LTD) of glutamatergic synaptic transmission (mGluRI-LTD) is a key mechanism by which mGluRI shapes connectivity in various cerebral circuitries, directing complex brain functions and behaviors, and that it is deranged in several neurological and psychiatric illnesses, including neurodevelopmental disorders, neurodegenerative diseases, and psychopathologies. Here, we will provide an updated overview of the physiopathology of mGluRI-LTD, by describing mechanisms of induction and regulation by endogenous mGluRI interactors, as well as functional physiological implications and pathological deviations.
Collapse
Affiliation(s)
- Dalila Mango
- School of Pharmacy, University of Rome "Tor Vergata", 00133 Rome, Italy
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy
| | - Ada Ledonne
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
6
|
Cherninskyi A, Storozhuk M, Maximyuk O, Kulyk V, Krishtal O. Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors. Neurosci Bull 2023; 39:845-862. [PMID: 36445556 PMCID: PMC9707125 DOI: 10.1007/s12264-022-00986-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.
Collapse
Affiliation(s)
- Andrii Cherninskyi
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine.
| | - Maksim Storozhuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Vyacheslav Kulyk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| |
Collapse
|
7
|
Ryu IS, Kim DH, Cho HJ, Ryu JH. The role of microRNA-485 in neurodegenerative diseases. Rev Neurosci 2023; 34:49-62. [PMID: 35793556 DOI: 10.1515/revneuro-2022-0039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023]
Abstract
Neurodegenerative diseases (NDDs) are age-related disorders characterized by progressive neurodegeneration and neuronal cell loss in the central nervous system. Neuropathological conditions such as the accumulation of misfolded proteins can cause neuroinflammation, apoptosis, and synaptic dysfunction in the brain, leading to the development of NDDs including Alzheimer's disease (AD) and Parkinson's disease (PD). MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate gene expression post-transcriptionally via RNA interference. Recently, some studies have reported that some miRNAs play an important role in the development of NDDs by regulating target gene expression. MiRNA-485 (miR-485) is a highly conserved brain-enriched miRNA. Accumulating clinical reports suggest that dysregulated miR-485 may be involved in the pathogenesis of AD and PD. Emerging studies have also shown that miR-485 plays a novel role in the regulation of neuroinflammation, apoptosis, and synaptic function in the pathogenesis of NDDs. In this review, we introduce the biological characteristics of miR-485, provide clinical evidence of the dysregulated miR-485 in NDDs, novel roles of miR-485 in neuropathological events, and discuss the potential of targeting miR-485 as a diagnostic and therapeutic marker for NDDs.
Collapse
Affiliation(s)
- In Soo Ryu
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Dae Hoon Kim
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, South Korea
| | - Jin-Hyeob Ryu
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea.,Biorchestra Co. Ltd., 245 Main St, Cambridge, MA 02142, USA
| |
Collapse
|
8
|
Zhou RP, Liang HY, Hu WR, Ding J, Li SF, Chen Y, Zhao YJ, Lu C, Chen FH, Hu W. Modulators of ASIC1a and its potential as a therapeutic target for age-related diseases. Ageing Res Rev 2023; 83:101785. [PMID: 36371015 DOI: 10.1016/j.arr.2022.101785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Age-related diseases have become more common with the advancing age of the worldwide population. Such diseases involve multiple organs, with tissue degeneration and cellular apoptosis. To date, there is a general lack of effective drugs for treatment of most age-related diseases and there is therefore an urgent need to identify novel drug targets for improved treatment. Acid-sensing ion channel 1a (ASIC1a) is a degenerin/epithelial sodium channel family member, which is activated in an acidic environment to regulate pathophysiological processes such as acidosis, inflammation, hypoxia, and ischemia. A large body of evidence suggests that ASIC1a plays an important role in the development of age-related diseases (e.g., stroke, rheumatoid arthritis, Huntington's disease, and Parkinson's disease.). Herein we present: 1) a review of ASIC1a channel properties, distribution, and physiological function; 2) a summary of the pharmacological properties of ASIC1a; 3) and a consideration of ASIC1a as a potential therapeutic target for treatment of age-related disease.
Collapse
Affiliation(s)
- Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Hong-Yu Liang
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Wei-Rong Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jie Ding
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Chao Lu
- First Affiliated Hospital, Anhui University of Science & Technology, Huainan 232001, China
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
9
|
Sivils A, Yang F, Wang JQ, Chu XP. Acid-Sensing Ion Channel 2: Function and Modulation. MEMBRANES 2022; 12:membranes12020113. [PMID: 35207035 PMCID: PMC8880099 DOI: 10.3390/membranes12020113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/08/2023]
Abstract
Acid-sensing ion channels (ASICs) have an important influence on human physiology and pathology. They are members of the degenerin/epithelial sodium channel family. Four genes encode at least six subunits, which combine to form a variety of homotrimers and heterotrimers. Of these, ASIC1a homotrimers and ASIC1a/2 heterotrimers are most widely expressed in the central nervous system (CNS). Investigations into the function of ASIC1a in the CNS have revealed a wealth of information, culminating in multiple contemporary reviews. The lesser-studied ASIC2 subunits are in need of examination. This review will focus on ASIC2 in health and disease, with discussions of its role in modulating ASIC function, synaptic targeting, cardiovascular responses, and pharmacology, while exploring evidence of its influence in pathologies such as ischemic brain injury, multiple sclerosis, epilepsy, migraines, drug addiction, etc. This information substantiates the ASIC2 protein as a potential therapeutic target for various neurological, psychological, and cerebrovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Xiang-Ping Chu
- Correspondence: ; Tel.: +1-816-235-2248; Fax: +1-816-235-6517
| |
Collapse
|
10
|
Mango D, Nisticò R. Neurodegenerative Disease: What Potential Therapeutic Role of Acid-Sensing Ion Channels? Front Cell Neurosci 2021; 15:730641. [PMID: 34690702 PMCID: PMC8531221 DOI: 10.3389/fncel.2021.730641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Acidic pH shift occurs in many physiological neuronal activities such as synaptic transmission and synaptic plasticity but also represents a characteristic feature of many pathological conditions including inflammation and ischemia. Neuroinflammation is a complex process that occurs in various neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and Huntington’s disease. Acid-sensing ion channels (ASICs) represent a widely expressed pH sensor in the brain that play a key role in neuroinflammation. On this basis, acid-sensing ion channel blockers are able to exert neuroprotective effects in different neurodegenerative diseases. In this review, we discuss the multifaceted roles of ASICs in brain physiology and pathology and highlight ASIC1a as a potential pharmacological target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dalila Mango
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.,School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.,School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
11
|
Ruan N, Tribble J, Peterson AM, Jiang Q, Wang JQ, Chu XP. Acid-Sensing Ion Channels and Mechanosensation. Int J Mol Sci 2021; 22:ijms22094810. [PMID: 34062742 PMCID: PMC8125064 DOI: 10.3390/ijms22094810] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are mainly proton-gated cation channels that are activated by pH drops and nonproton ligands. They are part of the degenerin/epithelial sodium channel superfamily due to their sodium permeability. Predominantly expressed in the central nervous system, ASICs are involved in synaptic plasticity, learning/memory, and fear conditioning. These channels have also been implicated in multiple disease conditions, including ischemic brain injury, multiple sclerosis, Alzheimer’s disease, and drug addiction. Recent research has illustrated the involvement of ASICs in mechanosensation. Mechanosensation is a form of signal transduction in which mechanical forces are converted into neuronal signals. Specific mechanosensitive functions have been elucidated in functional ASIC1a, ASIC1b, ASIC2a, and ASIC3. The implications of mechanosensation in ASICs indicate their subsequent involvement in functions such as maintaining blood pressure, modulating the gastrointestinal function, and bladder micturition, and contributing to nociception. The underlying mechanism of ASIC mechanosensation is the tether-gate model, which uses a gating-spring mechanism to activate ASIC responses. Further understanding of the mechanism of ASICs will help in treatments for ASIC-related pathologies. Along with the well-known chemosensitive functions of ASICs, emerging evidence has revealed that mechanosensitive functions of ASICs are important for maintaining homeostasis and contribute to various disease conditions.
Collapse
|
12
|
Peng Z, Kellenberger S. Hydrogen Sulfide Upregulates Acid-sensing Ion Channels via the MAPK-Erk1/2 Signaling Pathway. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab007. [PMID: 35330812 PMCID: PMC8833866 DOI: 10.1093/function/zqab007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) emerged recently as a new gasotransmitter and was shown to exert cellular effects by interacting with proteins, among them many ion channels. Acid-sensing ion channels (ASICs) are neuronal voltage-insensitive Na+ channels activated by extracellular protons. ASICs are involved in many physiological and pathological processes, such as fear conditioning, pain sensation, and seizures. We characterize here the regulation of ASICs by H2S. In transfected mammalian cells, the H2S donor NaHS increased the acid-induced ASIC1a peak currents in a time- and concentration-dependent manner. Similarly, NaHS potentiated also the acid-induced currents of ASIC1b, ASIC2a, and ASIC3. An upregulation induced by the H2S donors NaHS and GYY4137 was also observed with the endogenous ASIC currents of cultured hypothalamus neurons. In parallel with the effect on function, the total and plasma membrane expression of ASIC1a was increased by GYY4137, as determined in cultured cortical neurons. H2S also enhanced the phosphorylation of the extracellular signal-regulated kinase (pErk1/2), which belongs to the family of mitogen-activated protein kinases (MAPKs). Pharmacological blockade of the MAPK signaling pathway prevented the GYY4137-induced increase of ASIC function and expression, indicating that this pathway is required for ASIC regulation by H2S. Our study demonstrates that H2S regulates ASIC expression and function, and identifies the involved signaling mechanism. Since H2S shares several roles with ASICs, as for example facilitation of learning and memory, protection during seizure activity, and modulation of nociception, it may be possible that H2S exerts some of these effects via a regulation of ASIC function.
Collapse
Affiliation(s)
- Zhong Peng
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland,Address correspondence to S.K. (e-mail: )
| |
Collapse
|
13
|
Gobetto MN, González-Inchauspe C, Uchitel OD. Histamine and Corticosterone Modulate Acid Sensing Ion Channels (ASICs) Dependent Long-term Potentiation at the Mouse Anterior Cingulate Cortex. Neuroscience 2021; 460:145-160. [PMID: 33493620 DOI: 10.1016/j.neuroscience.2021.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022]
Abstract
Increase in proton concentration [H+] or decrease in local and global extracellular pH occurs in both physiological and pathological conditions. Acid-sensing ion channels (ASICs), belonging to the ENaC/Deg superfamily, play an important role in signal transduction as proton sensor. ASICs and in particular ASIC1a (one of the six ASICs subunits) which is permeable to Ca2+, are involved in many physiological processes including synaptic plasticity and neurodegenerative diseases. Activity-dependent long-term potentiation (LTP) is a major type of long-lasting synaptic plasticity in the CNS, associated with learning, memory, development, fear and persistent pain. Neurons in the anterior cingulate cortex (ACC) play critical roles in pain perception and chronic pain and express ASIC1a channels. During synaptic transmission, acidification of the synaptic cleft presumably due to the co-release of neurotransmitter and H+ from synaptic vesicles activates postsynaptic ASIC1a channels in ACC of mice. This generates ASIC1a synaptic currents that add to the glutamatergic excitatory postsynaptic currents (EPSCs). Here we report that modulators like histamine and corticosterone, acting through ASIC1a regulate synaptic plasticity, reducing the threshold for LTP induction of glutamatergic EPSCs. Our findings suggest a new role for ASIC1a mediating the neuromodulator action of histamine and corticosterone regulating specific forms of synaptic plasticity in the mouse ACC.
Collapse
Affiliation(s)
- María Natalia Gobetto
- Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlota González-Inchauspe
- Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Osvaldo D Uchitel
- Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
14
|
Rychlik M, Mlyniec K. Zinc-mediated Neurotransmission in Alzheimer's Disease: A Potential Role of the GPR39 in Dementia. Curr Neuropharmacol 2020; 18:2-13. [PMID: 31272355 PMCID: PMC7327932 DOI: 10.2174/1570159x17666190704153807] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 01/19/2023] Open
Abstract
With more people reaching an advanced age in modern society, there is a growing need for strategies to slow down age-related neuropathology and loss of cognitive functions, which are a hallmark of Alzheimer's disease. Neuroprotective drugs and candidate drug compounds target one or more processes involved in the neurodegenerative cascade, such as excitotoxicity, oxidative stress, misfolded protein aggregation and/or ion dyshomeostasis. A growing body of research shows that a G-protein coupled zinc (Zn2+) receptor (GPR39) can modulate the abovementioned processes. Zn2+ itself has a diverse activity profile at the synapse, and by binding to numerous receptors, it plays an important role in neurotransmission. However, Zn2+ is also necessary for the formation of toxic oligomeric forms of amyloid beta, which underlie the pathology of Alzheimer’s disease. Furthermore, the binding of Zn2+ by amyloid beta causes a disruption of zincergic signaling, and recent studies point to GPR39 and its intracellular targets being affected by amyloid pathology. In this review, we present neurobiological findings related to Zn2+ and GPR39, focusing on its signaling pathways, neural plasticity, interactions with other neurotransmission systems, as well as on the effects of pathophysiological changes observed in Alzheimer's disease on GPR39 function. Direct targeting of the GPR39 might be a promising strategy for the pharmacotherapy of zincergic dyshomeostasis observed in Alzheimer’s disease. The information presented in this article will hopefully fuel further research into the role of GPR39 in neurodegeneration and help in identifying novel therapeutic targets for dementia.
Collapse
Affiliation(s)
- Michal Rychlik
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| |
Collapse
|
15
|
Pannaccione A, Piccialli I, Secondo A, Ciccone R, Molinaro P, Boscia F, Annunziato L. The Na +/Ca 2+exchanger in Alzheimer's disease. Cell Calcium 2020; 87:102190. [PMID: 32199208 DOI: 10.1016/j.ceca.2020.102190] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 12/19/2022]
Abstract
As a pivotal player in regulating sodium (Na+) and calcium (Ca2+) homeostasis and signalling in excitable cells, the Na+/Ca2+ exchanger (NCX) is involved in many neurodegenerative disorders in which an imbalance of intracellular Ca2+ and/or Na+ concentrations occurs, including Alzheimer's disease (AD). Although NCX has been mainly implicated in neuroprotective mechanisms counteracting Ca2+ dysregulation, several studies highlighted its role in the neuronal responses to intracellular Na+ elevation occurring in several pathophysiological conditions. Since the alteration of Na+ and Ca2+ homeostasis significantly contributes to synaptic dysfunction and neuronal loss in AD, it is of crucial importance to analyze the contribution of NCX isoforms in the homeostatic responses at neuronal and synaptic levels. Some studies found that an increase of NCX activity in brains of AD patients was correlated with neuronal survival, while other research groups found that protein levels of two NCX subtypes, NCX2 and NCX3, were modulated in parietal cortex of late stage AD brains. In particular, NCX2 positive synaptic terminals were increased in AD cohort while the number of NCX3 positive terminals were reduced. In addition, NCX1, NCX2 and NCX3 isoforms were up-regulated in those synaptic terminals accumulating amyloid-beta (Aβ), the neurotoxic peptide responsible for AD neurodegeneration. More recently, the hyperfunction of a specific NCX subtype, NCX3, has been shown to delay endoplasmic reticulum stress and apoptotic neuronal death in hippocampal neurons exposed to Aβ insult. Despite some issues about the functional role of NCX in synaptic failure and neuronal loss require further studies, these findings highlight the putative neuroprotective role of NCX in AD and open new strategies to develop new druggable targets for AD therapy.
Collapse
Affiliation(s)
- Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy.
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | |
Collapse
|
16
|
Mango D, Nisticò R. Role of ASIC1a in Normal and Pathological Synaptic Plasticity. Rev Physiol Biochem Pharmacol 2020; 177:83-100. [PMID: 32789788 DOI: 10.1007/112_2020_45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acid-sensing ion channels (ASICs), members of the degenerin/epithelial Na+ channel superfamily, are broadly distributed in the mammalian nervous system where they play important roles in a variety of physiological processes, including neurotransmission and memory-related behaviors. In the last few years, we and others have investigated the role of ASIC1a in different forms of synaptic plasticity especially in the CA1 area of the hippocampus. This review summarizes the latest research linking ASIC1a to synaptic function either in physiological or pathological conditions. A better understanding of how these channels are regulated in brain circuitries relevant to synaptic plasticity and memory may offer novel targets for pharmacological intervention in neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Dalila Mango
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.
| | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
- School of Pharmacy, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
17
|
Mango D, Saidi A, Cisale GY, Feligioni M, Corbo M, Nisticò R. Targeting Synaptic Plasticity in Experimental Models of Alzheimer's Disease. Front Pharmacol 2019; 10:778. [PMID: 31379566 PMCID: PMC6646937 DOI: 10.3389/fphar.2019.00778] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/17/2019] [Indexed: 12/28/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) of hippocampal synaptic transmission represent the principal experimental models underlying learning and memory. Alterations of synaptic plasticity are observed in several neurodegenerative disorders, including Alzheimer’s disease (AD). Indeed, synaptic dysfunction is an early event in AD, making it an attractive therapeutic target for pharmaceutical intervention. To date, intensive investigations have characterized hippocampal synaptic transmission, LTP, and LTD in in vitro and in murine models of AD. In this review, we describe the synaptic alterations across the main AD models generated so far. We then examine the clinical perspective of LTP/LTD studies and discuss the limitations of non-clinical models and how to improve their predictive validity in the drug discovery process.
Collapse
Affiliation(s)
- Dalila Mango
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| | - Amira Saidi
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| | - Giusy Ylenia Cisale
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Marco Feligioni
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.,Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - Robert Nisticò
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.,School of Pharmacy, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
18
|
Mango D, Nisticò R. Acid-Sensing Ion Channel 1a Is Involved in N-Methyl D-Aspartate Receptor-Dependent Long-Term Depression in the Hippocampus. Front Pharmacol 2019; 10:555. [PMID: 31178731 PMCID: PMC6537656 DOI: 10.3389/fphar.2019.00555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/02/2019] [Indexed: 11/29/2022] Open
Abstract
Acid-sensing ion channels (ASICs), members of the degenerin/epithelial Na+ channel superfamily, are largely expressed in the mammalian nervous system. ASIC1a is highly permeable to Ca2+ and are involved in many physiological processes, including synaptic plasticity, learning, and memory. To clarify the role of ASIC1a in synaptic transmission and plasticity, we investigated N-methyl D-aspartate (NMDA) receptor-dependent long-term depression (LTD) in the CA1 region of the hippocampus. We found that: (1) ASIC1a mediates a component of ASIC1a excitatory postsynaptic currents (EPSCs); (2) ASIC1a plays a role in electrical LTD induced by LFS protocol both in P13-18 and P30-40 animals; (3) ASIC1a is involved in chemical LTD induced by brief bath application of NMDA both in P13-18 and P30-40 animals; and finally (4) a functional interaction between ASIC1a and NMDA receptors occurs during LTD. These findings suggest a new role for ASIC1a in specific forms of synaptic plasticity in the mouse hippocampus.
Collapse
Affiliation(s)
- D Mango
- Laboratory of Neuropharmacology, European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy
| | - R Nisticò
- Laboratory of Neuropharmacology, European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy.,Department of Biology, School of Pharmacy, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
19
|
Bektur E, Şahin E, Ceyhan E, Donmez DB, Canbek M, Baycu C, Can OD. Beneficial effect of mirtazapine on diabetes-induced hyperalgesia: involvement of TRPV1 and ASIC1 channels in the spinal cord and dorsal root ganglion. Neurol Res 2019; 41:544-553. [PMID: 30822229 DOI: 10.1080/01616412.2019.1580462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ezgi Bektur
- Histology and Embryology Department, School of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Erhan Şahin
- Histology and Embryology Department, School of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Emre Ceyhan
- Molecular biology department, School of science, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Dilek Burukoglu Donmez
- Histology and Embryology Department, School of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Mediha Canbek
- Molecular biology department, School of science, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Cengiz Baycu
- Histology and Embryology Department, School of Medicine, Okan University, Istanbul, Turkey
| | - Ozgur Devrim Can
- Pharmacology Department, School of pharmacy, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
20
|
Alzheimer's disease: understanding homeostasis deregulation to foster development of effective therapies. Pharmacol Res 2018; 139:467-468. [PMID: 30553822 DOI: 10.1016/j.phrs.2018.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|