1
|
Begolli G, Marković I, Knežević J, Debeljak Ž. Carbohydrate sulfotransferases: a review of emerging diagnostic and prognostic applications. Biochem Med (Zagreb) 2023; 33:030503. [PMID: 37545696 PMCID: PMC10373059 DOI: 10.11613/bm.2023.030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Carbohydrate sulfotransferases (CHST) catalyse the biosynthesis of proteoglycans that enable physical interactions and signalling between different neighbouring cells in physiological and pathological states. The study aim was to provide an overview of emerging diagnostic and prognostic applications of CHST. PubMed database search was conducted using the keywords "carbohydrate sulfotransferase" together with appropriate inclusion and exclusion criteria, whereby 41 publications were selected. Additionally, 40 records on CHST genetic and biochemical properties were hand-picked from UniProt, GeneCards, InterPro, and neXtProt databases. Carbohydrate sulfotransferases have been applied mainly in diagnostics of connective tissue disorders, cancer and inflammations. The lack of CHST activity was found in congenital connective tissue disorders while CHST overexpression was detected in different malignancies. Mutations of CHST3 gene cause skeletal dysplasia, chondrodysplasia, and autosomal recessive multiple joint dislocations while increased tissue expression of CHST11, CHST12 and CHST15 is an unfavourable prognostic factor in ovarian cancer, glioblastoma and pancreatic cancer, respectively. Recently, CHST11 and CHST15 overexpression in the vascular smooth muscle cells was linked to the severe lung pathology in COVID-19 patients. Promising CHST diagnostic and prognostic applications have been described but larger clinical studies and robust analytical procedures are required for the more reliable diagnostic performance estimations.
Collapse
Affiliation(s)
- Gramos Begolli
- Clinic of medical biochemistry, University clinical center of Kosovo, Prishtina, Kosovo
| | - Ivana Marković
- Clinical institute of laboratory diagnostics, University hospital centre Osijek, Osijek, Croatia
- Faculty of medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Jelena Knežević
- Laboratory for advanced genomics, Ruđer Bošković Institute, Zagreb, Croatia
- Faculty for dental medicine and health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Željko Debeljak
- Clinical institute of laboratory diagnostics, University hospital centre Osijek, Osijek, Croatia
- Faculty of medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
2
|
Miller E, Sampson CU, Desai AA, Karnes JH. Differential drug response in pulmonary arterial hypertension: The potential for precision medicine. Pulm Circ 2023; 13:e12304. [PMID: 37927610 PMCID: PMC10621006 DOI: 10.1002/pul2.12304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare, complex, and deadly cardiopulmonary disease. It is characterized by changes in endothelial cell function and smooth muscle cell proliferation in the pulmonary arteries, causing persistent vasoconstriction, resulting in right heart hypertrophy and failure. There are multiple drug classes specific to PAH treatment, but variation between patients may impact treatment response. A small subset of patients is responsive to pulmonary vasodilators and can be treated with calcium channel blockers, which would be deleterious if prescribed to a typical PAH patient. Little is known about the underlying cause of this important difference in vasoresponsive PAH patients. Sex, race/ethnicity, and pharmacogenomics may also factor into efficacy and safety of PAH-specific drugs. Research has indicated that endothelin receptor antagonists may be more effective in women and there have been some minor differences found in certain races and ethnicities, but these findings are muddled by the impact of socioeconomic factors and a lack of representation of non-White patients in clinical trials. Genetic variants in genes such as CYP3A5, CYP2C9, PTGIS, PTGIR, GNG2, CHST3, and CHST13 may influence the efficacy and safety of certain PAH-specific drugs. PAH research faces many challenges, but there is potential for new methodologies to glean new insights into PAH development and treatment.
Collapse
Affiliation(s)
- Elise Miller
- Department of Pharmacy Practice and ScienceUniversity of Arizona R. Ken Coit College of PharmacyTucsonArizonaUSA
| | - Chinwuwanuju Ugo‐Obi Sampson
- Department of Pharmacy Practice and ScienceUniversity of Arizona R. Ken Coit College of PharmacyTucsonArizonaUSA
| | - Ankit A. Desai
- Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jason H. Karnes
- Department of Pharmacy Practice and ScienceUniversity of Arizona R. Ken Coit College of PharmacyTucsonArizonaUSA
- Department of Biomedical InformaticsVanderbilt University School of MedicineNashvilleTennesseeUSA
| |
Collapse
|
3
|
Ryanto GRT, Yorifuji K, Ikeda K, Emoto N. Chondroitin sulfate mediates liver responses to injury induced by dual endothelin receptor inhibition. Can J Physiol Pharmacol 2020; 98:618-624. [PMID: 32315540 DOI: 10.1139/cjpp-2019-0649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although dual endothelin receptor antagonists (ERAs) show great promise for treating various conditions, their propensity to induce liver injury limits their clinical usage. Inflammation and fibrosis are important processes in liver responses to injury and it has been suggested that they and dual ERA-induced liver injury are mediated by the proteoglycan component chondroitin sulfate (CS), which is synthesized by CHST3 and CHST13. In this study, we investigated whether dual ER inhibition in the liver could alter CHST3 and CHST13 expression and thus CS production and whether liver CS content could prevent inflammatory and fibrosis responses after liver injury. We observed increased CHST3 and CHST13 expression after liver injury in bile duct ligated mice and histologically confirmed abundant CS deposition in the injured liver. Moreover, treating Hep3B cells with a dual ERA mimic significantly increased CHST3 and CHST13 expression, inflammatory cytokine levels, and glycosaminoglycan deposition. Furthermore, pro-inflammatory and pro-fibrotic markers were observed after dual ERA treatment, while treatment with CS-degrading chondroitinase ABC was able to successfully reverse these phenotypes. These observations suggest that CHST3- and CHST13-induced CS production can mediate liver injury responses caused by dual ER inhibition and thus could be an alternative pathway for treating ERA-induced liver injury.
Collapse
Affiliation(s)
- Gusty Rizky Teguh Ryanto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 650-0017, Japan
| | - Kennosuke Yorifuji
- The Shinko Institute for Medical Research, Shinko Hospital, 1-4-47, Wakinohama, Chuo, Kobe 651-0072, Japan
- Department of Pharmacy, Shinko Hospital, 1-4-47, Wakinohama, Chuo, Kobe 651-0072, Japan
| | - Koji Ikeda
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 650-0017, Japan
| |
Collapse
|
4
|
Yorifuji K, Uemura Y, Horibata S, Tsuji G, Suzuki Y, Nakayama K, Hatae T, Kumagai S, Emoto N. Predictive model of bosentan-induced liver toxicity in Japanese patients with pulmonary arterial hypertension. Can J Physiol Pharmacol 2020; 98:625-628. [PMID: 32433892 DOI: 10.1139/cjpp-2019-0656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bosentan, an endothelin receptor antagonist, has been widely used as a first-line medication for the treatment of pulmonary arterial hypertension (PAH). It has been shown to improve symptoms of hypertension, exercise capacity, and hemodynamics and prolong time to clinical worsening. However, liver dysfunction is a major side effect of bosentan treatment that could hamper the optimal management of patients with PAH. Previously, we demonstrated, using drug metabolism enzymes and transporters analysis, that the carbohydrate sulfotransferase 3 (CHST3) and CHST13 alleles are significantly more frequent in patients with elevated aminotransferases during therapy with bosentan than they are in patients without liver toxicity. In addition, we constructed a pharmacogenomics model to predict bosentan-induced liver injury in patients with PAH using two single-nucleotide polymorphisms and two nongenetic factors. The purpose of the present study was to externally validate the predictive model of bosentan-induced liver toxicity in Japanese patients. We evaluated five cases of patients treated with bosentan, and one presented with liver dysfunction. We applied mutation alleles of CHST3 and CHST13, serum creatinine, and age to our model to predict liver dysfunction. The sensitivity and specificity were calculated as 100% and 50%, respectively. Considering that PAH is a rare disease, multicenter collaboration would be necessary to validate our model.
Collapse
Affiliation(s)
- Kennosuke Yorifuji
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyama-kitamachi, Higashinada, Kobe 658-8558, Japan
- The Shinko Institute for Medical Research, Shinko Hospital, 1-4-47, Wakinohama, Chuo, Kobe 651-0072, Japan
- Department of Pharmacy, Shinko Hospital, 1-4-47, Wakinohama, Chuo, Kobe 651-0072, Japan
| | - Yuko Uemura
- The Shinko Institute for Medical Research, Shinko Hospital, 1-4-47, Wakinohama, Chuo, Kobe 651-0072, Japan
| | - Shinji Horibata
- The Shinko Institute for Medical Research, Shinko Hospital, 1-4-47, Wakinohama, Chuo, Kobe 651-0072, Japan
- Department of Pharmacy, Shinko Hospital, 1-4-47, Wakinohama, Chuo, Kobe 651-0072, Japan
| | - Goh Tsuji
- The Shinko Institute for Medical Research, Shinko Hospital, 1-4-47, Wakinohama, Chuo, Kobe 651-0072, Japan
- Center for Rheumatic Diseases, Shinko Hospital, 1-4-47, Wakinohama, Chuo, Kobe 651-0072, Japan
| | - Yoko Suzuki
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyama-kitamachi, Higashinada, Kobe 658-8558, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 650-0017, Japan
| | - Kazuhiko Nakayama
- Department of Cardiovascular Medicine, Shinko Hospital, 1-4-47, Wakinohama, Chuo, Kobe 651-0072, Japan
| | - Takashi Hatae
- Education and Research Center for Clinical Pharmacy, Kobe Pharmaceutical University, 4-19-1 Motoyama-kitamachi, Higashinada, Kobe 658-8558, Japan
| | - Shunichi Kumagai
- The Shinko Institute for Medical Research, Shinko Hospital, 1-4-47, Wakinohama, Chuo, Kobe 651-0072, Japan
- Center for Rheumatic Diseases, Shinko Hospital, 1-4-47, Wakinohama, Chuo, Kobe 651-0072, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyama-kitamachi, Higashinada, Kobe 658-8558, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 650-0017, Japan
| |
Collapse
|
5
|
Abstract
Discovered in 1987 as a potent endothelial cell-derived vasoconstrictor peptide, endothelin-1 (ET-1), the predominant member of the endothelin peptide family, is now recognized as a multifunctional peptide with cytokine-like activity contributing to almost all aspects of physiology and cell function. More than 30 000 scientific articles on endothelin were published over the past 3 decades, leading to the development and subsequent regulatory approval of a new class of therapeutics-the endothelin receptor antagonists (ERAs). This article reviews the history of the discovery of endothelin and its role in genetics, physiology, and disease. Here, we summarize the main clinical trials using ERAs and discuss the role of endothelin in cardiovascular diseases such as arterial hypertension, preecclampsia, coronary atherosclerosis, myocardial infarction in the absence of obstructive coronary artery disease (MINOCA) caused by spontaneous coronary artery dissection (SCAD), Takotsubo syndrome, and heart failure. We also discuss how endothelins contributes to diabetic kidney disease and focal segmental glomerulosclerosis, pulmonary arterial hypertension, as well as cancer, immune disorders, and allograft rejection (which all involve ETA autoantibodies), and neurological diseases. The application of ERAs, dual endothelin receptor/angiotensin receptor antagonists (DARAs), selective ETB agonists, novel biologics such as receptor-targeting antibodies, or immunization against ETA receptors holds the potential to slow the progression or even reverse chronic noncommunicable diseases. Future clinical studies will show whether targeting endothelin receptors can prevent or reduce disability from disease and improve clinical outcome, quality of life, and survival in patients.
Collapse
Affiliation(s)
- Matthias Barton
- From Molecular Internal Medicine, University of Zürich, Switzerland (M.B.)
- Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan (M.Y.)
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX (M.Y.)
| |
Collapse
|
6
|
fastJT: An R package for robust and efficient feature selection for machine learning and genome-wide association studies. BMC Bioinformatics 2019; 20:333. [PMID: 31195980 PMCID: PMC6567636 DOI: 10.1186/s12859-019-2869-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 04/30/2019] [Indexed: 12/27/2022] Open
Abstract
Background Parametric feature selection methods for machine learning and association studies based on genetic data are not robust with respect to outliers or influential observations. While rank-based, distribution-free statistics offer a robust alternative to parametric methods, their practical utility can be limited, as they demand significant computational resources when analyzing high-dimensional data. For genetic studies that seek to identify variants, the hypothesis is constrained, since it is typically assumed that the effect of the genotype on the phenotype is monotone (e.g., an additive genetic effect). Similarly, predictors for machine learning applications may have natural ordering constraints. Cross-validation for feature selection in these high-dimensional contexts necessitates highly efficient computational algorithms for the robust evaluation of many features. Results We have developed an R extension package, fastJT, for conducting genome-wide association studies and feature selection for machine learning using the Jonckheere-Terpstra statistic for constrained hypotheses. The kernel of the package features an efficient algorithm for calculating the statistics, replacing the pairwise comparison and counting processes with a data sorting and searching procedure, reducing computational complexity from O(n2) to O(n log(n)). The computational efficiency is demonstrated through extensive benchmarking, and example applications to real data are presented. Conclusions fastJT is an open-source R extension package, applying the Jonckheere-Terpstra statistic for robust feature selection for machine learning and association studies. The package implements an efficient algorithm which leverages internal information among the samples to avoid unnecessary computations, and incorporates shared-memory parallel programming to further boost performance on multi-core machines. Electronic supplementary material The online version of this article (10.1186/s12859-019-2869-3) contains supplementary material, which is available to authorized users.
Collapse
|