1
|
Pindiprolu SKSS, Singh MT, Magham SV, Kumar CSP, Dasari N, Gummadi R, Krishnamurthy PT. Nanocarrier-mediated modulation of cGAS-STING signaling pathway to disrupt tumor microenvironment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03835-3. [PMID: 39907784 DOI: 10.1007/s00210-025-03835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
The cGAS-STING signaling plays an important role in the immune response in a tumor microenvironment (TME) of triple-negative breast cancer (TNBC). The acute and controlled activation of cGAS-STING signaling results in tumor suppression, while chronic activation of cGAS-STING signaling results in immune-suppressive TME that could result in tumor survival. There is a need, therefore, to develop therapeutic strategies for harnessing tumor suppressive effects of cGAS-STING signaling while minimizing the risks associated with chronic activation. Combination therapies and nanocarriers-based delivery of cGAS-STING agonists have emerged as promising strategies in immunotherapy for controlled modulation of cGAS-STING signaling in cancer. These approaches aim to optimize the tumor suppressive effects of the cGAS-STING pathway while minimizing the challenges associated with modulators of cGAS-STING signaling. In the present review, we discuss recent advancements and strategies in combination therapies and nanocarrier-based delivery systems for effectively controlling cGAS-STING signaling in cancer immunotherapy. Further, we emphasized the significance of nanocarrier-based approaches for effective targeting of the cGAS-STING signaling, tackling resistance mechanisms, and overcoming key challenges like immune suppression, tumor heterogeneity, and off-target effects.
Collapse
Affiliation(s)
| | - Madhu Tanya Singh
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, 20, Rocklands, Ooty, 643001, The Nilgiris, Tamil Nadu, India
| | - Sai Varshini Magham
- Department of Pharmacology, Vignan Pharmacy College, Vadlamudi, Guntur, India
| | | | - Nagasen Dasari
- School of Pharmacy, Aditya University, Surampalem, Andhra Pradesh, India
| | | | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, 20, Rocklands, Ooty, 643001, The Nilgiris, Tamil Nadu, India.
| |
Collapse
|
2
|
Yuan K, Zhang C, Pan X, Hu B, Zhang J, Yang G. Immunomodulatory metal-based biomaterials for cancer immunotherapy. J Control Release 2024; 375:249-268. [PMID: 39260573 DOI: 10.1016/j.jconrel.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Cancer immunotherapy, as an emerging cancer treatment approach, harnesses the patient's own immune system to effectively prevent tumor recurrence or metastasis. However, its clinical application has been significantly hindered by relatively low immune response rates. In recent years, metal-based biomaterials have been extensively studied as effective immunomodulators and potential tools for enhancing anti-tumor immune responses, enabling the reversal of immune suppression without inducing toxic side effects. This review introduces the classification of bioactive metal elements and summarizes their immune regulatory mechanisms. In addition, we discuss the immunomodulatory roles of biomaterials constructed from various metals, including aluminum, manganese, gold, calcium, zinc, iron, magnesium, and copper. More importantly, a systematic overview of their applications in enhancing immunotherapy is provided. Finally, the prospects and challenges of metal-based biomaterials with immunomodulatory functions in cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Kangzhi Yuan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Cai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinlu Pan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Junjun Zhang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu 215004, China.
| | - Guangbao Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
3
|
Yang J, Luo Z, Ma J, Wang Y, Cheng N. A next-generation STING agonist MSA-2: From mechanism to application. J Control Release 2024; 371:273-287. [PMID: 38789087 DOI: 10.1016/j.jconrel.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The stimulator of interferon genes (STING) connects the innate and adaptive immune system and plays a significant role in antitumor immunity. Over the past decades, endogenous and CDN-derived STING agonists have been a hot topic in the research of cancer immunotherapies. However, these STING agonists are either in infancy with limited biological effects or have failed in clinical trials. In 2020, a non-nucleotide STING agonist MSA-2 was identified, which exhibited satisfactory antitumor effects in animal studies and is amenable to oral administration. Due to its distinctive binding mode and enhanced bioavailability, there have been accumulating interests and an array of studies on MSA-2 and its derivatives, spanning its structure-activity relationship, delivery systems, applications in combination therapies, etc. Here, we provide a comprehensive review of MSA-2 and interventional strategies based on this family of STING agonists to help more researchers extend the investigation on MSA-2 in the future.
Collapse
Affiliation(s)
- Junhan Yang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zhenyu Luo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jingyi Ma
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Ningtao Cheng
- School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
4
|
Ridnour LA, Cheng RY, Kedei N, Somasundaram V, Bhattacharyya DD, Basudhar D, Wink AL, Walke AJ, Kim C, Heinz WF, Edmondson EF, Butcher DO, Warner AC, Dorsey TH, Pore M, Kinders RJ, Lipkowitz S, Bryant RJ, Rittscher J, Wong ST, Hewitt SM, Chang JC, Shalaby A, Callagy GM, Glynn SA, Ambs S, Anderson SK, McVicar DW, Lockett SJ, Wink DA. Adjuvant COX inhibition augments STING signaling and cytolytic T cell infiltration in irradiated 4T1 tumors. JCI Insight 2024; 9:e165356. [PMID: 38912586 PMCID: PMC11383366 DOI: 10.1172/jci.insight.165356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Immune therapy is the new frontier of cancer treatment. Therapeutic radiation is a known inducer of immune response and can be limited by immunosuppressive mediators including cyclooxygenase-2 (COX2) that is highly expressed in aggressive triple negative breast cancer (TNBC). A clinical cohort of TNBC tumors revealed poor radiation therapeutic efficacy in tumors expressing high COX2. Herein, we show that radiation combined with adjuvant NSAID (indomethacin) treatment provides a powerful combination to reduce both primary tumor growth and lung metastasis in aggressive 4T1 TNBC tumors, which occurs in part through increased antitumor immune response. Spatial immunological changes including augmented lymphoid infiltration into the tumor epithelium and locally increased cGAS/STING1 and type I IFN gene expression were observed in radiation-indomethacin-treated 4T1 tumors. Thus, radiation and adjuvant NSAID treatment shifts "immune desert phenotypes" toward antitumor M1/TH1 immune mediators in these immunologically challenging tumors. Importantly, radiation-indomethacin combination treatment improved local control of the primary lesion, reduced metastatic burden, and increased median survival when compared with radiation treatment alone. These results show that clinically available NSAIDs can improve radiation therapeutic efficacy through increased antitumor immune response and augmented local generation of cGAS/STING1 and type I IFNs.
Collapse
Affiliation(s)
- Lisa A. Ridnour
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
| | - Robert Y.S. Cheng
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource (CPTR) Nanoscale Protein Analysis, OSTR, CCR, NCI, NIH, Bethesda, Maryland, USA
| | | | | | | | - Adelaide L. Wink
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - Abigail J. Walke
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - Caleb Kim
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - William F. Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - Elijah F. Edmondson
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, Maryland, USA
| | - Donna O. Butcher
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, Maryland, USA
| | - Andrew C. Warner
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, Maryland, USA
| | - Tiffany H. Dorsey
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Milind Pore
- Imaging Mass Cytometry Frederick National Laboratory for Cancer Research, and
| | - Robert J. Kinders
- Office of the Director, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland, USA
| | | | - Richard J. Bryant
- Department of Urology, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Jens Rittscher
- Institute of Biomedical Engineering, Big Data Institute, Ludwig Oxford Branch, University of Oxford, Oxford, United Kingdom
| | - Stephen T.C. Wong
- Houston Methodist Neal Cancer Center, Weill Cornell Medical College, Houston Methodist Hospital, Houston, Texas, USA
| | | | - Jenny C. Chang
- Houston Methodist Neal Cancer Center, Weill Cornell Medical College, Houston Methodist Hospital, Houston, Texas, USA
| | - Aliaa Shalaby
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Grace M. Callagy
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Sharon A. Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Stephen K. Anderson
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Daniel W. McVicar
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
| | - Stephen J. Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - David A. Wink
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
| |
Collapse
|
5
|
Tani T, Mathsyaraja H, Campisi M, Li ZH, Haratani K, Fahey CG, Ota K, Mahadevan NR, Shi Y, Saito S, Mizuno K, Thai TC, Sasaki N, Homme M, Yusuf CFB, Kashishian A, Panchal J, Wang M, Wolf BJ, Barbie TU, Paweletz CP, Gokhale PC, Liu D, Uppaluri R, Kitajima S, Cain J, Barbie DA. TREX1 Inactivation Unleashes Cancer Cell STING-Interferon Signaling and Promotes Antitumor Immunity. Cancer Discov 2024; 14:752-765. [PMID: 38227896 PMCID: PMC11062818 DOI: 10.1158/2159-8290.cd-23-0700] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
A substantial fraction of cancers evade immune detection by silencing Stimulator of Interferon Genes (STING)-Interferon (IFN) signaling. Therapeutic reactivation of this program via STING agonists, epigenetic, or DNA-damaging therapies can restore antitumor immunity in multiple preclinical models. Here we show that adaptive induction of three prime exonuclease 1 (TREX1) restrains STING-dependent nucleic acid sensing in cancer cells via its catalytic function in degrading cytosolic DNA. Cancer cell TREX1 expression is coordinately induced with STING by autocrine IFN and downstream STAT1, preventing signal amplification. TREX1 inactivation in cancer cells thus unleashes STING-IFN signaling, recruiting T and natural killer (NK) cells, sensitizing to NK cell-derived IFNγ, and cooperating with programmed cell death protein 1 blockade in multiple mouse tumor models to enhance immunogenicity. Targeting TREX1 may represent a complementary strategy to induce cytosolic DNA and amplify cancer cell STING-IFN signaling as a means to sensitize tumors to immune checkpoint blockade (ICB) and/or cell therapies. SIGNIFICANCE STING-IFN signaling in cancer cells promotes tumor cell immunogenicity. Inactivation of the DNA exonuclease TREX1, which is adaptively upregulated to limit pathway activation in cancer cells, recruits immune effector cells and primes NK cell-mediated killing. Targeting TREX1 has substantial therapeutic potential to amplify cancer cell immunogenicity and overcome ICB resistance. This article is featured in Selected Articles from This Issue, p. 695.
Collapse
Affiliation(s)
- Tetsuo Tani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Contributed equally
| | | | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ze-Hua Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Koji Haratani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Caroline G. Fahey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Keiichi Ota
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Navin R. Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yingxiao Shi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shin Saito
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kei Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tran C. Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nobunari Sasaki
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mizuki Homme
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Choudhury Fabliha B. Yusuf
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Min Wang
- Gilead Sciences, Foster City, CA, USA
| | | | - Thanh U. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cloud P. Paweletz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Prafulla C Gokhale
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ravindra Uppaluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
6
|
Zhao K, Huang J, Zhao Y, Wang S, Xu J, Yin K. Targeting STING in cancer: Challenges and emerging opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188983. [PMID: 37717857 DOI: 10.1016/j.bbcan.2023.188983] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway is a key pathway through which the host regulates immune responses by recognizing cytoplasmic double-stranded DNA of abnormal origin, and it plays an important role in tumor growth as well as metastasis, with relevant molecular details constantly being explored and updated. The significant immunomodulatory effects make STING an attractive target for cancer immunotherapy, and STING agonists have been receiving great attention for their development and clinical translation. Despite exciting results in preclinical work, the application of STING agonists to cancer therapy remains challenging due to their poor pharmacokinetic and physicochemical properties, as well as toxic side effects they produce. Here, we summarize the dichotomous role of cGAS-STING in cancer and discuss the limitations of cancer immunotherapy based on STING activation as well as feasible strategies to overcome them to achieve tumor regression.
Collapse
Affiliation(s)
- Kexin Zhao
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaojiao Huang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Zhao
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Juan Xu
- Department of Laboratory Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
7
|
Oscherwitz M, Jiminez V, Terhaar H, Yusuf N. Modulation of Skin Cancer by the Stimulator of Interferon Genes. Genes (Basel) 2023; 14:1794. [PMID: 37761934 PMCID: PMC10530941 DOI: 10.3390/genes14091794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Morbidity and mortality from skin cancer continue to rise domestically and globally, and melanoma and non-melanoma skin cancers are a topic of interest in the dermatology and oncology communities. In this review, we summarize the stimulator of interferon genes (STING) pathway, its specific role in the pathogenesis of DNA damage and skin cancer, and STING-specific therapies that may fight both melanoma and non-melanoma skin (NMSC) cancers. Furthermore, we discuss specific portions of the STING pathway that may be used in addition to previously used therapies to provide a synergistic effect in future oncology treatments and discuss the limitations of current STING-based therapies.
Collapse
Affiliation(s)
- Max Oscherwitz
- Heersink School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Victoria Jiminez
- Heersink School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Hanna Terhaar
- Heersink School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Ma ZR, Xiong QW, Cai SZ, Ding LT, Yin CH, Xia HL, Liu W, Dai S, Zhang Y, Zhu ZH, Huang ZJ, Wang Q, Yan XM. USP18 enhances the resistance of BRAF-mutated melanoma cells to vemurafenib by stabilizing cGAS expression to induce cell autophagy. Int Immunopharmacol 2023; 122:110617. [PMID: 37478666 DOI: 10.1016/j.intimp.2023.110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/23/2023]
Abstract
This study aims to discern the possible molecular mechanism of the effect of ubiquitin-specific peptidase 18 (USP18) on the resistance to BRAF inhibitor vemurafenib in BRAF V600E mutant melanoma by regulating cyclic GMP-AMP synthase (cGAS). The cancer tissues of BRAF V600E mutant melanoma patients before and after vemurafenib treatment were collected, in which the protein expression of USP18 and cGAS was determined. A BRAF V600E mutant human melanoma cell line (A2058R) resistant to vemurafenib was constructed with its viability, apoptosis, and autophagy detected following overexpression and depletion assays of USP18 and cGAS. Xenografted tumors were transplanted into nude mice for in vivo validation. Bioinformatics analysis showed that the expression of cGAS was positively correlated with USP18 in melanoma, and USP18 was highly expressed in melanoma. The expression of cGAS and USP18 was up-regulated in cancer tissues of vemurafenib-resistant patients with BRAF V600E mutant melanoma. Knockdown of cGAS inhibited the resistance to vemurafenib in A2058R cells and the protective autophagy induced by vemurafenib in vitro. USP18 could deubiquitinate cGAS to promote its protein stability. In vivo experimentations confirmed that USP18 promoted vemurafenib-induced protective autophagy by stabilizing cGAS protein, which promoted resistance to vemurafenib in BRAF V600E mutant melanoma cells. Collectively, USP18 stabilizes cGAS protein expression through deubiquitination and induces autophagy of melanoma cells, thereby promoting the resistance to vemurafenib in BRAF V600E mutant melanoma.
Collapse
Affiliation(s)
- Zhou-Rui Ma
- Department of Burns and Plastic Surgery, Children's Hospital of Soochow University, Suzhou 215025, PR China; Suzhou Key Laboratory of Congenital Structural Deformities, Suzhou 215025, Jiangsu, PR China
| | - Qian-Wei Xiong
- Suzhou Key Laboratory of Congenital Structural Deformities, Suzhou 215025, Jiangsu, PR China; Department of Urology, Children's Hospital of Soochow University, Suzhou 215025, PR China
| | - Shi-Zhong Cai
- Suzhou Key Laboratory of Congenital Structural Deformities, Suzhou 215025, Jiangsu, PR China; Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou 215025, PR China
| | - Ling-Tao Ding
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214000, PR China
| | - Chao-Hong Yin
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214000, PR China
| | - Hong-Liang Xia
- Suzhou Key Laboratory of Congenital Structural Deformities, Suzhou 215025, Jiangsu, PR China; Department of Urology, Children's Hospital of Soochow University, Suzhou 215025, PR China
| | - Wei Liu
- Department of Burns and Plastic Surgery, Children's Hospital of Soochow University, Suzhou 215025, PR China
| | - Shu Dai
- Suzhou Key Laboratory of Congenital Structural Deformities, Suzhou 215025, Jiangsu, PR China
| | - Yue Zhang
- Soochow University, Suzhou 215006, PR China
| | - Zhen-Hong Zhu
- Department of Burns and Plastic Surgery, Children's Hospital of Soochow University, Suzhou 215025, PR China
| | - Zhi-Jian Huang
- Department of Burns and Plastic Surgery, Children's Hospital of Soochow University, Suzhou 215025, PR China
| | - Qian Wang
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou 215025, PR China.
| | - Xiang-Ming Yan
- Suzhou Key Laboratory of Congenital Structural Deformities, Suzhou 215025, Jiangsu, PR China; Department of Surgery, Children's Hospital of Soochow University, Suzhou 215025, PR China.
| |
Collapse
|
9
|
Angelova A, Pierrard K, Detje CN, Santiago E, Grewenig A, Nüesch JPF, Kalinke U, Ungerechts G, Rommelaere J, Daeffler L. Oncolytic Rodent Protoparvoviruses Evade a TLR- and RLR-Independent Antiviral Response in Transformed Cells. Pathogens 2023; 12:pathogens12040607. [PMID: 37111493 PMCID: PMC10144674 DOI: 10.3390/pathogens12040607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The oncolytic rodent protoparvoviruses (PVs) minute virus of mice (MVMp) and H-1 parvovirus (H-1PV) are promising cancer viro-immunotherapy candidates capable of both exhibiting direct oncolytic activities and inducing anticancer immune responses (AIRs). Type-I interferon (IFN) production is instrumental for the activation of an efficient AIR. The present study aims at characterizing the molecular mechanisms underlying PV modulation of IFN induction in host cells. MVMp and H-1PV triggered IFN production in semi-permissive normal mouse embryonic fibroblasts (MEFs) and human peripheral blood mononuclear cells (PBMCs), but not in permissive transformed/tumor cells. IFN production triggered by MVMp in primary MEFs required PV replication and was independent of the pattern recognition receptors (PRRs) Toll-like (TLR) and RIG-like (RLR) receptors. PV infection of (semi-)permissive cells, whether transformed or not, led to nuclear translocation of the transcription factors NFĸB and IRF3, hallmarks of PRR signaling activation. Further evidence showed that PV replication in (semi-)permissive cells resulted in nuclear accumulation of dsRNAs capable of activating mitochondrial antiviral signaling (MAVS)-dependent cytosolic RLR signaling upon transfection into naïve cells. This PRR signaling was aborted in PV-infected neoplastic cells, in which no IFN production was detected. Furthermore, MEF immortalization was sufficient to strongly reduce PV-induced IFN production. Pre-infection of transformed/tumor but not of normal cells with MVMp or H-1PV prevented IFN production by classical RLR ligands. Altogether, our data indicate that natural rodent PVs regulate the antiviral innate immune machinery in infected host cells through a complex mechanism. In particular, while rodent PV replication in (semi-)permissive cells engages a TLR-/RLR-independent PRR pathway, in transformed/tumor cells this process is arrested prior to IFN production. This virus-triggered evasion mechanism involves a viral factor(s), which exert(s) an inhibitory action on IFN production, particularly in transformed/tumor cells. These findings pave the way for the development of second-generation PVs that are defective in this evasion mechanism and therefore endowed with increased immunostimulatory potential through their ability to induce IFN production in infected tumor cells.
Collapse
Affiliation(s)
- Assia Angelova
- Program Infection, Inflammation and Cancer, Clinical Cooperation Unit Virotherapy (F230), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kristina Pierrard
- Program Infection, Inflammation and Cancer, Division Viral Transformation Mechanisms (F030), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Claudia N Detje
- Institute for Experimental Infection Research, TWICNORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Estelle Santiago
- CNRS, IPHC UMR 7178, Université de Strasbourg, F-67000 Strasbourg, France
| | - Annabel Grewenig
- Program Infection, Inflammation and Cancer, Division DNA Vectors (F160), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jürg P F Nüesch
- Program Infection, Inflammation and Cancer, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWICNORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Guy Ungerechts
- Program Infection, Inflammation and Cancer, Clinical Cooperation Unit Virotherapy (F230), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jean Rommelaere
- Program Infection, Inflammation and Cancer, Clinical Cooperation Unit Virotherapy (F230), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Laurent Daeffler
- CNRS, IPHC UMR 7178, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
10
|
Chen R, Liu M, Jiang Q, Meng X, Wei J. The cyclic guanosine monophosphate synthase-stimulator of interferon genes pathway as a potential target for tumor immunotherapy. Front Immunol 2023; 14:1121603. [PMID: 37153627 PMCID: PMC10160662 DOI: 10.3389/fimmu.2023.1121603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) detects infections or tissue damage by binding to microbial or self-DNA in the cytoplasm. Upon binding DNA, cGAS produces cGAMP that binds to and activates the adaptor protein stimulator of interferon genes (STING), which then activates the kinases IKK and TBK1 to induce the secretion of interferons and other cytokines. Recently, a series of studies demonstrated that the cGAS-STING pathway, a vital component of host innate immunity, might play an important role in anticancer immunity, though its mechanism remains to be elucidated. In this review, we highlight the latest understanding of the cGAS-STING pathway in tumor development and the advances in combination therapy of STING agonists and immunotherapy.
Collapse
Affiliation(s)
- Rui Chen
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingxia Liu
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Quanhong Jiang
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiangbo Meng
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- *Correspondence: Junmin Wei, ; Xiangbo Meng,
| | - Junmin Wei
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- *Correspondence: Junmin Wei, ; Xiangbo Meng,
| |
Collapse
|
11
|
Guo S, Feng J, Li Z, Yang S, Qiu X, Xu Y, Shen Z. Improved cancer immunotherapy strategies by nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1873. [PMID: 36576112 DOI: 10.1002/wnan.1873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/29/2022]
Abstract
Cancer immunotherapy agents fight cancer via immune system stimulation and have made significant advances in minimizing side effects and prolonging the survival of patients with solid tumors. However, major limitations still exist in cancer immunotherapy, including the inefficiency of immune response stimulation in specific cancer types, therapy resistance caused by the tumor microenvironment (TME), toxicities by the immune imbalance, and short lifetime of stimulator of interferon genes (STING) agonist. Recent advances in nanomedicine have shown significant potential in overcoming the obstacles of cancer immunotherapy. Several nanoscale agents have been reported for cancer immunotherapy, including nanoscale cancer vaccines impacting the STING pathway, nanomaterials reprogramming TME, nano-agents triggering immune response with immune checkpoint inhibitor synergy, ferroptosis-mediated and indoleamine-2,3-dioxygenase immunosuppression-mediated cancer immunotherapy, and nanomedicine-meditated chimeric antigen receptor-T-cell therapy. Herein, we summarize the major advances and innovations in nanomedicine-based cancer immunotherapy, and outline the opportunities and challenges to integrate more advanced nanomaterials into cancer immunotherapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Shuai Guo
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zongheng Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Sugeun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, South Korea
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov 2022; 21:799-820. [PMID: 35974096 PMCID: PMC9380983 DOI: 10.1038/s41573-022-00520-5] [Citation(s) in RCA: 960] [Impact Index Per Article: 320.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/11/2022]
Abstract
Tumour-associated macrophages are an essential component of the tumour microenvironment and have a role in the orchestration of angiogenesis, extracellular matrix remodelling, cancer cell proliferation, metastasis and immunosuppression, as well as in resistance to chemotherapeutic agents and checkpoint blockade immunotherapy. Conversely, when appropriately activated, macrophages can mediate phagocytosis of cancer cells and cytotoxic tumour killing, and engage in effective bidirectional interactions with components of the innate and adaptive immune system. Therefore, they have emerged as therapeutic targets in cancer therapy. Macrophage-targeting strategies include inhibitors of cytokines and chemokines involved in the recruitment and polarization of tumour-promoting myeloid cells as well as activators of their antitumorigenic and immunostimulating functions. Early clinical trials suggest that targeting negative regulators (checkpoints) of myeloid cell function indeed has antitumor potential. Finally, given the continuous recruitment of myelomonocytic cells into tumour tissues, macrophages are candidates for cell therapy with the development of chimeric antigen receptor effector cells. Macrophage-centred therapeutic strategies have the potential to complement, and synergize with, currently available tools in the oncology armamentarium. Macrophages can promote tumorigenesis and enhance the antitumour response. This Review discusses the molecular mechanisms underlying the reprogramming of macrophages in the tumour microenvironment and provides an overview of macrophage-targeted therapies for the treatment of cancer.
Collapse
Affiliation(s)
- Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy. .,IRCCS- Humanitas Research Hospital, Milan, Italy. .,The William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - Paola Allavena
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS- Humanitas Research Hospital, Milan, Italy
| | - Federica Marchesi
- IRCCS- Humanitas Research Hospital, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS- Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
13
|
Chatterjee D, Das P, Chakrabarti O. Mitochondrial Epigenetics Regulating Inflammation in Cancer and Aging. Front Cell Dev Biol 2022; 10:929708. [PMID: 35903542 PMCID: PMC9314556 DOI: 10.3389/fcell.2022.929708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a defining factor in disease progression; epigenetic modifications of this first line of defence pathway can affect many physiological and pathological conditions, like aging and tumorigenesis. Inflammageing, one of the hallmarks of aging, represents a chronic, low key but a persistent inflammatory state. Oxidative stress, alterations in mitochondrial DNA (mtDNA) copy number and mis-localized extra-mitochondrial mtDNA are suggested to directly induce various immune response pathways. This could ultimately perturb cellular homeostasis and lead to pathological consequences. Epigenetic remodelling of mtDNA by DNA methylation, post-translational modifications of mtDNA binding proteins and regulation of mitochondrial gene expression by nuclear DNA or mtDNA encoded non-coding RNAs, are suggested to directly correlate with the onset and progression of various types of cancer. Mitochondria are also capable of regulating immune response to various infections and tissue damage by producing pro- or anti-inflammatory signals. This occurs by altering the levels of mitochondrial metabolites and reactive oxygen species (ROS) levels. Since mitochondria are known as the guardians of the inflammatory response, it is plausible that mitochondrial epigenetics might play a pivotal role in inflammation. Hence, this review focuses on the intricate dynamics of epigenetic alterations of inflammation, with emphasis on mitochondria in cancer and aging.
Collapse
Affiliation(s)
- Debmita Chatterjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- *Correspondence: Oishee Chakrabarti, ; Debmita Chatterjee, ; Palamou Das,
| | - Palamou Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute, Mumbai, India
- *Correspondence: Oishee Chakrabarti, ; Debmita Chatterjee, ; Palamou Das,
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute, Mumbai, India
- *Correspondence: Oishee Chakrabarti, ; Debmita Chatterjee, ; Palamou Das,
| |
Collapse
|
14
|
Cattolico C, Bailey P, Barry ST. Modulation of Type I Interferon Responses to Influence Tumor-Immune Cross Talk in PDAC. Front Cell Dev Biol 2022; 10:816517. [PMID: 35273962 PMCID: PMC8902310 DOI: 10.3389/fcell.2022.816517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has revolutionized the treatment of many cancer types. However, pancreatic ductal adenocarcinomas (PDACs) exhibit poor responses to immune checkpoint inhibitors with immunotherapy-based trials not generating convincing clinical activity. PDAC tumors often have low infiltration of tumor CD8+ T cells and a highly immunosuppressive microenvironment. These features classify PDAC as immunologically "cold." However, the presence of tumor T cells is a favorable prognostic feature in PDAC. Intrinsic tumor cell properties govern interactions with the immune system. Alterations in tumor DNA such as genomic instability, high tumor mutation burden, and/or defects in DNA damage repair are associated with responses to both immunotherapy and chemotherapy. Cytotoxic or metabolic stress produced by radiation and/or chemotherapy can act as potent immune triggers and prime immune responses. Damage- or stress-mediated activation of nucleic acid-sensing pathways triggers type I interferon (IFN-I) responses that activate innate immune cells and natural killer cells, promote maturation of dendritic cells, and stimulate adaptive immunity. While PDAC exhibits intrinsic features that have the potential to engage immune cells, particularly following chemotherapy, these immune-sensing mechanisms are ineffective. Understanding where defects in innate immune triggers render the PDAC tumor-immune interface less effective, or how T-cell function is suppressed will help develop more effective treatments and harness the immune system for durable outcomes. This review will focus on the pivotal role played by IFN-I in promoting tumor cell-immune cell cross talk in PDAC. We will discuss how PDAC tumor cells bypass IFN-I signaling pathways and explore how these pathways can be co-opted or re-engaged to enhance the therapeutic outcome.
Collapse
Affiliation(s)
- Carlotta Cattolico
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Peter Bailey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Simon T. Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
15
|
Wang H, Yung MMH, Ngan HYS, Chan KKL, Chan DW. The Impact of the Tumor Microenvironment on Macrophage Polarization in Cancer Metastatic Progression. Int J Mol Sci 2021; 22:ijms22126560. [PMID: 34207286 PMCID: PMC8235734 DOI: 10.3390/ijms22126560] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Rather than primary solid tumors, metastasis is one of the hallmarks of most cancer deaths. Metastasis is a multistage event in which cancer cells escape from the primary tumor survive in the circulation and disseminate to distant sites. According to Stephen Paget’s “Seed and Soil” hypothesis, metastatic capacity is determined not only by the internal oncogenic driving force but also by the external environment of tumor cells. Throughout the body, macrophages are required for maintaining tissue homeostasis, even in the tumor milieu. To fulfill these multiple functions, macrophages are polarized from the inflammation status (M1-like) to anti-inflammation status (M2-like) to maintain the balance between inflammation and regeneration. However, tumor cell-enforced tumor-associated macrophages (TAMs) (a high M2/M1 ratio status) are associated with poor prognosis for most solid tumors, such as ovarian cancer. In fact, clinical evidence has verified that TAMs, representing up to 50% of the tumor mass, exert both protumor and immunosuppressive effects in promoting tumor metastasis through secretion of interleukin 10 (IL10), transforming growth factor β (TGFβ), and VEGF, expression of PD-1 and consumption of arginine to inhibit T cell anti-tumor function. However, the underlying molecular mechanisms by which the tumor microenvironment favors reprogramming of macrophages to TAMs to establish a premetastatic niche remain controversial. In this review, we examine the latest investigations of TAMs during tumor development, the microenvironmental factors involved in macrophage polarization, and the mechanisms of TAM-mediated tumor metastasis. We hope to dissect the critical roles of TAMs in tumor metastasis, and the potential applications of TAM-targeted therapeutic strategies in cancer treatment are discussed.
Collapse
|