1
|
Cheng N, Gao N, Wang P, Ma Y, Li P, Wu X, Sun J, Dai Y, Zhao J. Structure identification and biological activity of a novel sulfated glycosaminoglycan-like polysaccharide from Sepia recurvirostra ink. Carbohydr Polym 2025; 357:123415. [PMID: 40158962 DOI: 10.1016/j.carbpol.2025.123415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/29/2025] [Accepted: 02/17/2025] [Indexed: 04/02/2025]
Abstract
A novel sulfated glycosaminoglycan-like polysaccharide (SIP), with a molecular weight of 13.78 kDa, was isolated from Sepia recurvirostra ink. SIP displayed a sulfate content of 6.82 % and consisted of GlcNAc, GalNAc, GlcA and Fuc. The distinct structural sequence of SIP was identified by 1D/2D NMR assignments of the backbone released by deaminative treatment and the oligosaccharides generated by mild acid hydrolysis. The backbone was built up of disaccharide repeating blocks structured as [-D-GlcA-β1,4-L-Fuc-α1,3-]. Notably, the non-sulfated GalNAc was attached to C-3 of Fuc, while the 4, 6-O-disulfated GlcNAc was pendant at C-4 in 20 % of GlcA residues, as revealed by the well-defined structures of trisaccharide, tetrasaccharides, heptasaccharides and decasaccharides. Except for the trisaccharide, the non-reducing ends of the other oligosaccharides were GlcNAc6S or GlcNAc4S6S, suggesting selectivity of glycosidic bond cleavage and desulfation during mild acid hydrolysis. SIP showed negligible anticoagulant and heparanase inhibitory activity. Moreover, the effects of SIP on the generation of short-chain fatty acids (SCFAs) by colonic microbiota were evaluated. The addition of SIP resulted in a significant increase in levels of acetate, propionate, isobutyric acid, and isovaleric acid, offering insights into the contribution of the colonic microbiota to the health benefits of dietary squid ink.
Collapse
Affiliation(s)
- Nanqi Cheng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Pin Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Yujun Ma
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Pengfei Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xiaolu Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jiaying Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Yulan Dai
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
2
|
Xu C, Shi X, Sun H, Yu L, Zhang L, Lan D, Wu X, Chen M, Cheng N, Pan Y, He J, Yin R, Zhou L, Gao N, Zhao J. Unique structure and biological properties of fucosylated glycosaminoglycan and its oligosaccharides from sea cucumber Holothuria floridana. Carbohydr Polym 2025; 355:123351. [PMID: 40037731 DOI: 10.1016/j.carbpol.2025.123351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/20/2024] [Accepted: 02/03/2025] [Indexed: 03/06/2025]
Abstract
Fucosylated glycosaminoglycan (FG) from Holothuroidea exhibits notable structural diversity and multiple biological activities. This study investigated the HfFG isolated from the sea cucumber Holothuria floridana, focusing on its chemical structure and biological activities. Structural analysis of eleven oligosaccharides (a-k) and a depolymerized product (dHfFG-II) using NMR identified the HfFG backbone as chondroitin sulfate E (CS-E), with various branches, including L-Fuc2S4S, L-Fuc3S4S, L-Fuc4S, and the unique disaccharide D-GalNAc4S-α1,2-L-Fuc3S4S, attached at C-3 of GlcA. A high L-Fuc2S4S (40 %) and disaccharide branch (35 %) content allowed their contiguous distribution within the CS-E chain, as evidenced by the predominant hexasaccharides (i, j) in size-homogeneous Fr4 and the novel nonasaccharide k in Fr5. Notably, previously unreported branches and sequences in HfFG were confirmed, offering new understanding of the natural HfFG structure. HfFG showed potent inhibitory activities on the intrinsic tenase complex (iXase), heparanase, and P-selectin binding to PSGL-1. Depolymerization selectively modulated these activities, preserving anti-iXase potency while attenuating heparanase and P-selectin inhibition. These activities were dependent on oligosaccharide chain length and sequence. Comparing the activities of FG and its oligosaccharides highlights their potential for the rational design of targeted inhibitors of heparanase or P-selectin binding to PSGL-1, with significant implications for therapeutic applications.
Collapse
Affiliation(s)
- Chen Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xiang Shi
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Huifang Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Lijuan Yu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Liang Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Di Lan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xiaolu Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Mengran Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Nanqi Cheng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ying Pan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jiayi He
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Lutan Zhou
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
3
|
Felix AL, Penno SM, Bezerra FF, Mourão PAS. Fucosylated chondroitin sulfate, an intriguing polysaccharide from sea cucumber: past, present, and future. Glycobiology 2025; 35:cwae098. [PMID: 39706802 DOI: 10.1093/glycob/cwae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024] Open
Abstract
Fucosylated chondroitin sulfate (FCS) is a unique polysaccharide, first described nearly four decades ago, and found exclusively in sea cucumbers. It is a component of the extracellular matrix, possibly associated with peculiar properties of the invertebrate tissue. The carbohydrate features a chondroitin sulfate core with branches of sulfated α-Fuc linked to position 3 of the β-GlcA. FCSs from different species of sea cucumbers share a similar chondroitin sulfate core but the structure of the sulfated α-Fuc branches varies significantly. The predominant pattern consists of a single unit of sulfated α-Fuc, though some species exhibit branches with multiple α-Fuc units. This comprehensive review focuses on four major aspects of FCS. Firstly, we describe the initial approaches to elucidate the structure of FCS using classical methods of carbohydrate chemistry. Secondly, we highlight the impact of two-dimensional NMR methods in consolidating and revealing further details about the structure of FCS. These studies were conducted by various researchers across different countries and involving multiple species of sea cucumbers. Thirdly, we summarize the biological activities reported for FCS. Our survey identified 104 publications involving FCS from 42 species of sea cucumbers, reporting 10 types of biological activities. Most studies focused on anticoagulant and antithrombotic activities. Finally, we discuss future perspectives for studies related to FCS. These studies aim to clarify the evolutionary advantage for sea cucumbers in developing such a peculiar fucosylated glycosaminoglycan. Additionally, there is a need to identify the enzymes and genes involved in the metabolism of this unique carbohydrate.
Collapse
Affiliation(s)
- Adriani L Felix
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Suzane M Penno
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Francisco F Bezerra
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Paulo A S Mourão
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| |
Collapse
|
4
|
Li N, Zhu X, Zhang H, Yang X, Shao M, Cui S, Lin C. Exploring the Target Genes of Fucosylated Chondroitin Sulfate in Treating Lung Adenocarcinoma Based on the Integration of Bioinformatics Analysis, Molecular Docking, and Experimental Verification. ACS OMEGA 2024; 9:46312-46322. [PMID: 39583738 PMCID: PMC11579779 DOI: 10.1021/acsomega.4c07295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
Fucosylated chondroitin sulfate (FCS), extracted from sea cucumbers' body walls, has been found to inhibit the proliferation of lung adenocarcinoma (LUAD) cells. However, there have been few studies of the associated drug targets. This study combined bioinformatics analysis and molecular docking to screen the main targets of FCS intervention in LUAD. Moreover, an experimental validation was performed. First, we downloaded the LUAD gene data set from The Cancer Genome Atlas (TCGA) database and the cisplatin (DDP) resistance gene data set of LUAD A549 cells from the Gene Expression Omnibus (GEO) database. Nine significant genes (PLK1, BUB1, CDK1, CDC20, CCNB1, BUB1B, KIF11, CCNB2, and DLAGP5) were identified by bioinformatics analysis, and these nine genes overlapped in both data sets. Then, molecular docking results showed that FCS had a better affinity with target proteins BUB1 and PLK1. Further experimental verification revealed that FCS inhibited the growth of A549 cells and increased the sensitivity of A549 cells to DDP. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that A549 cells treated with FCS exhibited down-regulated BUB1 and PLK1 mRNA expression. At the same time, FCS+DDP treatment resulted in a more significant reduction in BUB1 and PLK1 mRNA expression than DDP or FCS treatment alone. These findings reveal potential targets of FCS for LUAD and provide clues for the development of FCS as a potential anticancer agent.
Collapse
Affiliation(s)
- Nana Li
- Department
of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xinhong Zhu
- Department
of International Medicine, Qingdao Municipal
Hospital Group, Qingdao 266071, China
| | - Hua Zhang
- Department
of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaohui Yang
- Department
of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Mingju Shao
- Department
of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shichao Cui
- Department
of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Cunzhi Lin
- Department
of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
5
|
Harini R, Natarajan V, Sunil CK. Sea cucumber significance: Drying techniques and India's comprehensive status. J Food Sci 2024; 89:3995-4018. [PMID: 38847764 DOI: 10.1111/1750-3841.17153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 07/04/2024]
Abstract
Sea cucumbers, members of the echinoderm class Holothuroidea, are marine invertebrates with ecological significance and substantial commercial value. With approximately 1700 species, these organisms contribute to marine ecosystems through nutrient cycling and face various threats, including overfishing and habitat loss. Despite their importance, they are extensively exploited for diverse applications, from seafood to pharmaceuticals. This study investigates sea cucumbers' nutritional profile and bioactive elements, emphasizing their role as sources of essential compounds with potential health benefits. The demand for sea cucumbers, especially in dried form, is significant, prompting exploration into various drying techniques. Examining the global trade in sea cucumbers highlights their economic importance and the conservation challenges they face. Conservation efforts, such as awareness campaigns and international collaboration, are evaluated as essential steps in combating illicit trade and promoting the sustainable stewardship of sea cucumber populations. PRACTICAL APPLICATION: Around 1700 species of sea cucumbers were identified as vital ecological scavengers in the Holothuroidea class. High commercial value due to their health benefits, particularly their demonstrated inhibitory effect against various types of cancer. "Beche-de-mer" holds a 90% market share and is regarded as a luxury food item in Southeast Asian countries. Due to overexploitation, the species is classified as Schedule I under the Wildlife Protection Act (WPA) in India, prompting the implementation of a blanket ban on their harvesting to ensure its conservation.
Collapse
Affiliation(s)
- Ravi Harini
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - Venkatachalapathy Natarajan
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - C K Sunil
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| |
Collapse
|
6
|
Dong J, Cui Y, Qu X. Metabolism mechanism of glycosaminoglycans by the gut microbiota: Bacteroides and lactic acid bacteria: A review. Carbohydr Polym 2024; 332:121905. [PMID: 38431412 DOI: 10.1016/j.carbpol.2024.121905] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glycosaminoglycans (GAGs), as a class of biopolymers, play pivotal roles in various biological metabolisms such as cell signaling, tissue development, cell apoptosis, immune modulation, and growth factor activity. They are mainly present in the colon in free forms, which are essential for maintaining the host's health by regulating the colonization and proliferation of gut microbiota. Therefore, it is important to explain the specific members of the gut microbiota for GAGs' degradation and their enzymatic machinery in vivo. This review provides an outline of GAGs-utilizing entities in the Bacteroides, highlighting their polysaccharide utilization loci (PULs) and the enzymatic machinery involved in chondroitin sulfate (CS) and heparin (Hep)/heparan sulfate (HS). While there are some variations in GAGs' degradation among different genera, we analyze the reputed GAGs' utilization clusters in lactic acid bacteria (LAB), based on recent studies on GAGs' degradation. The enzymatic machinery involved in Hep/HS and CS metabolism within LAB is also discussed. Thus, to elucidate the precise mechanisms utilizing GAGs by diverse gut microbiota will augment our understanding of their effects on human health and contribute to potential therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Jiahuan Dong
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| |
Collapse
|
7
|
Yuan Q, Shi X, Ma H, Yao Y, Zhang B, Zhao L. Recent progress in marine chondroitin sulfate, dermatan sulfate, and chondroitin sulfate/dermatan sulfate hybrid chains as potential functional foods and therapeutic agents. Int J Biol Macromol 2024; 262:129969. [PMID: 38325688 DOI: 10.1016/j.ijbiomac.2024.129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed. This review presents information on the extraction, purification, structural characterization, biological activities, potential action mechanisms, and structure-activity relationships of marine CS, DS, and CS/DS hybrid chains. We also discuss the challenges and perspectives in the research of CS, DS, and CS/DS hybrid chains. This review may provide a useful reference for the further investigation, development, and application of CS, DS, and CS/DS hybrid chains in the fields of functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Xiang Shi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Yue Yao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| |
Collapse
|
8
|
Lan D, Zhang J, Shang X, Yu L, Xu C, Wang P, Cui L, Cheng N, Sun H, Ran J, Sha L, Yin R, Gao N, Zhao J. Branch distribution pattern and anticoagulant activity of a fucosylated chondroitin sulfate from Phyllophorella kohkutiensis. Carbohydr Polym 2023; 321:121304. [PMID: 37739534 DOI: 10.1016/j.carbpol.2023.121304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023]
Abstract
Fucosylated chondroitin sulfate (FCS) extracted from Phyllophorella kohkutiensis (PkFCS) is composed of d-GalNAc, d-GlcA, l-Fuc and -SO42-. According to the defined structures revealed by NMR spectra of the branches released by mild acid hydrolysis and oligosaccharides generated by β-eliminative depolymerization, the backbone of PkFCS is CS-E, and the branch types attached to C-3 of d-GlcA include l-Fuc2S4S, l-Fuc3S4S, l-Fuc4S, and the disaccharide α-d-GalNAc-1,2-α-l-Fuc3S4S with the ratio of 43:13:22:22. Notably, novel heptasaccharide and hendecasaccharide were identified that are branched with continuous distribution of the disaccharide. The structural sequences of the oligosaccharides indicate that three unique structural motifs are present in the entire PkFCS polymer, including a motif branched with randomly distributed different sulfated l-Fuc units, a motif containing regular l-Fuc2S4S branches and a motif enriched in α-d-GalNAc-1,2-α-l-Fuc3S4S. This is the first report about the distribution pattern of diverse branches in natural FCS. Natural PkFCS exhibited potent anticoagulant activity on APTT prolonging and anti-iXase activity. Regarding the structurally defined oligosaccharides with sulfated fucosyl side chains, octasaccharide (Pk4b) is the minimum fragment responsible for its anticoagulant activity correlated with anti-iXase. However, further glycosyl modification with a non-sulfated d-GalNAc at the C-2 position of l-Fuc3S4S could significantly decrease the anticoagulant and anti-iXase activity.
Collapse
Affiliation(s)
- Di Lan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jiali Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xiaolei Shang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Lijuan Yu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Chen Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Pin Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Lige Cui
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Nanqi Cheng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Huifang Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jianing Ran
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Le Sha
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China.
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
9
|
Yang Y, Yuan F, Zhou H, Quan J, Liu C, Wang Y, Xiao F, Liu Q, Liu J, Zhang Y, Yu X. Potential roles of heparanase in cancer therapy: Current trends and future direction. J Cell Physiol 2023; 238:896-917. [PMID: 36924082 DOI: 10.1002/jcp.30995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Heparanase (HPSE; heparanase-1) is an endo-β-glucuronidase capable of degrading the carbohydrate moiety of heparan sulfate proteoglycans, thus modulating and facilitating the remodeling of the extracellular matrix and basement membrane. HPSE activity is strongly associated with major human pathological complications, including but not limited to tumor progress and angiogenesis. Several lines of literature have shown that overexpression of HPSE leads to enhanced tumor growth and metastatic transmission, as well as poor prognosis. Gene silencing of HPSE or treatment of tumor with compounds that block HPSE activity are shown to remarkably attenuate tumor progression. Therefore, targeting HPSE is considered as a potential therapeutical strategy for the treatment of cancer. Intriguingly, recent findings disclose that heparanase-2 (HPSE-2), a close homolog of HPSE but lacking enzymatic activity, can also regulate antitumor mechanisms. Given the pleiotropic roles of HPSE, further investigation is in demand to determine the precise mechanism of regulating action of HPSE in different cancer settings. In this review, we first summarize the current understanding of HPSE, such as its structure, subcellular localization, and tissue distribution. Furthermore, we systematically review the pro- and antitumorigenic roles and mechanisms of HPSE in cancer progress. In addition, we delineate HPSE inhibitors that have entered clinical trials and their therapeutic potential.
Collapse
Affiliation(s)
- Yiyuan Yang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fengyan Yuan
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Huiqin Zhou
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jing Quan
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Chongyang Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yi Wang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fen Xiao
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Qiao Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jie Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yujing Zhang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xing Yu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
10
|
Hao-Yu D, Ding-Yi Y, Bao-Hong X, Aihua S, Xiao-Qian D, Cun-Zhi L. Two Molecular Weights Holothurian Glycosaminoglycan and Hematoporphyrin Derivative-Photodynamic Therapy Inhibit Proliferation and Promote Apoptosis of Human Lung Adenocarcinoma Cells. Integr Cancer Ther 2023; 22:15347354221144310. [PMID: 36624619 PMCID: PMC9834781 DOI: 10.1177/15347354221144310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Holothurian glycosaminoglycan (hGAG) is extracted from the body wall of the sea cucumber, and previous studies have shown many unique bioactivities of hGAG, including antitumor, anti-angiogenesis, anti coagulation, anti thrombosis, anti-inflammation, antidiabetic effect, antivirus, and immune regulation. The effects of 3W and 5W molecular weights hGAG with hematoporphyrin derivative-photodynamic therapy (HPD-PDT) on lung cancer were investigated. Human lung adenocarcinoma A549 cells were divided into 6 groups: control group, 3W molecular weight hGAG group, 5W molecular weight hGAG group, HPD-PDT group, 3W molecular weight hGAG + HPD-PDT group, and 5W molecular weight hGAG + HPD-PDT group. Cell morphology was observed under inverted phase contrast microscope. Cell proliferative activity was detected by CCK8 and cell apoptosis was assayed by Hoechst33258 staining and flow cytometry. The results showed that two different molecular weights hGAG could inhibit proliferation, promote apoptosis rates of A549 cells, and enhance the sensitivity of A549 cells to HPD-PDT. The combined use of hGAG and HPD-PDT has synergistic inhibitory effects on A549 cells, and the effects of 3W molecular weight hGAG are better than that of 5W molecular weight hGAG.
Collapse
Affiliation(s)
- Dai Hao-Yu
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Yu Ding-Yi
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Xiao Bao-Hong
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Sui Aihua
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Ding Xiao-Qian
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Lin Cun-Zhi
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China,Lin Cun-Zhi, Department of Respiratory and
Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao
266003, Shandong, China.
| |
Collapse
|
11
|
Structural characterization and anticoagulant analysis of the novel branched fucosylated glycosaminoglycan from sea cucumber Holothuria nobilis. Carbohydr Polym 2021; 269:118290. [PMID: 34294316 DOI: 10.1016/j.carbpol.2021.118290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 12/15/2022]
Abstract
Glycosaminoglycan HnFG was extracted from sea cucumber Holothuria nobilis. Its chemical structure was characterized by analyzing the physicochemical properties, oligosaccharides from its mild acid hydrolysates and depolymerized products. The disaccharide d-GalNAc4S6S-α1,2-l-Fuc3S-ol found in its mild acid hydrolysates provided a clue for the presence of a unique disaccharide-branch in HnFG. Furthermore, it was confirmed by a series of oligosaccharides from the low-molecular weight HnFG prepared by β-eliminative depolymerization. Combining with the analysis of its peroxide depolymerized products, the precise structure of HnFG was determined: A chondroitin sulfate E (CS-E)-like backbone branched with sulfated monofucoses (~67%) and disaccharides d-GalNAcS-α1,2-l-Fuc3S (~33%) at O-3 position of each GlcUA. This is the first report on the novel branches in glycosaminoglycan. Biologically, the native and depolymerized HnFG showed potent activities in prolonging the activated partial thrombin time (APTT) and inhibiting intrinsic coagulation Xase (iXase), whereas the oligosaccharides (degree of polymerization ≤6) had no obvious effects.
Collapse
|
12
|
Anti-Angiogenic Property of Free Human Oligosaccharides. Biomolecules 2021; 11:biom11060775. [PMID: 34064180 PMCID: PMC8224327 DOI: 10.3390/biom11060775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022] Open
Abstract
Angiogenesis, a fundamental process in human physiology and pathology, has attracted considerable attention owing to its potential as a therapeutic strategy. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) are deemed major mediators of angiogenesis. To date, inhibition of the VEGF-A/VEGFR-2 axis has been an effective strategy employed in the development of anticancer drugs. However, some limitations, such as low efficacy and side effects, need to be addressed. Several drug candidates have been discovered, including small molecule compounds, recombinant proteins, and oligosaccharides. In this review, we focus on human oligosaccharides as modulators of angiogenesis. In particular, sialylated human milk oligosaccharides (HMOs) play a significant role in the inhibition of VEGFR-2-mediated angiogenesis. We discuss the structural features concerning the interaction between sialylated HMOs and VEGFR-2 as a molecular mechanism of anti-angiogenesis modulation and its effectiveness in vivo experiments. In the current state, extensive clinical trials are required to develop a novel VEGFR-2 inhibitor from sialylated HMOs.
Collapse
|
13
|
Shi X, Guan R, Zhou L, Zuo Z, Tao X, Wang P, Zhou Y, Yin R, Zhao L, Gao N, Zhao J. Structural Characterization and Heparanase Inhibitory Activity of Fucosylated Glycosaminoglycan from Holothuria floridana. Mar Drugs 2021; 19:162. [PMID: 33803892 PMCID: PMC8003118 DOI: 10.3390/md19030162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Abstract
Unique fucosylated glycosaminoglycans (FG) have attracted increasing attention for various bioactivities. However, the precise structures of FGs usually vary in a species-specific manner. In this study, HfFG was isolated from Holothuria floridana and purified by anion exchange chromatography with the yield of ~0.9%. HfFG was composed of GlcA, GalNAc and Fuc, its molecular weight was 47.3 kDa, and the -OSO3-/-COO- molar ratio was 3.756. HfFG was depolymerized by a partial deacetylation-deaminative cleavage method to obtain the low-molecular-weight HfFG (dHfFG). Three oligosaccharide fragments (Fr-1, Fr-2, Fr-3) with different molecular weights were isolated from the dHfFG, and their structures were revealed by 1D and 2D NMR spectroscopy. HfFG should be composed of repeating trisaccharide units -{(L-FucS-α1,3-)d-GlcA-β1,3-d-GalNAc4S6S-β1,4-}-, in which sulfated fucose (FucS) includes Fuc2S4S, Fuc3S4S and Fuc4S residues linked to O-3 of GlcA in a ratio of 45:35:20. Furthermore, the heparanase inhibitory activities of native HfFG and oligosaccharide fragments (Fr-1, Fr-2, Fr-3) were evaluated. The native HfFG and its oligosaccharides exhibited heparanase inhibitory activities, and the activities increased with the increase of molecular weight. Additionally, structural characteristics such as sulfation patterns, the terminal structure of oligosaccharides and the presence of fucosyl branches may be important factors affecting heparanase inhibiting activity.
Collapse
Affiliation(s)
- Xiang Shi
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (X.S.); (R.G.); (Z.Z.); (X.T.); (P.W.); (Y.Z.); (R.Y.); (J.Z.)
| | - Ruowei Guan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (X.S.); (R.G.); (Z.Z.); (X.T.); (P.W.); (Y.Z.); (R.Y.); (J.Z.)
| | - Lutan Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Zhichuang Zuo
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (X.S.); (R.G.); (Z.Z.); (X.T.); (P.W.); (Y.Z.); (R.Y.); (J.Z.)
| | - Xuelin Tao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (X.S.); (R.G.); (Z.Z.); (X.T.); (P.W.); (Y.Z.); (R.Y.); (J.Z.)
| | - Pin Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (X.S.); (R.G.); (Z.Z.); (X.T.); (P.W.); (Y.Z.); (R.Y.); (J.Z.)
| | - Yanrong Zhou
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (X.S.); (R.G.); (Z.Z.); (X.T.); (P.W.); (Y.Z.); (R.Y.); (J.Z.)
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (X.S.); (R.G.); (Z.Z.); (X.T.); (P.W.); (Y.Z.); (R.Y.); (J.Z.)
| | - Longyan Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (X.S.); (R.G.); (Z.Z.); (X.T.); (P.W.); (Y.Z.); (R.Y.); (J.Z.)
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (X.S.); (R.G.); (Z.Z.); (X.T.); (P.W.); (Y.Z.); (R.Y.); (J.Z.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (X.S.); (R.G.); (Z.Z.); (X.T.); (P.W.); (Y.Z.); (R.Y.); (J.Z.)
| |
Collapse
|